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Definitions and notation - I

Notation

Under R(n0) we shall assume [n0, 1, n0] (n0 > 1) repetition code of
length n0 and minimum distance dmin = n0.

Notation

Under GFm(2) (m > 1, m ∈ N) we shall assume a vector space of
length m vectors over GF (2).

Notation

Let y ∈ GFm(2), then under ||y|| we shall assume hamming weight
of y.
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Definitions and notation - II

Notation

Let y ∈ GFm(2), then under supp(y) we shall assume a support of
y, i. e.

supp(y) = {j : yj = 1}.

Notation

Let y ∈ GFm(2), p ∈ Z,then under the set p + supp(y) we shall
assume:

p + supp(y) = {j + p mod m : yj = 1}.
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Circulant matrices

Definition

Let m > 1, m ∈ N and I is a m×m unity matrix. Let us choose an
arbitrary p ∈ Z, then under Ip we shall assume a matrix of p-times
right cyclic shift of columns (or rows) of I.

Matrix Ip is an circulant with column and row weights 1. Also it is
evident that Imk = I for all k ∈ Z. Moreover:

Ip1 · Ip2 = Ip1+p2 mod m,

Itp = Itp1 mod m,

in particular if p1 ∈ N, 0 ≤ p1 ≤ m, then

I−1
p1

= Im−p1 .

It is easy to note that the set Im = {Ip : p ∈ Z} of m ×m
matrices Ip is a cyclic group with generator I1.
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Auxiliary statements

If
c = yIp,

and supp(y) is the support of y, then

supp(c) = p + supp(y).

Lemma

If Ip ∈ Im, y ∈ GFm(2), ||y|| = w, and supp(y) = p + supp(y)
then pw ≡ 0 mod m.

Corollary

If y ∈ GFm(2), ||y|| = w, p ∈ Z and m ∈ Z is prime, then
supp(y) = p + supp(y) only when w = m or w = 0.
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Code structure - I

Let us consider a parity-check matrix of Hb of R(n0):

Hb =


1 1 0 0 . . . 0
1 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
1 0 0 . . . 0 1



Choose:

m > 1, m ∈ N
k0 > 0, k0 ∈ N
2(n0 − 1)k2 arbitraty matrices Ipj , pj ∈ N, j = 1..2(n0 − 1)k20
from Im
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Code structure - II

1→

P11 · · · P1k0

· · ·

Pk01 · · · Pk0k0

· · ·. . . = Qi

Qi =


Ipi1 Ipi2 Ipi3 . . . Ipik0

Ipi(k0+1) Ipi(k0+2) Ipi(k0+3) . . . Ipi(2k0)

. . . . . . . . . . . . . . .
Ipi(k2

0−k0+1)
Ipi(k2

0−k0+2)
Ipi(k2

0−k0+3)
. . . Ipik2

0

 .
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Code Structure - III

H =


Q1 Qn0 0 0 . . . 0
Q2 0 Qn0+1 0 . . . 0
. . . . . . . . . . . . . . . . . .

Qn0−1 0 0 . . . 0 Q2(n0−1)



Size of H is mk0(n0 − 1)×mkn0
All rows have weight 2k0
Weights of first mk0 columns are k0(n0 − 1), other columns
have weight k0
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Code Structure - IV

We will consider matrix H as a parity-check matrix of LDPC code.
Thus, choosing an arbitrary numbers m > 1, k0 > 0 and
2(n0 − 1)k20 random elements from the group Im one can
determine an ensemble of LDPC codes with the length n = mk0n0.
Let us denote this ensemble as ERC (m, k0, n0).

Definition

An arbitrary code C ∈ ERC (m, k0, n0), will be called a LDPC code
based on R(n0) and permutation matrices.
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Lower bound on the minimum distance of code from
ERC (m, k0, n0) - auxiliary results

Lemma

Let C ∈ ERC (m, k0, n0) then for all k0, n0, (expect the case when
simultaneously k0 is even, and n0 is odd) and for any c ∈ C: ||c|| is
even.

Lemma

Let H is a parity-check matrix of code C from the ensemble
ERC (m, k0, n0). If H has girth greater than 4, then dmin(C) ≥ 4.

Lemma

Let H is the parity-check matrix of code C from ERC (m, 2, n0). If
this matrix is free of cycles of length 4 and m > 5 is prime number,
then dmin(C) ≥ 8.
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Lower bound on the minimum distance of code from
ERC (m, k0, n0) - main result

Theorem

Let H is the parity-check matrix of code C from ERC (m, 2, k0), and,
moreover, let at least one sub-matrix (Qi Qn0+i−1) of H
(i = 1..n0 − 1) is free of cycles of length 8, then dmin(C) ≥ 10.

Corollary

Let H is the parity-check matrix of code C from ERC (m, 2, n0),
where n0 > 4 and m > 5 is prime. If H is free of cycles of length 4
then dmin(C) ≥ 10.
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Simulation Results - Setup

AWGN channel

BPSK modulation
Sum-Product decoding algorithm
50 iterations

Table: Code constructions

m n0 k0 n R dmin
7 4 2 56 0.3036 12
11 4 2 88 0.2841 16
181 4 2 1448 0.2521 ≥ 10
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Numerical results for n = 56

EbNo -1 0 1 2 3 4
Pb, error rate 0.26 0.24 0.21 0.19 0.16 0.13
Nerr , proposed 11.00 10.95 10.48 9.70 8.60 7.28

D(Nerr ), proposed 4.95 5.15 5.53 5.96 6.43 5.97
Nerr , PEG 10.54 10.44 9.97 9.29 8.36 7.20
Nerr , ACE 10.14 9.98 9.45 8.61 7.41 6.04
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Numerical results for n = 88

EbNo -1 0 1 2 3 4
Pb, error rate 0.26 0.24 0.21 0.19 0.16 0.13
Nerr , proposed 18.01 17.82 17.02 15.70 13.78 11.53

D(Nerr ), proposed 8.72 8.25 9.35 10.25 10.79 9.90
Nerr , PEG 16.04 16.50 15.97 15.19 13.58 11.43
Nerr , ACE 17.26 16.79 15.91 14.47 12.49 10.20
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Simulation Results, FER versus Eb/No n = 56
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Simulation Results, FER versus Eb/No n = 88
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Simulation Results, FER versus Eb/No n = 1448
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Conclusion

1 New ensemble of low-rate LDPC codes was suggested

2 A lower bound on minimal distance of proposed codes was
obtained

3 Simulation and numerical results allow us to conclude that
proposed codes have an excellent performance even for very
small code lengths
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Thank you for your attention!


