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Linear codes

Definition

A q-ary linear code C is a linear subspace of Fn
q. If C has dimension

k and minimum distance d then C is called an [n, k , d ] linear code.

the minimum Hamming distance d(C) is the minimum number
of distinct coordinates between any pair of distinct codewords.

the weight w(c) of a codeword c in Fn
q is defined to be the

number of non-zero entries of c .

For a linear code, the minimum distance is equal to the smallest
weight of the nonzero codewords. i.e.
d(C) = w(c − c ′) ≥ w(C) = w(c) = d(c , 0) ≥ d(C)
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Weight enumerators

The number of codewords of C having Hamming weight equal to i
by Ai . The Hamming weight enumerator of the code C is defined
as

WC(y) =
∑
c∈C

ywt(c) =
n∑

i=0

Aiy
i .
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Inner products

The Euclidean inner product is defined on F`mq as

(a, b) = a · b =
m−1∑
i=0

`−1∑
j=0

aijbij

for

a = (a0,0, a0,1, . . . , a0,`−1, a1,0, . . . , a1,`−1, . . . , am−1,0, . . . , am−1,`−1)

and

b = (b0,0, b0,1, . . . , b0,`−1, b1,0, . . . , b1,`−1, . . . , bm−1,0, . . . , bm−1,`−1)
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Inner products

The Hermitian inner product is defined on R` = Fq[Y ]`/(Ym − 1)
as

(x , y) = 〈x , y〉 =
`−1∑
j=0

xjyj

for
x = (x0, x1, . . . , x`−1) and y = (y0, y1, . . . , y`−1)

Here the conjugation map − on R is a map sending Y to
Y−1 = Ym−1 and it acts as the identity map on Fq.



Introduction Quasi-Cyclic Codes Construction of Quasi-Cyclic Self-Dual Codes New Codes

Inner products

The Hermitian inner product is defined on R` = Fq[Y ]`/(Ym − 1)
as

(x , y) = 〈x , y〉 =
`−1∑
j=0

xjyj

for
x = (x0, x1, . . . , x`−1) and y = (y0, y1, . . . , y`−1)

Here the conjugation map − on R is a map sending Y to
Y−1 = Ym−1 and it acts as the identity map on Fq.



Introduction Quasi-Cyclic Codes Construction of Quasi-Cyclic Self-Dual Codes New Codes

Duality

Dual codes

The dual of a code C is C⊥ = {u ∈ Fn : (u, v) = 0 for all v ∈ C}.

Suppose C is an [n, k] code over Fq. Then the dual code C⊥ of C
is a linear [n, n − k] code.

A code C is said to be self-dual if C = C⊥. Note that self-dual
codes are of the form [n, n/2].

If the weight of each codeword is divisible by 4 then the self-dual
codes are called Type II. Otherwise, they are called Type I self-dual
codes.
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Cyclic codes

Definition

An [n, k] linear code C is said to be cyclic if for every codeword
c = (c0, c1, . . . , cn−1) ∈ C, then there is the corresponding
codeword c ′ = (cn−1, c0, . . . , cn−2) ∈ C.

Polynomial representation

The codeword
c = (c0, c1, . . . , cn−1)

can be represented by the polynomial

c(x) = c0 + c1x + c2x
2 + · · ·+ cn−1x

n−1.
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Cyclic shift

With polynomial representation, a cyclic shift can be represented
as follows:

xc(x) = c0x + c1x
2 + c2x

3 + · · ·+ cn−1x
n

in mod (xn − 1) is

xc(x) mod (xn− 1) = cn−1 + c0x + c1x
2 + c2x

3 + · · ·+ cn−2x
n−1.
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Quasi-cyclic codes

Let Fq be a finite field and m be a positive integer coprime with
the characteristic of Fq.

Definition

A linear code C of length `m over Fq is called `-quasi-cyclic code if
the codeword

(c0,0, . . . , c0,`−1, c1,0, . . . , c1,`−1, . . . , cm−1,0, . . . , cm−1,`−1) ∈ C

then

(cm−1,0, . . . , cm−1,`−1, c0,0, . . . , c0,`−1, . . . , cm−2,0, . . . , cm−2,`−1) ∈ C.
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1-1 correspondence

Let R = Fq[Y ]/(Ym − 1). Define a map φ : F`mq → R` by

φ(c) = (c0(Y ), c1(Y ), . . . , c`−1(Y )) ∈ R`

where cj(Y ) =
∑m−1

i=0 cijY
i ∈ R, j = 0, . . . , `− 1.

The map φ gives a one-to-one correspondence between
`-quasi-cyclic codes over Fq of length `m and linear codes over R
of length `.

(T `k(a)) · b = 0⇔ 〈φ(a), φ(b)〉 = 0
for a, b ∈ F`m

q , ∀k ∈ {0, · · · ,m − 1}.

It follows φ(C)⊥ = φ(C⊥), where the dual in F`mq is taken w.r.t.

the Euclidean inner product, while the dual in R` is taken w.r.t.
the Hermitian inner product.
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Ring Decomposition

The polynomial Ym − 1 factors completely into distinct irreducible
factors in Fq[Y ] as Ym − 1 = δg1 . . . gsh1h

∗
1 . . . hth

∗
t where δ is

nonzero in Fq, g1 . . . gs are the polynomials which are
self-reciprocal, and h∗i ’s are reciprocals of hi ’s, for all 1 ≤ i ≤ t.

The ring R can be decomposed as

R =
Fq[Y ]

(Ym − 1)
=

(
s⊕

i=1

Fq[Y ]

(gi )

)
⊕

(
t⊕

j=1

(
Fq[Y ]

(hj)
⊕ Fq[Y ]

(h∗j )

))

by Chinese Remainder Theorem.
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Ring Decomposition

By CRT, every R-linear code C of length ` can be decomposed as
the direct sum

C =

(
s⊕

i=1

Ci

)
⊕

(
t⊕

j=1

(
C′j ⊕ C′′j

))

where Ci , C′j and C′′j are linear codes over Fq[Y ]
/

(gi ), Fq[Y ]
/

(hj)

and Fq[Y ]
/

(h∗j ), respectively, all of length ` for each 1 ≤ i ≤ s,
and for each 1 ≤ j ≤ t.
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Ring Decomposition

Theorem

An `-quasi-cyclic code C of length `m over Fq, is self-dual if and
only if

C =

(
s⊕

i=1

Ci

)
⊕

(
t⊕

j=1

(
C′j ⊕ (C′j)⊥

))
where, for 1 ≤ i ≤ s, Ci is a self-dual code of length ` w.r.t. the
Hermitian inner product and for 1 ≤ j ≤ t, C′j is a linear code of

length ` and (C′)⊥ is its dual w.r.t. the Euclidean inner product.
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Existence of Self-Dual Codes

Let R = R(Fq,m) = Fq[Y ]/(Ym − 1).

Proposition

If char(Fq) = 2, then there exists a self-dual code of length ` over
R if and only if 2 | `.

The following lemma helps us to complete the classification of
quasi-cyclic self-dual codes.

Lemma

Let C be a binary `-quasi-cyclic self-dual code of length m` with m
prime. If m does not divide the weight i , then m must divide Ai .
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Binary Cubic Codes

Let q = 2 and m = 3.

Y 3 − 1 = (Y − 1)(Y 2 + Y + 1) over F2.

Then,

R = F2[Y ]
(Y 3−1) = F2 ⊕ F22.

Remark that

Cubic binary codes of length 3` are viewed as codes of length `
over the ring F2 × F4.
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Binary Cubic Codes

Cubic Construction

C is constructed by Cubic Construction as
C = { ( x + b | x + a | x + a + b ) | x ∈ C1, a + ωb ∈ C2},
where ω2 + ω + 1 = 0.

This gives a correspondence between the self-dual `-quasi-cyclic
codes C of length 3` over F2 and a pair (C1, C2), where C1 is a
self-dual linear code w.r.t. Euclidean inner product over F2 of
length ` and C2 is a self-dual linear code w.r.t. Hermitian inner
product over F22 of length `.
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The Complete Classification

Theorem

Up to permutation equivalence the numbers of cubic self-dual
codes of lengths up to 48 are as follows:
There is/are
for ` = 2, unique binary cubic self-dual code of length 6,
for ` = 4, 2 binary cubic self-dual codes of length 12,
for ` = 6, 3 binary cubic self-dual codes of length 18,
for ` = 8, 16 binary cubic self-dual codes of length 24,
for ` = 10, 8 binary cubic self-dual codes of length 30,
for ` = 12, 13 binary cubic self-dual codes of length 36,
for ` = 14, 1569 binary cubic self-dual codes of length 42,
for ` = 16, 264 binary cubic self-dual codes of length 48.
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Construction of cubic self-dual codes of index 18

The shortest length of binary cubic self-dual codes for which the
classification is not completed is ` = 18.

For self-dual [54, 27, 10] codes, there are two weight enumerators:

W1 = 1 + (351− 8β)y10 + (5031 + 24β)y12 + . . . 0 ≤ β ≤ 43
W2 = 1 + (351− 8β)y10 + (5543 + 24β)y12 + . . . 12 ≤ β ≤ 43.
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Construction of cubic self-dual codes of index 18

Previous results

Before our work, it was known that seven inequivalent codes with
W1 for β = 0, 3, 6, 9, 12, 15, 18 and six inequivalent codes with W2

for β = 12, 15, 18, 21, 24, 27 were found.

Our results

We improve the results by finding eight [54, 27, 10] codes with W1

for β = 0, 3, 6, 9, 12, 15, 18, 21 and six [54, 27, 10] codes with W2

for β = 12, 15, 18, 21, 24, 27 by taking C1’s from extremal self-dual
binary codes and C2’s from not extremal self-dual quaternary
codes. For W1, the value β = 21 is the new one.
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Construction of cubic self-dual codes of index 18

Remark

These [54, 27, 10] codes are of Type I 18-quasi-cyclic self-dual
codes of length 54 since their binary components C1’s are of Type I
and self-dual with respect to the Euclidean inner product.
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Construction of cubic self-dual codes of index 18

Conjecture

Based on computational evidence, we conjecture that there is no
other [54, 27, 10] self-dual cubic code over F2.

Our computational results are listed above:

Possible values Found values Conjecture

W1 0 ≤ β ≤ 43 β ∈ {0, 3, 6, 9, 12, 15, 18, 21} β /∈ {24, · · · , 42}

W2 12 ≤ β ≤ 43 β ∈ {12, 15, 18, 21, 24, 27} β /∈ {30, · · · , 42}
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Based on computational evidence, we conjecture that there is no
other [54, 27, 10] self-dual cubic code over F2.

Our computational results are listed above:

Possible values Found values Conjecture

W1 0 ≤ β ≤ 43 β ∈ {0, 3, 6, 9, 12, 15, 18, 21} β /∈ {24, · · · , 42}

W2 12 ≤ β ≤ 43 β ∈ {12, 15, 18, 21, 24, 27} β /∈ {30, · · · , 42}
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Future Work

This construction will be applied in order to find more binary
self-dual codes of larger lengths.
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THANK YOU!
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