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Subspace codes

Let m ≤ n be integers. Let Mn
m be a set of matrices of size m×n

of rank m over the field GF (q). Define R(U) the row spanned

subspace of the U ∈ Mn
m matrix.

The subspace distance between two subspaces R(U) and R(V)

is defined as

d(R(U),R(V)) = dim (R(U) ] R(V))− dim (R(U) ∩ R(V)) .

The subspace distance between two subspaces of the same di-

mension is even.
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A network code of constant dimension m and cardinality

A(n, d = 2δ,m)

with minimal subspace distance d = 2δ is defined as a set of

m-dimensional subspaces

R(U1),R(U2), . . . ,R(UA),

where d(R(Ui),R(Uj)) ≥ 2δ, i 6= j and the parameter δ ≤ m.

The main problem is the following: to construct a network code

of maximal cardinality under given parameters {n, d = 2δ,m}.
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Silva–Koetter–Kschischang (SKK) codes

A subspace is often defined by means of the generator matrix.

Rows of this matrix is a basis of this subspace. The generator

matrix of SKK code is presented as

Ui =
[
Im Mi

]
,

where Im is the identity matrix of order m, and Mi is a matrix of

rank code of size m × (n −m) over the field GF (q). This code

consists of matrices of size m× (n−m) over the field GF (q).

Subspace distance between R(Ui) and R(Uj) is equal to

d(R(Ui),R(Uj)) = 2Rk(Ui −Uj).

Rank distance between two matrices is rank of their difference.
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There exists a linear rank code consisting of m×n matrices with

minimal rank distance δ and cardinality

M = qa(b−δ+1),

where a = max{m, (n−m)} b = min{m, (n−m)}.

Hence, the network SKK code has the following parameters:

n is length,

d = 2δ is subspace distance,

m is dimension of code subspaces,

M = qa(b−δ+1) is number of code subspaces.
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Multicomponent with zero prefix (MZP) codes

In 2008 year a class of multicomponent codes was presented by

Gabidulin and Bossert at maximal subspace distance d = 2m.

The component Cmzp,i (i = 2,3, . . .) consists of the following

m× n matrices:

Cmzp,i =
{[

Om . . .Om︸ ︷︷ ︸
i−1

Im Mi
]}
,

where i = 1, . . . , r, and r ≥ 2. The first component Cmzp,1 = Cskk

coincides with SKK code, it has no a zero prefix.

The matrix Mi is a m × (n −m − (i − 1)m) matrix of Gabidulin

code with rank distance δ = m.
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Cardinality of MZP code at given parameters δ = m and n =

(r + 1)m is equal to

Mmzp = |Cmzp| =
qn − 1

qm − 1
.

This value coincides with Wang upper bound of cardinality (2003).
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MZP codes. General case.

If δ < m, then (i)-th component Cmzp,i is m× (n−m− (i− 1)δ)

matrix:

Cmzp,i =
{[

Oδ . . . Oδ Im Mi

]}
,

where i = 1, . . . , r, and r ≥ 2. As usually, the first component

coincides with SKK code.
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Cardinality of MZP codes

Consider a code with the following parameters: n is code length,

m is dimension of code subspace, dsub = 2δ is code distance.

Denote ai = max{m, (n−m− (i−1)δ)} and bi = min{m, (n−m−
(i− 1)δ)}. The cardinality of the i-th component is equal to

|Cmzp, i| = qai(bi−δ+1). (1)

The total cardinality is equal to sum of cardinality of all compo-

nents:

Cmzp =
r∑

i=1

qai(bi−δ+1).
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Johnson upper bound I

Let n, d = 2δ, m be network code parameters.

If

(qm − 1)2 > (qn − 1)(qm−δ − 1),

then

A(n, d = 2δ,m) ≤
⌊

(qm − qm−δ)(qn − 1)

(qm − 1)2 − (qn − 1)(qm−δ − 1)

⌋
.
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Corollary 1

The condition is satisfied, if δ = m. In this case Johnson upper

bound coincides with Wang upper bound (2003):

A(n, d = 2m,m) ≤
⌊
qn − 1

qm − 1

⌋
.
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Corollary 2

For δ < m, the condition is satisfied iff

n ≤ m+ δ.

If n < m+ δ, then the cardinality of a MZP code is

A(n, d = 2δ,m) = 1.

If n = m+ δ, then

A(n, d = 2δ,m) ≤
⌊
qn − 1

qδ − 1

⌋
.
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Corollary 3

If n = m+δ, then for a dual code the dimension is m′ = n−m = δ.

The cardinality is

A(n, d = 2δ,m′) = A(n, d = 2δ, δ).

This estimation coincides with Wang upper bound for spreads.

Their code distance is maximal that is twice more than code

dimension.
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Example 1

We construct MZP code at the following parameters: n =

4δ, d = 2δ, m = 3δ.

The first component is SKK code:

C1 =
{[
I3δ Mδ

3δ

]}
=



Iδ 0 0 Mδ

1,δ

0 Iδ 0 Mδ
2,δ

0 0 Iδ Mδ
3,δ


 .

The second component is

C2 =
{[
0δ3δ I3δ

]}
=



0 Iδ 0 0

0 0 Iδ 0
0 0 0 Iδ


 .
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The cardinality of this code is

M = |C1|+ |C2| = q3δ + 1.

This estimation is only one code matrix more than the cardinality

SKK code for these parameters.



Example 2. A new construction

Now, we use modified algorithm for a new construction. The

first component is the same as before (SKK code):

C̃1 =
{[
I3δ Mδ

3δ

]}
=



Iδ 0 0 Mδ

1,δ

0 Iδ 0 Mδ
2,δ

0 0 Iδ Mδ
3,δ


 .

The second component is

C̃2 =



Iδ 0 Aδ

1,δ 0

0 Iδ Aδ
2,δ 0

0 0 Iδ Iδ


 .
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The third component is

C̃3 =


Iδ Bδδ 0 0

0 0 Iδ 0
0 0 0 Iδ


 .

The fourth component coincides with the second component of

the former algorithm:

C̃4 = C2 =
{[
0δ3δ I3δ

]}
.

The cardinality of the new construction code is equal to

Mmod = |C̃1|+ |C̃2|+ |C̃3 + |C̃4| = q3δ + q2δ + qδ + 1 =
q4δ − 1

qδ − 1
.

We have four components instead two. The cardinality is grater

than it was before. It value coincides with Johnson upper bound

for given parameters.
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General case: m = rδ

Let us consider a general case: n = m + δ, m = rδ, where r is

an integer. Present new constructions of the multicomponent

code.

The first component is SKK code (as usually):

C̃1 =
{[
Irδ Mδ

rδ

]}
=

=





Iδ 0 0 . . . 0 Mδ
δ(1)

0 Iδ 0 . . . 0 Mδ
δ(2)

. . . . . . . . . . . . . . . . . .

0 0 . . . Iδ 0 Mδ
δ(r − 1)

0 0 0 . . . Iδ Mδ
δ(r)




.
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The second component is

C̃2 =


I(r−1)δ Aδ

(r−1)δ 0

0(r−1)δ
δ 0δδ Iδ

 =

=





Iδ 0 0 . . . Aδ
δ(1) 0

0 Iδ 0 . . . Aδ
δ(2) 0

. . . . . . . . . . . . . . . . . .

0 0 0 Iδ Aδ
δ(r − 1) 0

0 0 0 . . . 0 Iδ




.
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The s-th component (s < r) is

C̃s =


I(r−s)δ Uδ

(r−s)δ 0

0(r−1)δ
δ 0δδ Isδ

 .
. . . . . . . . . . . . . . . . . .
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The (r-1)-th component is

C̃r−1 =





Iδ Dδ
δ 0 . . . 0 0

0 0 Iδ . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 Iδ 0

0 0 0 . . . 0 Iδ




.

The r-th component is

C̃r =





0 Iδ 0 . . . 0 0
0 0 Iδ . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 Iδ 0

0 0 0 . . . 0 Iδ




.

The cardinality of this code is equal to Mmod = qn−1
qδ−1

.
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Dual codes – spreads

Consider codes which are dual to components of the new multi-

component code.

We have the first component of the new code as

C̃1 =
{[
Irδ Mδ

rδ

]}
corresponding dual component is

C̃⊥1 =
{[
−(M>)

rδ
δ Iδ

]}
.

21



We have s-th component (s < r) of the new code

C̃s =


I(r−s)δ Uδ

(r−s)δ 0

0(r−1)δ
δ 0δδ Isδ


corresponding dual component is as follows

C̃⊥s =
{[
−(U>)

(r−s)δ
δ Iδ 0sδδ

]}
.
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We have the last r-th component as

C̃r =





0 Iδ 0 . . . 0 0
0 0 Iδ . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 Iδ 0

0 0 0 . . . 0 Iδ




corresponding dual component is

C̃⊥r =
{[
Iδ 0rδδ

]}
.

The dual codes at the dimension m̃ = δ and the subspace dis-

tance d = 2m̃ = 2δ present spreads with maximal cardinality.
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Conclusion

• There were constructed a new class of multicomponent codes
which have maximal cardinality at the following parameters:
n = m+ δ is code length, d = 2δ is code distance, m = rδ is
dimension, where r is an integer.

• It allows to extend the class of optimal codes which achieve
Johnson upper bound I.

• Correspondingly to the new class we have constructed dual
multicomponent codes, which have the following parameters:
m̃ = δ is dimension, d = 2m̃ = 2δ is code distance. Such
codes are called spreads.
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