On the minimum distance of LDPC codes based on repetition codes and permutation matrices

Fedor Ivanov

Email: fii@iitp.ru

Institute for Information Transmission Problems,
Russian Academy of Science

XV International Workshop on Algebraic and Combinatorial Coding Theory (ACCT)
18-24 June, 2016
Albena, Bulgaria

Outline

- Definitions and notation
- Circulant matrices

■ Auxiliary statements

- Code structure
- Lower bound on the minimum distance of proposed codes
- Simulation and numerical results
- Conclusion

Definitions and notation - I

Notation

Under $\mathcal{R}\left(n_{0}\right)$ we shall assume $\left[n_{0}, 1, n_{0}\right]\left(n_{0}>1\right)$ repetition code of length n_{0} and minimum distance $d_{\text {min }}=n_{0}$.

Definitions and notation - I

Notation

Under $\mathcal{R}\left(n_{0}\right)$ we shall assume $\left[n_{0}, 1, n_{0}\right]\left(n_{0}>1\right)$ repetition code of length n_{0} and minimum distance $d_{\text {min }}=n_{0}$.

Notation

Under $G F^{m}(2)(m>1, m \in \mathbb{N})$ we shall assume a vector space of length m vectors over $G F(2)$.

Definitions and notation - I

Notation

Under $\mathcal{R}\left(n_{0}\right)$ we shall assume $\left[n_{0}, 1, n_{0}\right]\left(n_{0}>1\right)$ repetition code of length n_{0} and minimum distance $d_{\text {min }}=n_{0}$.

Notation

Under $G F^{m}(2)(m>1, m \in \mathbb{N})$ we shall assume a vector space of length m vectors over $G F(2)$.

Notation

Let $\mathbf{y} \in G F^{m}(2)$, then under $\|\mathbf{y}\|$ we shall assume hamming weight of y.

Definitions and notation - II

Notation

Let $\mathbf{y} \in G F^{m}(2)$, then under $\operatorname{supp}(\mathbf{y})$ we shall assume a support of y, i. e.

$$
\operatorname{supp}(\mathbf{y})=\left\{j: y_{j}=1\right\}
$$

Definitions and notation - II

Notation

Let $\mathbf{y} \in G F^{m}(2)$, then under $\operatorname{supp}(\mathbf{y})$ we shall assume a support of $y, i . e$.

$$
\operatorname{supp}(\mathbf{y})=\left\{j: y_{j}=1\right\}
$$

Notation

Let $\mathbf{y} \in G F^{m}(2), p \in \mathbb{Z}$, then under the set $p+\operatorname{supp}(\mathbf{y})$ we shall assume:

$$
p+\operatorname{supp}(\mathbf{y})=\left\{j+p \bmod m: y_{j}=1\right\} .
$$

Circulant matrices

Definition

Let $m>1, m \in \mathbb{N}$ and \mathbf{I} is a $m \times m$ unity matrix. Let us choose an arbitrary $p \in \mathbb{Z}$, then under \mathbf{I}_{p} we shall assume a matrix of p-times right cyclic shift of columns (or rows) of \mathbf{I}.

Circulant matrices

Definition

Let $m>1, m \in \mathbb{N}$ and \mathbf{I} is a $m \times m$ unity matrix. Let us choose an arbitrary $p \in \mathbb{Z}$, then under \mathbf{I}_{p} we shall assume a matrix of p-times right cyclic shift of columns (or rows) of \mathbf{I}.

Matrix \mathbf{I}_{p} is an circulant with column and row weights 1 . Also it is evident that $\mathbf{I}_{m k}=\mathbf{I}$ for all $k \in \mathbb{Z}$.

Circulant matrices

Definition

Let $m>1, m \in \mathbb{N}$ and \mathbf{I} is a $m \times m$ unity matrix. Let us choose an arbitrary $p \in \mathbb{Z}$, then under \mathbf{I}_{p} we shall assume a matrix of p-times right cyclic shift of columns (or rows) of \mathbf{I}.

Matrix \mathbf{I}_{p} is an circulant with column and row weights 1 . Also it is evident that $\mathbf{I}_{m k}=\mathbf{I}$ for all $k \in \mathbb{Z}$. Moreover:

$$
\begin{gathered}
\mathbf{I}_{p_{1}} \cdot \mathbf{I}_{p_{2}}=\mathbf{I}_{p_{1}+p_{2}} \bmod m \\
\mathbf{I}_{p}^{t}=\mathbf{I}_{t p_{1}} \quad \bmod m
\end{gathered}
$$

in particular if $p_{1} \in \mathbb{N}, 0 \leq p_{1} \leq m$, then

$$
\mathbf{I}_{p_{1}}^{-1}=\mathbf{I}_{m-p_{1}} .
$$

It is easy to note that the set $\mathcal{I}_{m}=\left\{\boldsymbol{I}_{p}: p \in \mathbb{Z}\right\}$ of $m \times m$ matrices \mathbf{I}_{p} is a cyclic group with generator \mathbf{I}_{1}.

Auxiliary statements

If

$$
\mathbf{c}=\mathbf{y} \mathbf{l}_{p},
$$

and $\operatorname{supp}(\mathbf{y})$ is the support of \mathbf{y}, then

$$
\operatorname{supp}(\mathbf{c})=p+\operatorname{supp}(\mathbf{y})
$$

Auxiliary statements

If

$$
\mathbf{c}=\mathbf{y} \mathbf{l}_{p},
$$

and $\operatorname{supp}(\mathbf{y})$ is the support of \mathbf{y}, then

$$
\operatorname{supp}(\mathbf{c})=p+\operatorname{supp}(\mathbf{y})
$$

Lemma

If $\mathbf{I}_{p} \in \mathcal{I}_{m}, \mathbf{y} \in G F^{m}(2),\|\mathbf{y}\|=w$, and $\operatorname{supp}(\mathbf{y})=p+\operatorname{supp}(\mathbf{y})$ then $p w \equiv 0 \bmod m$.

Auxiliary statements

If

$$
\mathbf{c}=\mathbf{y} \mathbf{l}_{p},
$$

and $\operatorname{supp}(\mathbf{y})$ is the support of \mathbf{y}, then

$$
\operatorname{supp}(\mathbf{c})=p+\operatorname{supp}(\mathbf{y})
$$

Lemma

If $\mathbf{I}_{p} \in \mathcal{I}_{m}, \mathbf{y} \in G F^{m}(2),\|\mathbf{y}\|=w$, and $\operatorname{supp}(\mathbf{y})=p+\operatorname{supp}(\mathbf{y})$ then $p w \equiv 0 \bmod m$.

Corollary

If $\mathbf{y} \in G F^{m}(2),\|\mathbf{y}\|=w, p \in \mathbb{Z}$ and $m \in \mathbb{Z}$ is prime, then $\operatorname{supp}(\mathbf{y})=p+\operatorname{supp}(\mathbf{y})$ only when $w=m$ or $w=0$.

Code structure - I

Let us consider a parity-check matrix of \mathbf{H}_{b} of $\mathcal{R}\left(n_{0}\right)$:

$$
\mathbf{H}_{b}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

Code structure - I

Let us consider a parity-check matrix of \mathbf{H}_{b} of $\mathcal{R}\left(n_{0}\right)$:

$$
\mathbf{H}_{b}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

Choose:
■ $m>1, m \in \mathbb{N}$

Code structure - I

Let us consider a parity-check matrix of \mathbf{H}_{b} of $\mathcal{R}\left(n_{0}\right)$:

$$
\mathbf{H}_{b}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

Choose:
■ $m>1, m \in \mathbb{N}$
■ $k_{0}>0, k_{0} \in \mathbb{N}$

Code structure - I

Let us consider a parity-check matrix of \mathbf{H}_{b} of $\mathcal{R}\left(n_{0}\right)$:

$$
\mathbf{H}_{b}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

Choose:

- $m>1, m \in \mathbb{N}$

■ $k_{0}>0, k_{0} \in \mathbb{N}$
■ $2\left(n_{0}-1\right) k^{2}$ arbitraty matrices $\mathbf{I}_{p_{j}}, p_{j} \in \mathbb{N}, j=1 . .2\left(n_{0}-1\right) k_{0}^{2}$ from \mathcal{I}_{m}

Code structure - II

Code structure - II

$$
\mathbf{Q}_{i}=\left(\begin{array}{ccccc}
\mathbf{I}_{p_{i 1}} & \mathbf{I}_{p_{i 2}} & \mathbf{I}_{p_{i 3}} & \ldots & \mathbf{I}_{p_{i k_{0}}} \\
\mathbf{I}_{p_{i\left(k_{0}+1\right)}} & \mathbf{I}_{p_{i\left(k_{0}+2\right)}} & \mathbf{I}_{p_{i\left(k_{0}+3\right)}} & \ldots & \mathbf{I}_{p_{i\left(2 k_{0}\right)}} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\mathbf{I}_{p_{i\left(k_{0}^{2}-k_{0}+1\right)}} & \mathbf{I}_{p_{i\left(k_{0}^{2}-k_{0}+2\right)}} & \mathbf{I}_{p_{i\left(k_{0}^{2}-k_{0}+3\right)}} & \ldots & \mathbf{I}_{p_{i k_{0}^{2}}}
\end{array}\right) .
$$

Code Structure - III

$$
\mathbf{H}=\left(\begin{array}{cccccc}
\mathbf{Q}_{1} & \mathbf{Q}_{n_{0}} & 0 & 0 & \ldots & 0 \\
\mathbf{Q}_{2} & 0 & \mathbf{Q}_{n_{0}+1} & 0 & \cdots & 0 \\
\cdots & \ldots & \ldots & \cdots & \cdots & \ldots \\
\mathbf{Q}_{n_{0}-1} & 0 & 0 & \ldots & 0 & \mathbf{Q}_{2\left(n_{0}-1\right)}
\end{array}\right)
$$

Code Structure - III

$$
\mathbf{H}=\left(\begin{array}{cccccc}
\mathbf{Q}_{1} & \mathbf{Q}_{n_{0}} & 0 & 0 & \ldots & 0 \\
\mathbf{Q}_{2} & 0 & \mathbf{Q}_{n_{0}+1} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\mathbf{Q}_{n_{0}-1} & 0 & 0 & \ldots & 0 & \mathbf{Q}_{2\left(n_{0}-1\right)}
\end{array}\right)
$$

■ Size of \mathbf{H} is $m k_{0}\left(n_{0}-1\right) \times m k n_{0}$

Code Structure - III

$$
\mathbf{H}=\left(\begin{array}{cccccc}
\mathbf{Q}_{1} & \mathbf{Q}_{n_{0}} & 0 & 0 & \ldots & 0 \\
\mathbf{Q}_{2} & 0 & \mathbf{Q}_{n_{0}+1} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\mathbf{Q}_{n_{0}-1} & 0 & 0 & \ldots & 0 & \mathbf{Q}_{2\left(n_{0}-1\right)}
\end{array}\right)
$$

■ Size of \mathbf{H} is $m k_{0}\left(n_{0}-1\right) \times m k n_{0}$

- All rows have weight $2 k_{0}$

Code Structure - III

$$
\mathbf{H}=\left(\begin{array}{cccccc}
\mathbf{Q}_{1} & \mathbf{Q}_{n_{0}} & 0 & 0 & \ldots & 0 \\
\mathbf{Q}_{2} & 0 & \mathbf{Q}_{n_{0}+1} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\mathbf{Q}_{n_{0}-1} & 0 & 0 & \ldots & 0 & \mathbf{Q}_{2\left(n_{0}-1\right)}
\end{array}\right)
$$

■ Size of \mathbf{H} is $m k_{0}\left(n_{0}-1\right) \times m k n_{0}$

- All rows have weight $2 k_{0}$

■ Weights of first $m k_{0}$ columns are $k_{0}\left(n_{0}-1\right)$, other columns have weight k_{0}

Code Structure - IV

We will consider matrix H as a parity-check matrix of LDPC code.
Thus, choosing an arbitrary numbers $m>1, k_{0}>0$ and $2\left(n_{0}-1\right) k_{0}^{2}$ random elements from the group \mathcal{I}_{m} one can determine an ensemble of LDPC codes with the length $n=m k_{0} n_{0}$. Let us denote this ensemble as $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$.

Code Structure - IV

We will consider matrix \mathbf{H} as a parity-check matrix of LDPC code. Thus, choosing an arbitrary numbers $m>1, k_{0}>0$ and $2\left(n_{0}-1\right) k_{0}^{2}$ random elements from the group \mathcal{I}_{m} one can determine an ensemble of LDPC codes with the length $n=m k_{0} n_{0}$. Let us denote this ensemble as $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$.

Definition

An arbitrary code $\mathcal{C} \in \mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$, will be called a LDPC code based on $\mathcal{R}\left(n_{0}\right)$ and permutation matrices.

Lower bound on the minimum distance of code from $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$ - auxiliary results

Lemma

Let $\mathcal{C} \in \mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$ then for all k_{0}, n_{0}, (expect the case when simultaneously k_{0} is even, and n_{0} is odd) and for any $\mathbf{c} \in \mathcal{C}:\|\mathbf{c}\|$ is even.

Lower bound on the minimum distance of code from $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$ - auxiliary results

Lemma

Let $\mathcal{C} \in \mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$ then for all k_{0}, n_{0}, (expect the case when simultaneously k_{0} is even, and n_{0} is odd) and for any $\mathbf{c} \in \mathcal{C}:\|\mathbf{c}\|$ is even.

Lemma

Let \mathbf{H} is a parity-check matrix of code \mathcal{C} from the ensemble $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$. If \mathbf{H} has girth greater than 4 , then $d_{\text {min }}(\mathcal{C}) \geq 4$.

Lower bound on the minimum distance of code from $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$ - auxiliary results

Lemma

Let $\mathcal{C} \in \mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$ then for all k_{0}, n_{0}, (expect the case when simultaneously k_{0} is even, and n_{0} is odd) and for any $\mathbf{c} \in \mathcal{C}:\|\mathbf{c}\|$ is even.

Lemma

Let \mathbf{H} is a parity-check matrix of code \mathcal{C} from the ensemble $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$. If \mathbf{H} has girth greater than 4 , then $d_{\text {min }}(\mathcal{C}) \geq 4$.

Lemma

Let \mathbf{H} is the parity-check matrix of code \mathcal{C} from $\mathcal{E}_{R C}\left(m, 2, n_{0}\right)$. If this matrix is free of cycles of length 4 and $m>5$ is prime number, then $d_{\text {min }}(\mathcal{C}) \geq 8$.

Lower bound on the minimum distance of code from $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$ - main result

Theorem

Let \mathbf{H} is the parity-check matrix of code \mathcal{C} from $\mathcal{E}_{R C}\left(m, 2, k_{0}\right)$, and, moreover, let at least one sub-matrix $\left(\mathbf{Q}_{i} \mathbf{Q}_{n_{0}+i-1}\right)$ of \mathbf{H} ($i=1 . . n_{0}-1$) is free of cycles of length 8 , then $d_{\text {min }}(\mathcal{C}) \geq 10$.

Lower bound on the minimum distance of code from $\mathcal{E}_{R C}\left(m, k_{0}, n_{0}\right)$ - main result

Theorem

Let \mathbf{H} is the parity-check matrix of code \mathcal{C} from $\mathcal{E}_{R C}\left(m, 2, k_{0}\right)$, and, moreover, let at least one sub-matrix $\left(\mathbf{Q}_{i} \mathbf{Q}_{n_{0}+i-1}\right)$ of \mathbf{H}
($i=1 . . n_{0}-1$) is free of cycles of length 8 , then $d_{\text {min }}(\mathcal{C}) \geq 10$.

Corollary

Let \mathbf{H} is the parity-check matrix of code \mathcal{C} from $\mathcal{E}_{R C}\left(m, 2, n_{0}\right)$, where $n_{0}>4$ and $m>5$ is prime. If \mathbf{H} is free of cycles of length 4 then $d_{\text {min }}(\mathcal{C}) \geq 10$.

Simulation Results - Setup

- AWGN channel

Simulation Results - Setup

- AWGN channel
- BPSK modulation

Simulation Results - Setup

- AWGN channel
- BPSK modulation

■ Sum-Product decoding algorithm

Simulation Results - Setup

- AWGN channel
- BPSK modulation

■ Sum-Product decoding algorithm
■ 50 iterations

Simulation Results - Setup

- AWGN channel
- BPSK modulation

■ Sum-Product decoding algorithm
■ 50 iterations

Simulation Results - Setup

- AWGN channel
- BPSK modulation

■ Sum-Product decoding algorithm
■ 50 iterations

Table: Code constructions

m	n_{0}	k_{0}	n	R	$d_{\min }$
7	4	2	56	0.3036	12
11	4	2	88	0.2841	16
181	4	2	1448	0.2521	≥ 10

Numerical results for $n=56$

EbNo	-1	0	1	2	3	4
P_{b}, error rate	0.26	0.24	0.21	0.19	0.16	0.13
$N_{\text {err }}$, proposed	11.00	10.95	10.48	9.70	8.60	7.28
$D\left(N_{\text {err }}\right)$, proposed	4.95	5.15	5.53	5.96	6.43	5.97
$N_{\text {err }}$, PEG	10.54	10.44	9.97	9.29	8.36	7.20
$N_{\text {err }}$, ACE	10.14	9.98	9.45	8.61	7.41	6.04

Numerical results for $n=88$

EbNo	-1	0	1	2	3	4
P_{b}, error rate	0.26	0.24	0.21	0.19	0.16	0.13
$N_{\text {err }}$, proposed	18.01	17.82	17.02	15.70	13.78	11.53
$D\left(N_{\text {err }}\right)$, proposed	8.72	8.25	9.35	10.25	10.79	9.90
$N_{\text {err }}$, PEG	16.04	16.50	15.97	15.19	13.58	11.43
$N_{\text {err }}$, ACE	17.26	16.79	15.91	14.47	12.49	10.20

Simulation Results, FER versus $E_{b} / N_{o} n=56$

Simulation Results, FER versus $E_{b} / N_{o} n=88$

Simulation Results, FER versus $E_{b} / N_{o} n=1448$

Conclusion

1 New ensemble of low-rate LDPC codes was suggested

Conclusion

1 New ensemble of low-rate LDPC codes was suggested
2 A lower bound on minimal distance of proposed codes was obtained

Conclusion

1 New ensemble of low-rate LDPC codes was suggested
2 A lower bound on minimal distance of proposed codes was obtained
3 Simulation and numerical results allow us to conclude that proposed codes have an excellent performance even for very small code lengths

Thank you for your attention!

