Isometry Groups of Combinatorial Codes

Serhii DYSHKO

IMATH, Université de Toulon, France

ACCT 2016
19 June

- $\Sigma=\{0, \ldots, q-1\}$ is a finite set alphabet, $q \geq 2$
- A q-ary code C is a subset of \sum^{n}
- A map $f: C \rightarrow C$ is a Hamming isometry if

$$
\forall x, y \in C, \quad \rho_{H}(x, y)=\rho_{H}(f(x), f(y))
$$

- A map $h: \Sigma^{n} \rightarrow \Sigma^{n}$ is monomial if

$$
\forall x \in \Sigma^{n}, \quad h\left(x_{1}, \ldots, x_{n}\right)=\left(\sigma_{1}\left(x_{\pi(1)}\right), \ldots, \sigma_{n}\left(x_{\pi(n)}\right)\right),
$$

for some permutations $\pi \in \mathfrak{S}_{n}$ and $\sigma_{i} \in \mathfrak{S}_{q}$

- Group of automorphisms

$$
\operatorname{Iso}(C)=\{f: C \rightarrow C \mid f \text { is a Hamming isometry }\}
$$

- Group of monomial automorphisms

$$
\operatorname{Mon}(C)=\{f: C \rightarrow C \mid f \text { extends to a monomial map }\}
$$

- Denoting $m=|C|$ and $\{f: C \rightarrow C \mid f$ is bijective $\} \cong \mathfrak{S}_{m}$, the inclusions hold,

$$
\operatorname{Mon}(C) \leq \operatorname{Iso}(C) \leq \mathfrak{S}_{m}
$$

Problem
Find out how different can be $\operatorname{Mon}(C)$ and $\operatorname{Iso}(C)$.

Theorem (MacWilliams Extension Theorem*, 1962)
For a classical \mathbb{F}_{q}-linear code C the groups are equal,

$$
\operatorname{Mon}_{\mathbb{F}_{q}}(C)=\operatorname{Iso}_{\mathbb{F}_{q}}(C)
$$

Theorem (Wood, 2015)
Let $R=\mathrm{M}_{r \times r}\left(\mathbb{F}_{q}\right)$ be a matrix ring. Let $A=\mathrm{M}_{r \times k}\left(\mathbb{F}_{q}\right)$ be a matrix module alphabet, $k>r$. For any two groups $H_{1} \leq H_{2} \leq \mathrm{GL}_{k \times k}\left(\mathbb{F}_{q}\right)$ (that satisfy some necessary conditions) there exists an R-linear code $C \subseteq A^{n}$ such that

$$
\operatorname{Mon}_{R}(C)=H_{1} \quad \text { and } \quad \operatorname{Iso}_{R}(C)=H_{2}
$$

Theorem (main result)
Let m and q be integers, $m \geq 5, q \geq 2$. For each two subgroups $H_{1} \leq H_{2} \leq \mathfrak{S}_{m}$ (that satisfy some necessary conditions) there exists a q-ary code C with m codewords such that

$$
\operatorname{Mon}(C)=H_{1} \quad \text { and } \quad \operatorname{Iso}(C)=H_{2}
$$

Corollary

Let m and q be integers, $m \geq 5, q \geq 2$. There exists a q-ary code C of cardinality m such that

$$
\operatorname{Mon}(C)=\{e\} \quad \text { and } \quad \operatorname{Iso}(C)=\mathfrak{S}_{m}
$$

- allow codes to have negative number of columns
- 0 -distance codes: $\forall x, y \in C, \rho_{H}(x, y)=0$

Example

- pair codes: each column contains 2 ones and $m-2$ zeros
- un-pair codes: each column does not contains 2 ones and m-2 zeros

Example

1	2	-1				
1	0	0				
0	1	0				
0	0	1				
1	1	1	and $\quad \underbrace{$	1	-1	3
:---:	:---:	:---:	:---:			
0	0	0				
1	1	0				
1	0	1				
1	0	0	}$_{\text {pair code }}$			

- Each code C uniquely decomposes into a sum ${ }^{1}$ of a 0 -distance code and a pair code,

$$
C=C_{0}+C_{p}
$$

- The equalities hold

$$
\begin{aligned}
\operatorname{Mon}(C) & =\operatorname{Mon}\left(C_{0}\right) \cap \operatorname{Mon}\left(C_{p}\right) \\
\operatorname{Iso}(C) & =\operatorname{Iso}\left(C_{p}\right)
\end{aligned}
$$

- For a pair code P and an un-pair code $U=U_{p}+U_{0}$,

$$
\begin{aligned}
\operatorname{Mon}(U) & =\operatorname{Mon}\left(U_{0}\right) \\
\operatorname{Iso}(P) & =\operatorname{Mon}(P)
\end{aligned}
$$

${ }^{1} X+Y$ represents the concatenation of codes X and Y

$$
\operatorname{Mon}(C)=H_{1} \quad \text { and } \quad \operatorname{Iso}(C)=H_{2}
$$

Proof (of the main theorem)

- Find a (large) pair code P with

$$
\operatorname{Mon}(P)=H_{2}
$$

- Find a un-pair code U with

$$
\operatorname{Mon}(U)=H_{1} .
$$

- Using the decomposition $U=U_{p}+U_{0}$, define

$$
C=P+U_{0}
$$

- Calculate for $C=P+U_{0}$,

$$
\begin{aligned}
\operatorname{Mon}(C) & =\operatorname{Mon}(P) \cap \operatorname{Mon}\left(U_{0}\right) \\
& =H_{2} \cap \operatorname{Mon}(U) \\
& =H_{2} \cap H_{1}=H_{1} \\
\text { Iso }(C) & =\operatorname{Iso}(P) \\
& =\operatorname{Mon}(P) \\
& =H_{2}
\end{aligned}
$$

Thank you

Appending: A binary extremal code

Example

1	2	3	4	6	5	4	3	4	3	2	2	1
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	0	0	1	0	1	1	1	0	0	1	1
0	0	1	0	1	1	0	1	0	1	0	1	0
0	0	0	1	1	1	1	0	0	0	1	0	1

Is a $(40,5,22)_{2}$ equidistant binary code with $\operatorname{Iso}(C) \cong \mathfrak{S}_{5}$ and $\operatorname{Mon}(C)=\{e\}$.

Appendix: A non-binary extremal code

Example

0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1
1	1	0	2	0	1	1	2	2
1	1	1	1	2	2	2	0	0

Is a $(9,4,7)_{3}$ equidistant ternary code with Iso $(C) \cong \mathfrak{S}_{4}$ and $\operatorname{Mon}(C)=\{e\}$.

Appendix: Two groups of a code

0	0	0	0		0	0	0	0				
1	1	0	0									
1	0	1	0									
1	0	0	1									
0	1	1	0						\quad	$(4,5)$		
:---	:---	:---										
1	1	0										
1	0											
0	1	0										
0	1	1										
1	0	0										
1												

- Iso $(C)=\langle(1,2,3),(1,2),(4,5)\rangle$
- $\operatorname{Mon}(C)=\langle(1,2,3),(1,2)\rangle$
- $g=(4,5)$ is a Hamming isometry, but does not extend to a monomial map

Appendix: Unique decomposition of a code

Appendix: Closure of a group

Definition

Let G be a group acting on the set X. Let H be a subgroup of G. The closure \bar{H} of H under the action on X is defined as follows,

$$
\bar{H}=\{g \in G \mid \forall O \in X / H, g(O)=O\}
$$

The group H is called closed under the action on X if $H=\bar{H}$.

Appendix: Set of partitions

- Let q, m be two positive integers
- Define the set of partitions of the set $M=\{1, \ldots, m\}$ with at most q classes,

$$
\mathcal{P}=\left\{\left\{c_{1}, \ldots, c_{t}\right\} \mid c_{1} \sqcup \cdots \sqcup c_{t}=M, \quad t \leq q\right\}
$$

where $c_{i} \subseteq M$, for $i \in\{1, \ldots, t\}$, and \sqcup denotes the disjoint union of sets.

- Define the following subset of \mathcal{P},

$$
\mathcal{P}_{2}=\{\{\{i, j\},\{M \backslash\{i, j\}\}\} \mid\{i, j\} \subset M\} .
$$

Appendix: The main theorem

Theorem
Let q be an integer, $q \geq 2$ and let C be a q-ary code of cardinality $m \geq 5$ or $m=3$. The following statements hold.

- The group Iso (C) is closed under the action on \mathcal{P}_{2}.
- The group $\operatorname{Mon}(C)$ is equal to an intersection of $\operatorname{Iso}(C)$ with a subgroup of \mathfrak{S}_{m} closed under the action on $\mathcal{P} \backslash \mathcal{P}_{2}$.
- For each closed under the action on $\mathcal{P} \backslash \mathcal{P}_{2}$ subgroup $H_{1} \leq \mathfrak{S}_{m}$, for each closed under the action on \mathcal{P}_{2} subgroup $H_{2} \leq \mathfrak{S}_{m}$, there exists a q-ary code C of cardinality $m \geq 5$ such that

$$
\operatorname{Mon}(C)=H_{1} \cap \operatorname{Iso}(C) \quad \text { and } \quad \operatorname{Iso}(C)=H_{2}
$$

