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Linear codes

Definition
A g-ary linear code C is a linear subspace of Fg. If C has dimension
k and minimum distance d then C is called an [n, k, d] linear code.




Introduction
©0000

Linear codes

A g-ary linear code C is a linear subspace of Fg. If C has dimension
k and minimum distance d then C is called an [n, k, d] linear code.

@ the minimum Hamming distance d(C) is the minimum number
of distinct coordinates between any pair of distinct codewords.

o the weight w(c) of a codeword c in Fy is defined to be the
number of non-zero entries of c.
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Linear codes

Definition

A g-ary linear code C is a linear subspace of Fg. If C has dimension
k and minimum distance d then C is called an [n, k, d] linear code.

@ the minimum Hamming distance d(C) is the minimum number
of distinct coordinates between any pair of distinct codewords.

o the weight w(c) of a codeword c in Fy is defined to be the
number of non-zero entries of c.

For a linear code, the minimum distance is equal to the smallest
weight of the nonzero codewords. i.e.

d(C) =w(c—c") > w(C) =w(c)=d(c,0)>d(C)
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Weight enumerators

The number of codewords of C having Hamming weight equal to i
by A;. The Hamming weight enumerator of the code C is defined

as
Zth(C) Z Aly

ceC




Introduction
00®00

Inner products

The Euclidean inner product is defined on Ff’m as

m—1/¢—1

(a,b)=a-b= ajjbjj

i=0 j=0
for
a= (30,0, 40,1,---,80,4—1,91,0y--+,d10—15--+,8m—1,05-- -, amfl,ffl)
and
b = (bo,o,bo,1,---5boe—1,b105---b10-1,-,bm-10,-- -, bm-1,0-1
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Inner products

The Hermitian inner product is defined on R’ = F,[Y]*/(Y™ — 1)
as

(x,y) = Z Xi¥;

for
x = (x0,X1,...,x—1) and y = (Yo, ¥1,---,Ye-1)
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Inner products

The Hermitian inner product is defined on R* = F,[Y]¢/(Y™

(x,y) = Z XiY;

for
x = (x0,X1,...,x—1) and y = (Yo, ¥1,---,Ye-1)

Here the conjugation map ~ on R is a map sending Y to
Y~—! = Y™ 1 and it acts as the identity map on Fy.

1)
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Duality

Dual codes
The dual of a code C is C* = {u € F" : (u,v) =0 for all v € C}.

Suppose C is an [n, k] code over Fy. Then the dual code CctofC
is a linear [n, n — k] code.
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Dual codes
The dual of a code C is C* = {u € F" : (u,v) =0 for all v € C}.

Suppose C is an [n, k] code over Fy. Then the dual code CctofC
is a linear [n, n — k] code.

A code C is said to be self-dual if C = C+. Note that self-dual
codes are of the form [n, n/2].
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Duality

Dual codes
The dual of a code C is C* = {u € F" : (u,v) =0 for all v € C}.

Suppose C is an [n, k] code over Fy. Then the dual code CctofC
is a linear [n, n — k] code.

A code C is said to be self-dual if C = C+. Note that self-dual
codes are of the form [n, n/2].

If the weight of each codeword is divisible by 4 then the self-dual
codes are called Type II. Otherwise, they are called Type | self-dual
codes.

4
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Cyclic codes

Definition
An [n, k] linear code C is said to be cyclic if for every codeword
¢ =(co,C1,...,cn—1) €C, then there is the corresponding

codeword ¢’ = (¢p-1,¢0,.--,¢cn—2) €C.
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Cyclic codes

Definition

An [n, k] linear code C is said to be cyclic if for every codeword
¢ =(co,c1,...,¢n-1) € C, then there is the corresponding
codeword ¢’ = (¢p-1,¢0,.--,¢cn—2) €C.

| \

Polynomial representation
The codeword

c=(co,C1y.-.,Cn-1)
can be represented by the polynomial

C(X) =+ X + c2x2 dLooodl Cn_1X"71,

A
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Cyclic shift

With polynomial representation, a cyclic shift can be represented
as follows:

xc(x) = cox + ax’+ ox3 4 -+ cpo1x”

in mod (x" —1) is

xc(x) mod (x"—1) = cp_1+ cox+ ax?+ox3+ -+ caox" L

o’
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Quasi-cyclic codes

Let F; be a finite field and m be a positive integer coprime with
the characteristic of F,.
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Quasi-cyclic codes

Let F; be a finite field and m be a positive integer coprime with
the characteristic of F,.

Definition
A linear code C of length £m over [ is called /-quasi-cyclic code if
the codeword

(0,0 ++»€06—1,CL,05 -+ Cle—1s-+»Cm=1,01---,Cm-1,4-1) €C

then

(Cm—l,Oa <o 3 Cm-1¢-1,€,0,---,C0-15---5Cm—20,---, Cmf2,€fl) eC.
v
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Let R =Fq[Y]/(Y™ —1). Define a map ¢ : ]Ff,’" — R by

where ¢i(Y) =" Y eR, j=0,....0—1

The map ¢ gives a one-to-one correspondence between
(-quasi-cyclic codes over I, of length /m and linear codes over R
of length /.
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°

1-1 correspondence

Let R =Fq[Y]/(Y™ —1). Define a map ¢ : ]Ff,’" — R by
¢(c) = (co(Y),ca(Y), -, cea(Y)) € R
where ¢i(Y) =" Y eR, j=0,....0—1

The map ¢ gives a one-to-one correspondence between
(-quasi-cyclic codes over I, of length /m and linear codes over R
of length /.

(T%(a)) - b=0< (¢ (} ¢(b)) =

for a, b € F{™, Vk € {0, —1}.




Quasi-Cyclic Codes
°

1-1 correspondence

Let R =Fq[Y]/(Y™ —1). Define a map ¢ : ]Ff,’" — R by
¢(c) = (co(Y),ca(Y), -, cea(Y)) € R
where ¢i(Y) =" Y eR, j=0,....0—1

The map ¢ gives a one-to-one correspondence between
(-quasi-cyclic codes over I, of length /m and linear codes over R
of length /.

(T%(a)) - b=0< (¢ (} ¢(b)) =

for a, b € F{™, Vk € {0, —1}.

It follows ¢(C)* = ¢(CL), where the dual in Fi™ is taken w.r.t.
the Euclidean inner product, while the dual in RY is taken w.r.t.
the Hermitian inner product.
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Ring Decomposition

The polynomial Y™ — 1 factors completely into distinct irreducible
factors in Fq[Y] as Y™ — 1 = dg1...gshihy ... hehi where § is
nonzero in Fq, g1 ...gs are the polynomials which are
self-reciprocal, and h?'s are reciprocals of h;'s, for all 1 </ < t.
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Ring Decomposition

The polynomial Y™ — 1 factors completely into distinct irreducible
factors in Fq[Y] as Y™ — 1 = dg1...gshihy ... hehi where § is
nonzero in Fq, g1 ...gs are the polynomials which are
self-reciprocal, and h?'s are reciprocals of h;'s, for all 1 </ < t.
The ring R can be decomposed as

_ Rl ([ nFalY] N/ FalY]  FalY]
AT (GB (&7) >@ <€B< (h) © (k) >>

i=1 j=1

by Chinese Remainder Theorem.
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Ring Decomposition

By CRT, every R-linear code C of length ¢ can be decomposed as

the direct sum
s t
C= (@C,-) @ (@ (c; @ c;’))
i=1

j=1

where C;, Cj and C; are linear codes over Fo[Y]/(gi), Fq[Y1/(h))
and Fq[Y]/(hJ’f‘), respectively, all of length £ for each 1 < i <s,
and foreach 1 <j < t.
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Ring Decomposition

Theorem
An (-quasi-cyclic code C of length {m over Iy, is self-dual if and

only if
C= <é§ci> e (é <Cj@ (CJ’-)i))

j=1

where, for 1 < i <'s, C; is a self-dual code of length ¢ w.r.t. the
Hermitian inner product and for 1 < j < t, CJ’- is a linear code of
length ¢ and (C')* is its dual w.r.t. the Euclidean inner product.

v
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Existence of Self-Dual Codes

Let R = R(Fq, m) = Fg[Y]/(Y™ —1).

Proposition

If char(Fq) = 2, then there exists a self-dual code of length ¢ over
R if and only if 2 | £.
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Existence of Self-Dual Codes

Let R = R(Fq, m) = Fg[Y]/(Y™ —1).

Proposition
If char(Fq) = 2, then there exists a self-dual code of length ¢ over
R if and only if 2 | £.

The following lemma helps us to complete the classification of
quasi-cyclic self-dual codes.

Let C be a binary ¢-quasi-cyclic self-dual code of length m¢ with m
prime. If m does not divide the weight 7/, then m must divide A;.
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Binary Cubic Codes

Let g =2 and m = 3.
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Binary Cubic Codes

Letg=2and m=3. Y3 —1=(Y —1)(Y2+ Y +1) over Fy.
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Binary Cubic Codes

Letg=2and m=3. Y3 —1=(Y —1)(Y2+ Y +1) over Fy.
Then,

R =it =F,0Fy.
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Binary Cubic Codes

Letg=2and m=3. Y3 —1=(Y —1)(Y2+ Y +1) over Fy.
Then,

R =it =F,0Fy.

Remark that
Cubic binary codes of length 3¢ are viewed as codes of length £
over the ring [Fp x FFy.

| A
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Binary Cubic Codes

Cubic Construction

C is constructed by Cubic Construction as
C={(x+b|x+alx+a+b)|xe€Cl, a+wbe(y}
where w? +w +1=0.
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Binary Cubic Codes

Cubic Construction

C is constructed by Cubic Construction as

C={(x+b|x+alx+a+b)|xe€Cl, a+wbe(y}
where w? +w +1 = 0.

This gives a correspondence between the self-dual ¢-quasi-cyclic
codes C of length 3¢ over F, and a pair (C1,Cz), where C is a
self-dual linear code w.r.t. Euclidean inner product over F; of
length ¢ and C; is a self-dual linear code w.r.t. Hermitian inner
product over F52 of length £.
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The Complete Classification

Theorem

Up to permutation equivalence the numbers of cubic self-dual
codes of lengths up to 48 are as follows:

There is/are

for ¢ = 2, unique binary cubic self-dual code of length 6,
for £ = 4, 2 binary cubic self-dual codes of length 12,

for ¢ = 6, 3 binary cubic self-dual codes of length 18,

for £ = 8, 16 binary cubic self-dual codes of length 24,

for £ = 10, 8 binary cubic self-dual codes of length 30,
for £ = 12, 13 binary cubic self-dual codes of length 36,
for £ = 14, 1569 binary cubic self-dual codes of length 42,
for £ = 16, 264 binary cubic self-dual codes of length 48.
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Construction of cubic self-dual codes of index 18

The shortest length of binary cubic self-dual codes for which the
classification is not completed is ¢ = 18.
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Construction of cubic self-dual codes of index 18

The shortest length of binary cubic self-dual codes for which the
classification is not completed is ¢ = 18.

For self-dual [54,27,10] codes, there are two weight enumerators:

Wy =1+ (351 — 83)y™ + (5031 + 248)y*2 +... 0<B5<43
Wy =1+ (351 — 83)y10 + (5543 + 24B3)y2 +... 12< 3 <43,
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Construction of cubic self-dual codes of index 18

Previous results

Before our work, it was known that seven inequivalent codes with
Wi for 6 =0,3,6,9,12,15, 18 and six inequivalent codes with W,
for 5 = 12,15, 18,21,24,27 were found.




New Codes
Construction of cubic self-dual codes of index 18

Previous results

Before our work, it was known that seven inequivalent codes with
Wi for 6 =0,3,6,9,12,15, 18 and six inequivalent codes with W,
for 5 = 12,15, 18,21,24,27 were found.

Our results

We improve the results by finding eight [54,27, 10] codes with W
for $=0,3,6,9,12,15,18,21 and six [54,27,10] codes with W,
for § =12,15,18,21,24,27 by taking C;'s from extremal self-dual
binary codes and Cy's from not extremal self-dual quaternary
codes. For Wi, the value 8 = 21 is the new one.

| A

\
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Construction of cubic self-dual codes of index 18

These [54,27,10] codes are of Type | 18-quasi-cyclic self-dual
codes of length 54 since their binary components C;'s are of Type |
and self-dual with respect to the Euclidean inner product.
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Construction of cubic self-dual codes of index 18

Based on computational evidence, we conjecture that there is no
other [54,27,10] self-dual cubic code over Fy.




Construction of cubic self-dual codes of index 18

Based on computational evidence, we conjecture that there is no
other [54,27,10] self-dual cubic code over FF».

New Codes

Our computational results are listed above:

Possible values Found values Conjecture
Wiy 0<pB<43 8 €{0,3,6,9,12,15,18,21} | B ¢ {24, .- ,42}
W, 12<3<43 B € {12,15,18,21, 24,27} B¢ {30,---,42}




This construction will be applied in order to find more binary
self-dual codes of larger lengths.




THANK YOU!
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