Fedor Ivanov

Email: fii@iitp.ru

Institute for Information Transmission Problems, Russian Academy of Science

XV International Workshop on Algebraic and Combinatorial Coding Theory (ACCT) 18-24 June, 2016 Albena, Bulgaria

ション ふゆ アメリア メリア しょうくの

Outline

- Definitions and notation
- Circulant matrices
- Auxiliary statements
- Code structure
- Lower bound on the minimum distance of proposed codes

ション ふゆ アメリア メリア しょうくの

- Simulation and numerical results
- Conclusion

Definitions and notation - I

Notation

Under $\mathcal{R}(n_0)$ we shall assume $[n_0, 1, n_0]$ $(n_0 > 1)$ repetition code of length n_0 and minimum distance $d_{min} = n_0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Definitions and notation - I

Notation

Under $\mathcal{R}(n_0)$ we shall assume $[n_0, 1, n_0]$ $(n_0 > 1)$ repetition code of length n_0 and minimum distance $d_{min} = n_0$.

Notation

Under $GF^m(2)$ $(m > 1, m \in \mathbb{N})$ we shall assume a vector space of length m vectors over GF(2).

うして ふゆう ふほう ふほう しょうく

Definitions and notation - I

Notation

Under $\mathcal{R}(n_0)$ we shall assume $[n_0, 1, n_0]$ $(n_0 > 1)$ repetition code of length n_0 and minimum distance $d_{min} = n_0$.

Notation

Under $GF^m(2)$ $(m > 1, m \in \mathbb{N})$ we shall assume a vector space of length m vectors over GF(2).

Notation

Let $\mathbf{y} \in GF^m(2)$, then under $||\mathbf{y}||$ we shall assume hamming weight of \mathbf{y} .

うして ふゆう ふほう ふほう うらつ

Definitions and notation - II

Notation

Let $\mathbf{y} \in GF^m(2)$, then under supp (\mathbf{y}) we shall assume a support of \mathbf{y} , *i.* e.

$$supp(\mathbf{y}) = \{j : y_j = 1\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definitions and notation - II

Notation

Let $\mathbf{y} \in GF^m(2)$, then under supp (\mathbf{y}) we shall assume a support of \mathbf{y} , *i.* e.

$$supp(\mathbf{y}) = \{j : y_j = 1\}.$$

Notation

Let $\mathbf{y} \in GF^m(2)$, $p \in \mathbb{Z}$, then under the set $p + supp(\mathbf{y})$ we shall assume:

$$p + supp(\mathbf{y}) = \{j + p \mod m : y_j = 1\}.$$

ション ふゆ アメリア メリア しょうくの

Circulant matrices

Definition

Let m > 1, $m \in \mathbb{N}$ and I is a $m \times m$ unity matrix. Let us choose an arbitrary $p \in \mathbb{Z}$, then under I_p we shall assume a matrix of *p*-times right cyclic shift of columns (or rows) of I.

うして ふゆう ふほう ふほう うらつ

Circulant matrices

Definition

Let m > 1, $m \in \mathbb{N}$ and I is a $m \times m$ unity matrix. Let us choose an arbitrary $p \in \mathbb{Z}$, then under I_p we shall assume a matrix of *p*-times right cyclic shift of columns (or rows) of I.

Matrix I_p is an circulant with column and row weights 1. Also it is evident that $I_{mk} = I$ for all $k \in \mathbb{Z}$.

うして ふゆう ふほう ふほう うらつ

Circulant matrices

Definition

Let m > 1, $m \in \mathbb{N}$ and I is a $m \times m$ unity matrix. Let us choose an arbitrary $p \in \mathbb{Z}$, then under I_p we shall assume a matrix of *p*-times right cyclic shift of columns (or rows) of I.

Matrix I_p is an circulant with column and row weights 1. Also it is evident that $I_{mk} = I$ for all $k \in \mathbb{Z}$. Moreover:

$$\begin{split} \mathbf{I}_{p_1} \cdot \mathbf{I}_{p_2} &= \mathbf{I}_{p_1 + p_2 \mod m}, \\ \mathbf{I}_p^t &= \mathbf{I}_{tp_1 \mod m}, \\ \text{in particular if } p_1 \in \mathbb{N}, \ \mathbf{0} \leq p_1 \leq m, \ \text{then} \\ \mathbf{I}_{p_1}^{-1} &= \mathbf{I}_{m-p_1}. \end{split}$$

It is easy to note that the set $\mathcal{I}_m = \{I_p : p \in \mathbb{Z}\}$ of $m \times m$ matrices I_p is a cyclic group with generator $I_{1_{1}}$, $m \times m$

Auxiliary statements

lf

$$\mathbf{c} = \mathbf{y}\mathbf{I}_{p},$$

and supp(y) is the support of y, then

$$supp(\mathbf{c}) = p + supp(\mathbf{y}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Auxiliary statements

lf

$$\mathbf{c} = \mathbf{y}\mathbf{I}_{p},$$

and supp(y) is the support of y, then

$$supp(\mathbf{c}) = p + supp(\mathbf{y}).$$

Lemma

If $I_p \in \mathcal{I}_m$, $\mathbf{y} \in GF^m(2)$, $||\mathbf{y}|| = w$, and $supp(\mathbf{y}) = p + supp(\mathbf{y})$ then $pw \equiv 0 \mod m$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Auxiliary statements

lf

$$\mathbf{c} = \mathbf{y}\mathbf{I}_{p},$$

and supp(y) is the support of y, then

$$supp(\mathbf{c}) = p + supp(\mathbf{y}).$$

Lemma

If $I_p \in \mathcal{I}_m$, $\mathbf{y} \in GF^m(2)$, $||\mathbf{y}|| = w$, and $supp(\mathbf{y}) = p + supp(\mathbf{y})$ then $pw \equiv 0 \mod m$.

Corollary

If $\mathbf{y} \in GF^m(2)$, $||\mathbf{y}|| = w$, $p \in \mathbb{Z}$ and $m \in \mathbb{Z}$ is prime, then supp $(\mathbf{y}) = p + supp(\mathbf{y})$ only when w = m or w = 0.

 $\mathfrak{I} \mathfrak{Q} \mathfrak{Q}$

Let us consider a parity-check matrix of H_b of $\mathcal{R}(n_0)$:

$$\mathbf{H}_{b} = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let us consider a parity-check matrix of \mathbf{H}_b of $\mathcal{R}(n_0)$:

$$\mathbf{H}_{b} = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Choose:

• $m > 1, m \in \mathbb{N}$

Let us consider a parity-check matrix of \mathbf{H}_b of $\mathcal{R}(n_0)$:

$$\mathbf{H}_{b} = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Choose:

■ $m > 1, m \in \mathbb{N}$ ■ $k_0 > 0, k_0 \in \mathbb{N}$

Let us consider a parity-check matrix of H_b of $\mathcal{R}(n_0)$:

$$\mathbf{H}_{b} = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Choose:

- $\bullet m > 1, \ m \in \mathbb{N}$
- $k_0 > 0$, $k_0 \in \mathbb{N}$
- $2(n_0 1)k^2$ arbitraty matrices I_{p_j} , $p_j \in \mathbb{N}$, $j = 1..2(n_0 1)k_0^2$ from \mathcal{I}_m

ション ふゆ アメリア メリア しょうくの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ロト - 4 目 - 4 目 - 4 目 - 9 9 9

$$\mathbf{H} = \begin{pmatrix} \mathbf{Q}_1 & \mathbf{Q}_{n_0} & 0 & 0 & \dots & 0 \\ \mathbf{Q}_2 & 0 & \mathbf{Q}_{n_0+1} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{Q}_{n_0-1} & 0 & 0 & \dots & 0 & \mathbf{Q}_{2(n_0-1)} \end{pmatrix}$$

◆□▶ <圖▶ < E▶ < E▶ E のQ@</p>

$$\mathbf{H} = \begin{pmatrix} \mathbf{Q}_1 & \mathbf{Q}_{n_0} & 0 & 0 & \dots & 0 \\ \mathbf{Q}_2 & 0 & \mathbf{Q}_{n_0+1} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{Q}_{n_0-1} & 0 & 0 & \dots & 0 & \mathbf{Q}_{2(n_0-1)} \end{pmatrix}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 約९종

Size of **H** is $mk_0(n_0 - 1) \times mkn_0$

$$\mathbf{H} = \begin{pmatrix} \mathbf{Q}_1 & \mathbf{Q}_{n_0} & 0 & 0 & \dots & 0 \\ \mathbf{Q}_2 & 0 & \mathbf{Q}_{n_0+1} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{Q}_{n_0-1} & 0 & 0 & \dots & 0 & \mathbf{Q}_{2(n_0-1)} \end{pmatrix}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 約९종

Size of **H** is
$$mk_0(n_0 - 1) \times mkn_0$$

• All rows have weight $2k_0$

$$\mathbf{H} = \begin{pmatrix} \mathbf{Q}_1 & \mathbf{Q}_{n_0} & 0 & 0 & \dots & 0 \\ \mathbf{Q}_2 & 0 & \mathbf{Q}_{n_0+1} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{Q}_{n_0-1} & 0 & 0 & \dots & 0 & \mathbf{Q}_{2(n_0-1)} \end{pmatrix}$$

- Size of **H** is $mk_0(n_0 1) \times mkn_0$
- All rows have weight 2k₀
- Weights of first mk₀ columns are k₀(n₀ − 1), other columns have weight k₀

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We will consider matrix **H** as a parity-check matrix of LDPC code. Thus, choosing an arbitrary numbers m > 1, $k_0 > 0$ and $2(n_0 - 1)k_0^2$ random elements from the group \mathcal{I}_m one can determine an ensemble of LDPC codes with the length $n = mk_0n_0$. Let us denote this ensemble as $\mathcal{E}_{RC}(m, k_0, n_0)$.

ション ふゆ アメリア メリア しょうくの

We will consider matrix **H** as a parity-check matrix of LDPC code. Thus, choosing an arbitrary numbers m > 1, $k_0 > 0$ and $2(n_0 - 1)k_0^2$ random elements from the group \mathcal{I}_m one can determine an ensemble of LDPC codes with the length $n = mk_0n_0$. Let us denote this ensemble as $\mathcal{E}_{RC}(m, k_0, n_0)$.

Definition

An arbitrary code $C \in \mathcal{E}_{RC}(m, k_0, n_0)$, will be called a LDPC code based on $\mathcal{R}(n_0)$ and permutation matrices.

Lower bound on the minimum distance of code from $\mathcal{E}_{RC}(m, k_0, n_0)$ - auxiliary results

Lemma

Let $C \in \mathcal{E}_{RC}(m, k_0, n_0)$ then for all k_0 , n_0 , (expect the case when simultaneously k_0 is even, and n_0 is odd) and for any $\mathbf{c} \in C$: $||\mathbf{c}||$ is even.

うして ふゆう ふほう ふほう うらつ

Lower bound on the minimum distance of code from $\mathcal{E}_{RC}(m, k_0, n_0)$ - auxiliary results

Lemma

Let $C \in \mathcal{E}_{RC}(m, k_0, n_0)$ then for all k_0 , n_0 , (expect the case when simultaneously k_0 is even, and n_0 is odd) and for any $\mathbf{c} \in C$: $||\mathbf{c}||$ is even.

Lemma

Let **H** is a parity-check matrix of code C from the ensemble $\mathcal{E}_{RC}(m, k_0, n_0)$. If **H** has girth greater than 4, then $d_{min}(C) \ge 4$.

うして ふゆう ふほう ふほう うらつ

Lower bound on the minimum distance of code from $\mathcal{E}_{RC}(m, k_0, n_0)$ - auxiliary results

Lemma

Let $C \in \mathcal{E}_{RC}(m, k_0, n_0)$ then for all k_0 , n_0 , (expect the case when simultaneously k_0 is even, and n_0 is odd) and for any $\mathbf{c} \in C$: $||\mathbf{c}||$ is even.

Lemma

Let **H** is a parity-check matrix of code C from the ensemble $\mathcal{E}_{RC}(m, k_0, n_0)$. If **H** has girth greater than 4, then $d_{min}(C) \ge 4$.

Lemma

Let **H** is the parity-check matrix of code C from $\mathcal{E}_{RC}(m, 2, n_0)$. If this matrix is free of cycles of length 4 and m > 5 is prime number, then $d_{min}(C) \geq 8$.

Lower bound on the minimum distance of code from $\mathcal{E}_{RC}(m, k_0, n_0)$ - main result

Theorem

Let **H** is the parity-check matrix of code C from $\mathcal{E}_{RC}(m, 2, k_0)$, and, moreover, let at least one sub-matrix $(\mathbf{Q}_i \mathbf{Q}_{n_0+i-1})$ of **H** $(i = 1..n_0 - 1)$ is free of cycles of length 8, then $d_{min}(C) \ge 10$.

うして ふゆう ふほう ふほう しょうく

Lower bound on the minimum distance of code from $\mathcal{E}_{RC}(m, k_0, n_0)$ - main result

Theorem

Let **H** is the parity-check matrix of code C from $\mathcal{E}_{RC}(m, 2, k_0)$, and, moreover, let at least one sub-matrix $(\mathbf{Q}_i \mathbf{Q}_{n_0+i-1})$ of **H** $(i = 1..n_0 - 1)$ is free of cycles of length 8, then $d_{min}(C) \ge 10$.

Corollary

Let **H** is the parity-check matrix of code C from $\mathcal{E}_{RC}(m, 2, n_0)$, where $n_0 > 4$ and m > 5 is prime. If **H** is free of cycles of length 4 then $d_{min}(C) \ge 10$.

Simulation Results - Setup

AWGN channel

- AWGN channel
- BPSK modulation

- AWGN channel
- BPSK modulation
- Sum-Product decoding algorithm

- AWGN channel
- BPSK modulation
- Sum-Product decoding algorithm
- 50 iterations

- AWGN channel
- BPSK modulation
- Sum-Product decoding algorithm
- 50 iterations

- AWGN channel
- BPSK modulation
- Sum-Product decoding algorithm
- 50 iterations

Table:	Code	constructions
--------	------	---------------

т	<i>n</i> 0	k_0	n	R	d _{min}
7	4	2	56	0.3036	12
11	4	2	88	0.2841	16
181	4	2	1448	0.2521	≥ 10

Numerical results for n = 56

EbNo	-1	0	1	2	3	4
P_b , error rate	0.26	0.24	0.21	0.19	0.16	0.13
N _{err} , proposed	11.00	10.95	10.48	9.70	8.60	7.28
$D(N_{err})$, proposed	4.95	5.15	5.53	5.96	6.43	5.97
N _{err} , PEG	10.54	10.44	9.97	9.29	8.36	7.20
N _{err} , ACE	10.14	9.98	9.45	8.61	7.41	6.04

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 約९종

Numerical results for n = 88

EbNo	-1	0	1	2	3	4
P _b , error rate	0.26	0.24	0.21	0.19	0.16	0.13
N _{err} , proposed	18.01	17.82	17.02	15.70	13.78	11.53
$D(N_{err})$, proposed	8.72	8.25	9.35	10.25	10.79	9.90
N _{err} , PEG	16.04	16.50	15.97	15.19	13.58	11.43
N _{err} , ACE	17.26	16.79	15.91	14.47	12.49	10.20

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 約९종

Simulation Results, FER versus E_b/N_o n = 56

Simulation Results, FER versus E_b/N_o n = 88

Simulation Results, FER versus E_b/N_o n = 1448

1 New ensemble of low-rate LDPC codes was suggested

- 1 New ensemble of low-rate LDPC codes was suggested
- 2 A lower bound on minimal distance of proposed codes was obtained

- 1 New ensemble of low-rate LDPC codes was suggested
- 2 A lower bound on minimal distance of proposed codes was obtained
- Simulation and numerical results allow us to conclude that proposed codes have an excellent performance even for very small code lengths

ション ふゆ アメリア メリア しょうくの

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●