On LCD Codes

Wolfgang Willems
joint with J. de la Cruz

Otto-von-Guericke-Universität, Magdeburg and Universidad del Norte, Barranquilla

ACCT 2016, Albena, June 18-24, 2016

Def. (Massey, '92)

A linear code $C \leq K^{n}$ (classical) or $\mathcal{C} \leq K^{m \times n}$ (rank metric) is called complementary dual or shortly an LCD code if

$$
K^{n}=C \oplus C^{\perp} \quad \text { or } \quad K^{m \times n}=\mathcal{C} \oplus \mathcal{C}^{\perp}
$$

(On $K^{m \times n}$ the bilinear form is given by $\langle A, B\rangle=\operatorname{trace}\left(A B^{t}\right)$)
Delsarte bilinear form

Classical LCD codes are of interest:

- (Massey, '92) They are asymptotically good.
- (Sendrier, '04) They achieve the Gilbert-Varshamov bound.
- (Carlet-Guilley, '15) They may be used as countermeasures for side channel and fault injection attacks.
(most effective: LCD codes which are MDS)

1. LCD group codes

Theorem. (Yang-Massey, '94)
If $g(x)$ is the generator polynomial of an $[n, k]$ cyclic code
C of block length n (the characteristic of K and n not necessarily coprime), then C is an LCD code if and only if $g(x)$ is self-reciprocal and all the monic irreducible factors of $g(x)$ have the same multiplicity in $g(x)$ and in $x^{n}-1$.

Remark.

Cyclic codes are ideals in the group algebra
$\mathbb{F}_{q} G \cong F_{q}[x] /\left(x^{n}-1\right)$ where G is a cyclic group of order n.

Problem.

Characterize LCD codes which are ideals in a group algebra $K G$ where G is an arbitrary finite group.

- $\left\langle\sum_{g \in G} a_{g} g, \sum_{g \in G} b_{g} g\right\rangle=\sum_{g \in G} a_{g} b_{g}$.
- $\langle a h, b h\rangle=\langle a, b\rangle, a, b \in K G, h \in G$.
- \quad Suppose that $C \oplus C^{\perp}=K G \quad$ (LCD code)
- $\quad C$ is a projective $K G$-module.
- $\quad C \cong K G / C^{\perp} \cong C^{*}$, hence C is a self-dual $K G$-module.
- (Dickson) $|G|_{p} \mid \operatorname{dim} C$, where $p=\operatorname{char} K$.

Theorem 1.

If $C \leq K G$ is a right ideal in $K G$, then the following are equivalent.
a) C is an LCD code.
b) $C=e K G$ where $e^{2}=e=\hat{e} \quad\left(\imath: g \rightarrow g^{-1}\right)$.

For a cyclic group G we immediately get the Yang-Massey Theorem.

Theorem 2.

If $C=e K G$ with $e^{2}=e=\hat{e}$ is an LCD code and char $K=2$, then the following are equivalent.
a) $\langle c, c\rangle=0$ for all $c \in C$; i.e. C is symplectic.
b) $\langle 1, e\rangle=0$; i.e. the coefficient of e at 1 is zero.
(If in addition $P(1) \nmid C$, then $\left.\langle\cdot, \cdot\rangle\right|_{C}$ is the polarization of a G-invariant quadratic form on C.)

Example.

- $G=A_{5}$ and $K=\mathbb{F}_{2}$
- $\quad e=$ sum of all elements of order 3 and 5 .
- $C=e K G$ is a $[60,16,18]$ LCD code.
- Grassl: $20 \leq d \leq 22$ for any optimal [60, 16] code.
- $\left.\langle\cdot, \cdot\rangle\right|_{C}$ is symplectic, by Theorem 2.

Proposition.

There are LCD MDS group codes (i.e. Reed-Solomon codes) over \mathbb{F}_{q} of dimension k with $0<k<n$ and length $n=q-1$ if
a) (Carlet-Guilley) q is even and k arbitrary
b) q is odd and k is even.
(Do not exist if q and k are odd.)

2. Rank metric LCD codes

As in section 1 we may consider rank metric LCD codes in the algebra $K^{n \times n}$ which are ideals.

Theorem 3. If $\mathcal{C} \leq A=K^{n \times n}$ is a right ideal, then the following are equivalent.
a) \mathcal{C} is an LCD code.
b) $\mathcal{C}=e A$ where $e^{2}=e=e^{t}$.

Disappointing: the minimum distance is always 1 .

Def.

a) A basis a_{1}, \ldots, a_{n} of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} is called self-dual, if $\operatorname{tr}\left(a_{i} a_{j}\right)=\delta_{i j}$.
b) A basis of the form $a, a^{q}, \ldots, a^{q^{n-1}}$ is called normal.

Theorem. (Lempel and Weinberger '88)
$\mathbb{F}_{q^{n}}$ has a self-dual normal basis over \mathbb{F}_{q} if and only if n is odd, or $n \equiv 2 \bmod 4$ and q is even.

Theorem 4.

Let $v=\left(a, a^{q}, \ldots, a^{q^{n-1}}\right)$ be the first row of a generator matrix defining a k-dimensional Gabidulin code in $\mathbb{F}_{q^{n}}^{n}$, where $a, a^{q}, \ldots, a^{q^{n-1}}$ is a self-dual normal basis.
Then the corresponding rank metric code is MRD and LCD.

Warning: The converse does not hold true.
(A counterexample exists already for $n=4$ and $q=2$.)

Remarks:

a) In $\mathbb{F}_{3}^{2 \times 2}$ there are two 2-dimensional Gabidulin codes, one is self-dual the other is an LCD code.
(There is no self-dual basis of \mathbb{F}_{9} over \mathbb{F}_{3}.)
b) Let K be of characteristic 2. If $0 \neq \mathcal{C} \leq K^{m \times n}$ is an MRD and LCD code, then there exists an $A \in \mathcal{C}$ such that $\langle A, A\rangle \neq 0$; i.e., \mathcal{C} is not symplectic.

Questions.

1. Are there always LCD Gabidulin codes, if $4 \mid n$ and the characteristic of the underlying field is 2 ?
2. Which semifields of order $|K|^{n}$ in $K^{n \times n}$ give raise to an LCD code?
3. Do have LCD MRD codes applications in cryptography?
