International conference ACCT-2016

New constructions of multicomponent codes

Gabidulin E.M., Pilipchuk N.I.

Content

- Subspace codes
- Silva-Koetter-Kschischang (SKK) codes
- Multicomponent with zero prefix (MZP) codes
- Johnson bound I
- Corollaries
- Modified multicomponent codes
- Dual multicomponent codes
- Conclusion

Subspace codes

Let $m \leq n$ be integers. Let \mathcal{N}_{m}^{n} be a set of matrices of size $m \times n$ of rank m over the field $G F(q)$. Define $\mathcal{R}(\mathbf{U})$ the row spanned subspace of the $\mathbf{U} \in \mathcal{M}_{m}^{n}$ matrix.

The subspace distance between two subspaces $\mathcal{R}(\mathbf{U})$ and $\mathcal{R}(\mathbf{V})$ is defined as

$$
d(\mathcal{R}(\mathbf{U}), \mathcal{R}(\mathbf{V}))=\operatorname{dim}(\mathcal{R}(\mathbf{U}) \uplus \mathcal{R}(\mathbf{V}))-\operatorname{dim}(\mathcal{R}(\mathbf{U}) \cap \mathcal{R}(\mathbf{V}))
$$

The subspace distance between two subspaces of the same dimension is even.

A network code of constant dimension m and cardinality

$$
A(n, d=2 \delta, m)
$$

with minimal subspace distance $d=2 \delta$ is defined as a set of m-dimensional subspaces

$$
\mathcal{R}\left(\mathbf{U}_{1}\right), \mathcal{R}\left(\mathbf{U}_{2}\right), \ldots, \mathcal{R}\left(\mathbf{U}_{A}\right)
$$

where $d\left(\mathcal{R}\left(\mathbf{U}_{i}\right), \mathcal{R}\left(\mathbf{U}_{j}\right)\right) \geq 2 \delta, i \neq j$ and the parameter $\delta \leq m$.

The main problem is the following: to construct a network code of maximal cardinality under given parameters $\{n, d=2 \delta, m\}$.

Silva-Koetter-Kschischang (SKK) codes

A subspace is often defined by means of the generator matrix. Rows of this matrix is a basis of this subspace. The generator matrix of SKK code is presented as

$$
\mathbf{U}_{i}=\left[\begin{array}{ll}
\mathbf{I}_{m} & \mathbf{M}_{i}
\end{array}\right]
$$

where \mathbf{I}_{m} is the identity matrix of order m, and \mathbf{M}_{i} is a matrix of rank code of size $m \times(n-m)$ over the field $G F(q)$. This code consists of matrices of size $m \times(n-m)$ over the field $G F(q)$.

Subspace distance between $\mathcal{R}\left(\mathbf{U}_{i}\right)$ and $\mathcal{R}\left(\mathbf{U}_{j}\right)$ is equal to

$$
d\left(\mathcal{R}\left(\mathbf{U}_{i}\right), \mathcal{R}\left(\mathbf{U}_{j}\right)\right)=2 \operatorname{Rk}\left(\mathbf{U}_{i}-\mathbf{U}_{j}\right)
$$

Rank distance between two matrices is rank of their difference.

There exists a linear rank code consisting of $m \times n$ matrices with minimal rank distance δ and cardinality

$$
M=q^{a(b-\delta+1)},
$$

where $a=\max \{m,(n-m)\} \quad b=\min \{m,(n-m)\}$.
Hence, the network SKK code has the following parameters:
n is length,
$d=2 \delta$ is subspace distance,
m is dimension of code subspaces,
$M=q^{a(b-\delta+1)}$ is number of code subspaces.

Multicomponent with zero prefix (MZP) codes

In 2008 year a class of multicomponent codes was presented by Gabidulin and Bossert at maximal subspace distance $d=2 \mathrm{~m}$. The component $C_{m z p, i}(i=2,3, \ldots)$ consists of the following $m \times n$ matrices:

$$
\mathcal{C}_{m z p, i}=\left\{\left[\begin{array}{lll}
\underbrace{\mathbf{O}_{m} \ldots \mathbf{O}_{m}}_{i-1} & \mathbf{I}_{m} & \mathbf{M}_{i}
\end{array}\right]\right\},
$$

where $i=1, \ldots, r$, and $r \geq 2$. The first component $\mathrm{C}_{m z p, 1}=\mathcal{C}_{\mathrm{skk}}$ coincides with SKK code, it has no a zero prefix.
The matrix M_{i} is a $m \times(n-m-(i-1) m)$ matrix of Gabidulin code with rank distance $\delta=m$.

Cardinality of MZP code at given parameters $\delta=m$ and $n=$ $(r+1) m$ is equal to

$$
M_{m z p}=\left|\mathfrak{C}_{m z p}\right|=\frac{q^{n}-1}{q^{m}-1}
$$

This value coincides with Wang upper bound of cardinality (2003).

MZP codes. General case.

If $\delta<m$, then (i)-th component $\mathcal{C}_{m z p, i}$ is $m \times(n-m-(i-1) \delta)$ matrix:

$$
\mathcal{C}_{m z p, i}=\left\{\left[\begin{array}{lllll}
\mathbf{O}_{\delta} & \ldots & \mathbf{O}_{\delta} & \mathbf{I}_{m} & \mathbf{M}_{i}
\end{array}\right]\right\}
$$

where $i=1, \ldots, r$, and $r \geq 2$. As usually, the first component coincides with SKK code.

Cardinality of MZP codes

Consider a code with the following parameters: n is code length, m is dimension of code subspace, $d_{\text {sub }}=2 \delta$ is code distance. Denote $a_{i}=\max \{m,(n-m-(i-1) \delta)\}$ and $b_{i}=\min \{m,(n-m-$ $(i-1) \delta)\}$. The cardinality of the i-th component is equal to

$$
\begin{equation*}
\left|\mathcal{C}_{m z p, i}\right|=q^{a_{i}\left(b_{i}-\delta+1\right)} . \tag{1}
\end{equation*}
$$

The total cardinality is equal to sum of cardinality of all components:

$$
\mathcal{C}_{m z p}=\sum_{i=1}^{r} q^{a_{i}\left(b_{i}-\delta+1\right)}
$$

Johnson upper bound I

Let $n, d=2 \delta, m$ be network code parameters.

If

$$
\left(q^{m}-1\right)^{2}>\left(q^{n}-1\right)\left(q^{m-\delta}-1\right),
$$

then

$$
A(n, d=2 \delta, m) \leq\left\lfloor\frac{\left(q^{m}-q^{m-\delta}\right)\left(q^{n}-1\right)}{\left(q^{m}-1\right)^{2}-\left(q^{n}-1\right)\left(q^{m-\delta}-1\right)}\right\rfloor .
$$

Corollary 1

The condition is satisfied, if $\delta=m$. In this case Johnson upper bound coincides with Wang upper bound (2003):

$$
A(n, d=2 m, m) \leq\left\lfloor\frac{q^{n}-1}{q^{m}-1}\right\rfloor .
$$

Corollary 2

For $\delta<m$, the condition is satisfied iff

$$
n \leq m+\delta
$$

If $n<m+\delta$, then the cardinality of a MZP code is

$$
A(n, d=2 \delta, m)=1
$$

If $n=m+\delta$, then

$$
A(n, d=2 \delta, m) \leq\left\lfloor\frac{q^{n}-1}{q^{\delta}-1}\right\rfloor
$$

Corollary 3

If $n=m+\delta$, then for a dual code the dimension is $m^{\prime}=n-m=\delta$. The cardinality is

$$
A\left(n, d=2 \delta, m^{\prime}\right)=A(n, d=2 \delta, \delta) .
$$

This estimation coincides with Wang upper bound for spreads. Their code distance is maximal that is twice more than code dimension.

Example 1

We construct MZP code at the following parameters: $n=$ $4 \delta, d=2 \delta, m=3 \delta$.

The first component is SKK code:

$$
\mathfrak{C}_{1}=\left\{\left[\begin{array}{ll}
\mathbf{I}_{3 \delta} & \mathbf{M}_{3 \delta}^{\delta}
\end{array}\right]\right\}=\left\{\left[\begin{array}{cccc}
\mathbf{I}_{\delta} & \mathbf{0} & \mathbf{0} & \mathbf{M}_{1, \delta}^{\delta} \\
0 & \mathbf{I}_{\delta} & 0 & \mathbf{M}_{2, \delta}^{\delta} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{\delta} & \mathbf{M}_{3, \delta}^{\delta}
\end{array}\right]\right\} .
$$

The second component is

$$
\mathfrak{e}_{2}=\left\{\left[\begin{array}{ll}
\mathbf{0}_{3 \delta}^{\delta} & \mathbf{I}_{3 \delta}
\end{array}\right]\right\}=\left\{\left[\begin{array}{cccc}
0 & \mathbf{I}_{\delta} & 0 & 0 \\
0 & 0 & \mathbf{I}_{\delta} & 0 \\
0 & 0 & 0 & \mathbf{I}_{\delta}
\end{array}\right]\right\} .
$$

The cardinality of this code is

$$
M=\left|\mathfrak{C}_{1}\right|+\left|\mathfrak{C}_{2}\right|=q^{3 \delta}+1
$$

This estimation is only one code matrix more than the cardinality SKK code for these parameters.

Example 2. A new construction

Now, we use modified algorithm for a new construction. The first component is the same as before (SKK code):

$$
\tilde{\mathfrak{C}}_{1}=\left\{\left[\begin{array}{ll}
\mathbf{I}_{3 \delta} & \mathbf{M}_{3 \delta}^{\delta}
\end{array}\right]\right\}=\left\{\left[\begin{array}{cccc}
\mathbf{I}_{\delta} & \mathbf{0} & \mathbf{0} & \mathbf{M}_{1, \delta}^{\delta} \\
0 & \mathbf{I}_{\delta} & \mathbf{0} & \mathbf{M}_{2, \delta}^{\delta} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{\delta} & \mathbf{M}_{3, \delta}^{\delta}
\end{array}\right]\right\} .
$$

The second component is

$$
\tilde{\mathfrak{C}}_{2}=\left\{\left[\begin{array}{cccc}
\mathbf{I}_{\delta} & \mathbf{0} & \mathbf{A}_{1, \delta}^{\delta} & 0 \\
\mathbf{0} & \mathbf{I}_{\delta} & \mathbf{A}_{2, \delta}^{\delta} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{\delta} & \mathbf{I}_{\delta}
\end{array}\right]\right\} .
$$

The third component is

$$
\tilde{\mathfrak{C}}_{3}=\left\{\left[\begin{array}{cccc}
\mathbf{I}_{\delta} & \mathbf{B}_{\delta}^{\delta} & 0 & 0 \\
\mathbf{0} & 0 & \mathbf{I}_{\delta} & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{\delta}
\end{array}\right]\right\} .
$$

The fourth component coincides with the second component of the former algorithm:

$$
\tilde{\mathfrak{C}}_{4}=\mathfrak{C}_{2}=\left\{\left[\begin{array}{ll}
0_{3 \delta}^{\delta} & \mathbf{I}_{3 \delta}
\end{array}\right]\right\} .
$$

The cardinality of the new construction code is equal to

$$
M_{\text {mod }}=\left|\widetilde{\mathfrak{C}}_{1}\right|+\left|\widetilde{\mathfrak{C}}_{2}\right|+\left|\widetilde{\mathfrak{C}}_{3}+\left|\widetilde{\mathfrak{C}}_{4}\right|=q^{3 \delta}+q^{2 \delta}+q^{\delta}+1=\frac{q^{4 \delta}-1}{q^{\delta}-1}\right.
$$

We have four components instead two. The cardinality is grater than it was before. It value coincides with Johnson upper bound for given parameters.

General case: $m=r \delta$

Let us consider a general case: $n=m+\delta, m=r \delta$, where r is an integer. Present new constructions of the multicomponent code.

The first component is SKK code (as usually):

$$
\begin{aligned}
\tilde{\mathfrak{C}}_{1} & =\left\{\left[\mathbf{I}_{r \delta} \mathbf{M}_{r \delta}^{\delta}\right]\right\}= \\
& =\left\{\left[\begin{array}{cccccc}
\mathbf{I}_{\delta} & 0 & 0 & \ldots & 0 & \mathbf{M}_{\delta}^{\delta}(1) \\
0 & \mathbf{I}_{\delta} & 0 & \ldots & 0 & \mathbf{M}_{\delta}^{\delta}(2) \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \mathbf{I}_{\delta} & 0 & \mathbf{M}_{\delta}^{\delta}(r-1) \\
0 & 0 & 0 & \ldots & \mathbf{I}_{\delta} & \mathbf{M}_{\delta}^{\delta}(r)
\end{array}\right]\right\} .
\end{aligned}
$$

The second component is

$$
\begin{aligned}
\widetilde{\mathfrak{C}}_{2} & =\left\{\left[\begin{array}{ccc}
\mathbf{I}_{(r-1) \delta} & \mathbf{A}_{(r-1) \delta}^{\delta} & \mathbf{0} \\
\mathbf{0}_{\delta}^{(r-1) \delta} & \mathbf{0}_{\delta}^{\delta} & \mathbf{I}_{\delta}
\end{array}\right]\right\}= \\
& =\left\{\left[\begin{array}{cccccc}
\mathbf{I}_{\delta} & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{A}_{\delta}^{\delta}(1) & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{\delta} & \mathbf{0} & \ldots & \mathbf{A}_{\delta}^{\delta}(2) & \mathbf{0} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{\delta} & \mathbf{A}_{\delta}^{\delta}(r-1) & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{I}_{\delta}
\end{array}\right]\right\} .
\end{aligned}
$$

The s-th component $(s<r)$ is

$$
\widetilde{\mathfrak{C}}_{s}=\left\{\left[\begin{array}{ccc}
\mathbf{I}_{(r-s) \delta} & \mathbf{U}_{(r-s) \delta}^{\delta} & \mathbf{0} \\
\mathbf{0}_{\delta}^{(r-1) \delta} & \mathbf{0}_{\delta}^{\delta} & \mathbf{I}_{s \delta}
\end{array}\right]\right\} .
$$

The ($r-1$)-th component is

$$
\tilde{\mathfrak{C}}_{r-1}=\left\{\left[\begin{array}{cccccc}
\mathbf{I}_{\delta} & \mathbf{D}_{\delta}^{\delta} & 0 & \ldots & 0 & 0 \\
0 & 0 & \mathbf{I}_{\delta} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \mathbf{I}_{\delta} & 0 \\
0 & 0 & 0 & \ldots & 0 & \mathbf{I}_{\delta}
\end{array}\right]\right\} .
$$

The r-th component is

$$
\tilde{\mathfrak{C}}_{r}=\left\{\left[\begin{array}{cccccc}
\mathbf{0} & \mathbf{I}_{\delta} & \mathbf{0} & \ldots & \mathbf{0} & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{\delta} & \ldots & \mathbf{0} & \mathbf{0} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\mathbf{0} & 0 & 0 & 0 & \mathbf{I}_{\delta} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{I}_{\delta}
\end{array}\right]\right\}
$$

The cardinality of this code is equal to $M_{\text {mod }}=\frac{q^{n}-1}{q^{\delta}-1}$.

Dual codes - spreads

Consider codes which are dual to components of the new multicomponent code.

We have the first component of the new code as

$$
\tilde{\mathfrak{C}}_{1}=\left\{\left[\mathbf{I}_{r \delta} \quad \mathbf{M}_{r \delta}^{\delta}\right]\right\}
$$

corresponding dual component is

$$
\tilde{\mathrm{C}}_{1}^{\perp}=\left\{\left[-\left(\mathrm{M}^{\top}\right)_{\delta}^{r \delta} \mathbf{I}_{\delta}\right]\right\} .
$$

We have s-th component $(s<r)$ of the new code

$$
\tilde{\mathfrak{C}}_{s}=\left\{\left[\begin{array}{ccc}
\mathbf{I}_{(r-s) \delta} & \mathbf{U}_{(r-s) \delta}^{\delta} & 0 \\
\mathbf{0}_{\delta}^{(r-1) \delta} & \mathbf{0}_{\delta}^{\delta} & \mathbf{I}_{s \delta}
\end{array}\right]\right\}
$$

corresponding dual component is as follows

$$
\widetilde{\mathfrak{C}}_{s}^{\perp}=\left\{\left[-\left(\mathbf{U}^{\top}\right)_{\delta}^{(r-s) \delta} \mathbf{I}_{\delta} \mathbf{0}_{\delta}^{\delta \delta}\right]\right\} .
$$

We have the last r-th component as

$$
\widetilde{\mathfrak{C}}_{r}=\left\{\left[\begin{array}{cccccc}
\mathbf{0} & \mathbf{I}_{\delta} & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{\delta} & \ldots & \mathbf{0} & \mathbf{0} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{\delta} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{I}_{\delta}
\end{array}\right]\right\}
$$

corresponding dual component is

$$
\widetilde{\mathfrak{C}}_{r}^{\perp}=\left\{\left[\begin{array}{ll}
\mathbf{I}_{\delta} & \mathbf{0}_{\delta}^{r \delta}
\end{array}\right]\right\}
$$

The dual codes at the dimension $\widetilde{m}=\delta$ and the subspace distance $d=2 \widetilde{m}=2 \delta$ present spreads with maximal cardinality.

Conclusion

- There were constructed a new class of multicomponent codes which have maximal cardinality at the following parameters: $n=m+\delta$ is code length, $d=2 \delta$ is code distance, $m=r \delta$ is dimension, where r is an integer.
- It allows to extend the class of optimal codes which achieve Johnson upper bound I.
- Correspondingly to the new class we have constructed dual multicomponent codes, which have the following parameters: $\widetilde{m}=\delta$ is dimension, $d=2 \widetilde{m}=2 \delta$ is code distance. Such codes are called spreads.

