duction	Qu

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

SOME NEW QUASI-CYCLIC SELF-DUAL CODES

Pınar Çomak, J-L. Kim, F. Özbudak

Institute of Applied Mathematics Middle East Technical University, Ankara, Turkey

June 21, 2016 15th International Workshop on ACCT, Albena, Bulgaria

Introduction 0000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Outline			

Introduction 0000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Outline			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Introduction
- Quasi-Cyclic Codes

Introduction 0000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Introduction
- Quasi-Cyclic Codes
- Onstruction of Quasi-Cyclic Self-Dual Codes

Introduction 0000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Outline			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Introduction
- Quasi-Cyclic Codes
- Onstruction of Quasi-Cyclic Self-Dual Codes
- New Codes

Introduction 0000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Outline			

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Introduction
- Quasi-Cyclic Codes
- Onstruction of Quasi-Cyclic Self-Dual Codes
- New Codes
- Sonclusion

Introduction ●000000	Quasi-Cyclic Codes	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Linear code	S		

A *q*-ary linear code C is a linear subspace of \mathbb{F}_q^n . If C has dimension k and minimum distance d then C is called an [n, k, d] linear code.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction •000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Linear code	S		

A *q*-ary linear code C is a linear subspace of \mathbb{F}_q^n . If C has dimension k and minimum distance d then C is called an [n, k, d] linear code.

- the minimum Hamming distance d(C) is the minimum number of distinct coordinates between any pair of distinct codewords.
- the weight w(c) of a codeword c in 𝔽ⁿ_q is defined to be the number of non-zero entries of c.

A *q*-ary linear code C is a linear subspace of \mathbb{F}_q^n . If C has dimension k and minimum distance d then C is called an [n, k, d] linear code.

- the minimum Hamming distance d(C) is the minimum number of distinct coordinates between any pair of distinct codewords.
- the weight w(c) of a codeword c in 𝔽ⁿ_q is defined to be the number of non-zero entries of c.

For a linear code, the minimum distance is equal to the smallest weight of the nonzero codewords. i.e. $d(\mathcal{C}) = w(c - c') \ge w(\mathcal{C}) = w(c) = d(c, \mathbf{0}) \ge d(\mathcal{C})$

Quasi-Cyclic Codes

Weight enumerators

The number of codewords of C having Hamming weight equal to i by A_i . The Hamming weight enumerator of the code C is defined as

$$W_{\mathcal{C}}(y) = \sum_{c \in \mathcal{C}} y^{wt(c)} = \sum_{i=0}^{n} A_i y^i.$$

Introduction 000000	Quasi-Cyclic Codes	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Inner prod	ucts		

The Euclidean inner product is defined on $\mathbb{F}_q^{\ell m}$ as

$$(a,b)=a\cdot b=\sum_{i=0}^{m-1}\sum_{j=0}^{\ell-1}a_{ij}b_{ij}$$

for

$$a = (a_{0,0}, a_{0,1}, \ldots, a_{0,\ell-1}, a_{1,0}, \ldots, a_{1,\ell-1}, \ldots, a_{m-1,0}, \ldots, a_{m-1,\ell-1})$$

 and

$$b = (b_{0,0}, b_{0,1}, \ldots, b_{0,\ell-1}, b_{1,0}, \ldots, b_{1,\ell-1}, \ldots, b_{m-1,0}, \ldots, b_{m-1,\ell-1})$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = のへで

Inner produ	cts		
Introduction 0000000	Quasi-Cyclic Codes	Construction of Quasi-Cyclic Self-Dual Codes	New Codes

The Hermitian inner product is defined on $\mathcal{R}^{\ell} = \mathbb{F}_q[Y]^{\ell}/(Y^m - 1)$ as

$$(x,y) = \langle x,y \rangle = \sum_{j=0}^{r-1} x_j \overline{y_j}$$

for

$$x = (x_0, x_1, \dots, x_{\ell-1})$$
 and $y = (y_0, y_1, \dots, y_{\ell-1})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

0000000	00	0000000	
Inner pro	ducts		

The Hermitian inner product is defined on $\mathcal{R}^{\ell} = \mathbb{F}_q[Y]^{\ell}/(Y^m - 1)$ as

$$(x,y) = \langle x,y \rangle = \sum_{j=0}^{\infty} x_j \overline{y_j}$$

for

$$x = (x_0, x_1, \dots, x_{\ell-1})$$
 and $y = (y_0, y_1, \dots, y_{\ell-1})$

Here the conjugation map $\bar{}$ on \mathcal{R} is a map sending Y to $Y^{-1} = Y^{m-1}$ and it acts as the identity map on \mathbb{F}_{q} .

Introduction 0000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Duality			

Dual codes

The dual of a code C is $C^{\perp} = \{ u \in \mathbb{F}^n : (u, v) = 0 \text{ for all } v \in C \}.$

Suppose C is an [n, k] code over \mathbb{F}_q . Then the dual code C^{\perp} of C is a linear [n, n - k] code.

Introduction 0000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Duality			

Dual codes

The dual of a code C is $C^{\perp} = \{ u \in \mathbb{F}^n : (u, v) = 0 \text{ for all } v \in C \}.$

Suppose C is an [n, k] code over \mathbb{F}_q . Then the dual code C^{\perp} of C is a linear [n, n-k] code.

A code C is said to be self-dual if $C = C^{\perp}$. Note that self-dual codes are of the form [n, n/2].

Introduction 0000000	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Duality			

Dual codes

The dual of a code C is $C^{\perp} = \{ u \in \mathbb{F}^n : (u, v) = 0 \text{ for all } v \in C \}.$

Suppose C is an [n, k] code over \mathbb{F}_q . Then the dual code C^{\perp} of C is a linear [n, n-k] code.

A code C is said to be self-dual if $C = C^{\perp}$. Note that self-dual codes are of the form [n, n/2].

If the weight of each codeword is divisible by 4 then the self-dual codes are called Type II. Otherwise, they are called Type I self-dual codes.

Introduction ○○○○○●○	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Cyclic code	S		

An [n, k] linear code C is said to be cyclic if for every codeword $c = (c_0, c_1, \ldots, c_{n-1}) \in C$, then there is the corresponding codeword $c' = (c_{n-1}, c_0, \ldots, c_{n-2}) \in C$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction ○○○○○●○	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Cyclic codes	S		

An [n, k] linear code C is said to be cyclic if for every codeword $c = (c_0, c_1, \ldots, c_{n-1}) \in C$, then there is the corresponding codeword $c' = (c_{n-1}, c_0, \ldots, c_{n-2}) \in C$.

Polynomial representation

The codeword

$$c = (c_0, c_1, \ldots, c_{n-1})$$

can be represented by the polynomial

$$c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}.$$

Introduction	Quasi-Cyclic Codes 00	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
Cyclic shift			

With polynomial representation, a cyclic shift can be represented as follows:

$$xc(x) = c_0 x + c_1 x^2 + c_2 x^3 + \dots + c_{n-1} x^n$$

in mod $(x^n - 1)$ is

 $xc(x) \mod (x^n-1) = c_{n-1} + c_0 x + c_1 x^2 + c_2 x^3 + \dots + c_{n-2} x^{n-1}.$

Let \mathbb{F}_q be a finite field and *m* be a positive integer coprime with the characteristic of \mathbb{F}_q .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let \mathbb{F}_q be a finite field and *m* be a positive integer coprime with the characteristic of \mathbb{F}_q .

Definition

A linear code ${\mathcal C}$ of length ℓm over ${\mathbb F}_q$ is called $\ell\text{-quasi-cyclic code if the codeword}$

$$(c_{0,0},\ldots,c_{0,\ell-1},c_{1,0},\ldots,c_{1,\ell-1},\ldots,c_{m-1,0},\ldots,c_{m-1,\ell-1}) \in C$$

then

$$(c_{m-1,0},\ldots,c_{m-1,\ell-1},c_{0,0},\ldots,c_{0,\ell-1},\ldots,c_{m-2,0},\ldots,c_{m-2,\ell-1}) \in C$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 0000000	Quasi-Cyclic Codes ○●	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
1-1 corresp	ondence		

 $\phi(c) = (c_0(Y), c_1(Y), \ldots, c_{\ell-1}(Y)) \in \mathcal{R}^{\ell}$

Introduction 0000000	Quasi-Cyclic Codes ○●	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
1-1 corres	spondence		

Let
$$\mathcal{R} = \mathbb{F}_q[Y]/(Y^m - 1)$$
. Define a map $\phi : \mathbb{F}_q^{\ell m} \to \mathcal{R}^{\ell}$ by

 $\phi(\boldsymbol{c}) = (c_0(Y), c_1(Y), \dots, c_{\ell-1}(Y)) \in \mathcal{R}^{\ell}$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへぐ

where $c_j(Y) = \sum_{i=0}^{m-1} c_{ij} Y^i \in \mathcal{R}, \quad j = 0, ..., \ell - 1.$

Introduction 0000000	Quasi-Cyclic Codes ○●	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
1-1 corresp	ondence		

 $\phi(c) = (c_0(Y), c_1(Y), \ldots, c_{\ell-1}(Y)) \in \mathcal{R}^{\ell}$

where $c_j(Y) = \sum_{i=0}^{m-1} c_{ij} Y^i \in \mathcal{R}, \quad j = 0, ..., \ell - 1.$

The map ϕ gives a one-to-one correspondence between ℓ -quasi-cyclic codes over \mathbb{F}_q of length ℓm and linear codes over \mathcal{R} of length ℓ .

Introduction 0000000	Quasi-Cyclic Codes ○●	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
1-1 correspondence			

 $\phi(c) = (c_0(Y), c_1(Y), \ldots, c_{\ell-1}(Y)) \in \mathcal{R}^{\ell}$

where $c_j(Y) = \sum_{i=0}^{m-1} c_{ij} Y^i \in \mathcal{R}, \quad j = 0, ..., \ell - 1.$

The map ϕ gives a one-to-one correspondence between ℓ -quasi-cyclic codes over \mathbb{F}_q of length ℓm and linear codes over \mathcal{R} of length ℓ .

$$\begin{array}{l} (\mathcal{T}^{\ell k}(a)) \cdot b = 0 \Leftrightarrow \langle \phi(a), \phi(b) \rangle = 0 \\ \text{for } a, b \in \mathbb{F}_q^{\ell m}, \, \forall k \in \{0, \cdots, m-1\}. \end{array}$$

1-1 correspondence	Introduction 0000000	Quasi-Cyclic Codes ○●	Construction of Quasi-Cyclic Self-Dual Codes	New Codes
	1-1 corresp	ondence		

 $\phi(c) = (c_0(Y), c_1(Y), \ldots, c_{\ell-1}(Y)) \in \mathcal{R}^{\ell}$

where $c_j(Y) = \sum_{i=0}^{m-1} c_{ij} Y^i \in \mathcal{R}, \quad j = 0, ..., \ell - 1.$

The map ϕ gives a one-to-one correspondence between ℓ -quasi-cyclic codes over \mathbb{F}_q of length ℓm and linear codes over \mathcal{R} of length ℓ .

$$(\mathcal{T}^{\ell k}(a)) \cdot b = 0 \Leftrightarrow \langle \phi(a), \phi(b) \rangle = 0$$
 for $a, b \in \mathbb{F}_q^{\ell m}, \forall k \in \{0, \cdots, m-1\}.$

It follows $\phi(\mathcal{C})^{\perp} = \phi(\mathcal{C}^{\perp})$, where the dual in $\mathbb{F}_q^{\ell m}$ is taken w.r.t. the Euclidean inner product, while the dual in \mathcal{R}^{ℓ} is taken w.r.t. the Hermitian inner product.

Ring Decomposition

The polynomial $Y^m - 1$ factors completely into distinct irreducible factors in $\mathbb{F}_q[Y]$ as $Y^m - 1 = \delta g_1 \dots g_s h_1 h_1^* \dots h_t h_t^*$ where δ is nonzero in \mathbb{F}_q , $g_1 \dots g_s$ are the polynomials which are self-reciprocal, and h_i^* 's are reciprocals of h_i 's, for all $1 \le i \le t$.

Ring Decomposition

The polynomial $Y^m - 1$ factors completely into distinct irreducible factors in $\mathbb{F}_q[Y]$ as $Y^m - 1 = \delta g_1 \dots g_s h_1 h_1^* \dots h_t h_t^*$ where δ is nonzero in \mathbb{F}_q , $g_1 \dots g_s$ are the polynomials which are self-reciprocal, and h_i^* 's are reciprocals of h_i 's, for all $1 \le i \le t$. The ring \mathcal{R} can be decomposed as

$$\mathcal{R} = \frac{F_q[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^s \frac{F_q[Y]}{(g_i)}\right) \oplus \left(\bigoplus_{j=1}^t \left(\frac{F_q[Y]}{(h_j)} \oplus \frac{F_q[Y]}{(h_j^*)}\right)\right)$$

by Chinese Remainder Theorem.

By CRT, every $\mathcal R\text{-linear}$ code $\mathcal C$ of length ℓ can be decomposed as the direct sum

$$\mathcal{C} = \left(\bigoplus_{i=1}^{s} \mathcal{C}_{i} \right) \oplus \left(\bigoplus_{j=1}^{t} \left(\mathcal{C}_{j}^{\prime} \oplus \mathcal{C}_{j}^{\prime \prime} \right) \right)$$

where C_i , C'_j and C''_j are linear codes over $F_q[Y]/(g_i)$, $F_q[Y]/(h_j)$ and $F_q[Y]/(h_j^*)$, respectively, all of length ℓ for each $1 \le i \le s$, and for each $1 \le j \le t$.

Ring Decomposition

Theorem

An ℓ -quasi-cyclic code C of length ℓm over \mathbb{F}_q , is self-dual if and only if

$$\mathcal{C} = \left(\bigoplus_{i=1}^{s} \mathcal{C}_i
ight) \oplus \left(\bigoplus_{j=1}^{t} \left(\mathcal{C}'_j \oplus (\mathcal{C}'_j)^{\perp}
ight)
ight)$$

where, for $1 \leq i \leq s$, C_i is a self-dual code of length ℓ w.r.t. the Hermitian inner product and for $1 \leq j \leq t$, C'_j is a linear code of length ℓ and $(C')^{\perp}$ is its dual w.r.t. the Euclidean inner product.

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes $\circ \circ \circ \circ \circ \circ \circ$

New Codes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Existence of Self-Dual Codes

Let
$$\mathcal{R} = \mathcal{R}(\mathbb{F}_q, m) = \mathbb{F}_q[Y]/(Y^m - 1).$$

Proposition

If $char(\mathbb{F}_q) = 2$, then there exists a self-dual code of length ℓ over \mathcal{R} if and only if $2 \mid \ell$.

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes $\circ\circ\circ\circ\circ\circ$

New Codes

Existence of Self-Dual Codes

Let
$$\mathcal{R} = \mathcal{R}(\mathbb{F}_q, m) = \mathbb{F}_q[Y]/(Y^m - 1).$$

Proposition

If $char(\mathbb{F}_q) = 2$, then there exists a self-dual code of length ℓ over \mathcal{R} if and only if $2 \mid \ell$.

The following lemma helps us to complete the classification of quasi-cyclic self-dual codes.

Lemma

Let C be a binary ℓ -quasi-cyclic self-dual code of length $m\ell$ with m prime. If m does not divide the weight i, then m must divide A_i .

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes $\circ \circ \circ \circ \circ \circ \circ \circ$

New Codes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Binary Cubic Codes

Let q = 2 and m = 3.

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes

New Codes

Binary Cubic Codes

Let q = 2 and m = 3. $Y^3 - 1 = (Y - 1)(Y^2 + Y + 1)$ over \mathbb{F}_2 .

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes $\circ \circ \circ \circ \circ \circ \circ \circ$

New Codes

Binary Cubic Codes

Let q = 2 and m = 3. $Y^3 - 1 = (Y - 1)(Y^2 + Y + 1)$ over \mathbb{F}_2 . Then,

$$\mathcal{R} = rac{\mathbb{F}_2[Y]}{(Y^3-1)} = \mathbb{F}_2 \oplus \mathbb{F}_{2^2}.$$

Quasi-Cyclic Codes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Binary Cubic Codes

Let q = 2 and m = 3. $Y^3 - 1 = (Y - 1)(Y^2 + Y + 1)$ over \mathbb{F}_2 . Then,

$$\mathcal{R} = rac{\mathbb{F}_2[Y]}{(Y^3-1)} = \mathbb{F}_2 \oplus \mathbb{F}_{2^2}.$$

Remark that

Cubic binary codes of length 3ℓ are viewed as codes of length ℓ over the ring $\mathbb{F}_2\times\mathbb{F}_4.$

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes $\circ \circ \circ \circ \circ \circ \circ \circ$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Binary Cubic Codes

Cubic Construction

 $\mathcal{C} \text{ is constructed by } \textit{Cubic Construction as} \\ \mathcal{C} = \{ (x+b \mid x+a \mid x+a+b) \mid x \in \mathcal{C}_1, a+\omega b \in \mathcal{C}_2 \}, \\ \text{where } \omega^2 + \omega + 1 = 0. \\ \end{cases}$

Quasi-Cyclic Codes

Binary Cubic Codes

Cubic Construction

 $\begin{aligned} \mathcal{C} \text{ is constructed by } \textit{Cubic Construction as} \\ \mathcal{C} &= \{ \begin{array}{c|c} (x+b \mid x+a \mid x+a+b \end{array}) \mid x \in \mathcal{C}_1, \ a+\omega b \in \mathcal{C}_2 \}, \\ \text{where } \omega^2 + \omega + 1 = 0. \end{aligned}$

This gives a correspondence between the self-dual ℓ -quasi-cyclic codes C of length 3ℓ over \mathbb{F}_2 and a pair (C_1, C_2) , where C_1 is a self-dual linear code w.r.t. Euclidean inner product over \mathbb{F}_2 of length ℓ and C_2 is a self-dual linear code w.r.t. Hermitian inner product over F_{2^2} of length ℓ .

The Complete Classification

Theorem

Up to permutation equivalence the numbers of cubic self-dual codes of lengths up to 48 are as follows:

There is/are

for $\ell = 2$, unique binary cubic self-dual code of length 6, for $\ell = 4$, 2 binary cubic self-dual codes of length 12, for $\ell = 6$, 3 binary cubic self-dual codes of length 18, for $\ell = 8$, 16 binary cubic self-dual codes of length 24, for $\ell = 10$, 8 binary cubic self-dual codes of length 30, for $\ell = 12$, 13 binary cubic self-dual codes of length 36, for $\ell = 14$, 1569 binary cubic self-dual codes of length 42, for $\ell = 16$, 264 binary cubic self-dual codes of length 48.

Quasi-Cyclic Codes

New Codes

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Construction of cubic self-dual codes of index 18

The shortest length of binary cubic self-dual codes for which the classification is not completed is $\ell = 18$.

Quasi-Cyclic Codes

Construction of cubic self-dual codes of index 18

The shortest length of binary cubic self-dual codes for which the classification is not completed is $\ell = 18$.

For self-dual [54, 27, 10] codes, there are two *weight enumerators*: $W_1 = 1 + (351 - 8\beta)y^{10} + (5031 + 24\beta)y^{12} + \dots \quad 0 \le \beta \le 43$ $W_2 = 1 + (351 - 8\beta)y^{10} + (5543 + 24\beta)y^{12} + \dots \quad 12 \le \beta \le 43$.

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes

New Codes

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Construction of cubic self-dual codes of index 18

Previous results

Before our work, it was known that seven inequivalent codes with W_1 for $\beta = 0, 3, 6, 9, 12, 15, 18$ and six inequivalent codes with W_2 for $\beta = 12, 15, 18, 21, 24, 27$ were found.

Construction of cubic self-dual codes of index 18

Previous results

Before our work, it was known that seven inequivalent codes with W_1 for $\beta = 0, 3, 6, 9, 12, 15, 18$ and six inequivalent codes with W_2 for $\beta = 12, 15, 18, 21, 24, 27$ were found.

Our results

We improve the results by finding eight [54, 27, 10] codes with W_1 for $\beta = 0, 3, 6, 9, 12, 15, 18, 21$ and six [54, 27, 10] codes with W_2 for $\beta = 12, 15, 18, 21, 24, 27$ by taking C_1 's from extremal self-dual binary codes and C_2 's from not extremal self-dual quaternary codes. For W_1 , the value $\beta = 21$ is the new one.

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes

New Codes

Construction of cubic self-dual codes of index 18

Remark

These [54, 27, 10] codes are of Type I 18-quasi-cyclic self-dual codes of length 54 since their binary components C_1 's are of Type I and self-dual with respect to the Euclidean inner product.

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes

New Codes

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Construction of cubic self-dual codes of index 18

Conjecture

Based on computational evidence, we conjecture that there is no other [54, 27, 10] self-dual cubic code over \mathbb{F}_2 .

Quasi-Cyclic Codes

Construction of Quasi-Cyclic Self-Dual Codes

New Codes

Construction of cubic self-dual codes of index 18

Conjecture

Based on computational evidence, we conjecture that there is no other [54, 27, 10] self-dual cubic code over $\mathbb{F}_2.$

Our computational results are listed above:

	Possible values	Found values	Conjecture
W_1	$0 \le eta \le 43$	$eta \in \{0,3,6,9,12,15,18,21\}$	$eta otin \{24, \cdots, 42\}$
W_2	$12 \leq eta \leq 43$	$eta \in \{12, 15, 18, 21, 24, 27\}$	$eta otin \{30, \cdots, 42\}$

ntroduction	Quasi-Cyclic Code	S

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Future Work

This construction will be applied in order to find more binary self-dual codes of larger lengths.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

THANK YOU!

J. Baylis, *Error Correcting Codes A Mathematical Introduction*, Chapman and Hall Mathematics, 1998.

R. E. Blahut, *Theory and Practice of Error Control Codes*, Addison-Wesley Publishing Company, 1984.

A. Bonnecaze, A.D. Bracco, S.T. Dougherty, L.R. Nochefranca, P. Solé, *Cubic self-dual binary codes*, IEEE Trans. Inform. Theory., vol. 49, no. 9, pp. 2253-2259, Sep. 2003.

S. Bouyuklieva, P.R.J. Östergård, *New constructions of optimal self-dual binary codes of length 54*, Des Codes Crypt. vol. 41, pp.101-109, 2006.

S. Bouyuklieva, N. Yankov, J.-L. Kim, *Classification of binary self-dual* [48, 24, 10] *codes with an automorphism of odd prime order*, Finite Fields and Their Appl., vol. 18, no. 6, pp. 1104-1113, 2012.

S. Han, J.-L. Kim, H. Lee and Y. Lee, *Construction of quasi-cyclic self-dual codes*, Finite Fields and Their Appl., vol. 18, no. 3, pp. 613-633, 2012.

R. Hill, *A First Course in Coding Theory*, Clarendon Press, Oxford, 1986.

W.C. Huffman, V. Pless, *Fundamentals of Error-correcting Codes*, Cambridge University Press, Cambridge, 2003.

J.-L. Kim, Y. Lee, *Euclidean and Hermitian self-dual MDS codes over large finite fields*, J. Combin. Theory Ser. A. vol. 105, pp. 79-95, 2004.

R. Lidl, H. Niederreiter, *Finite Fields*, Addison-Wesley Publishing Company, 1983.

S. Ling, P. Solé, *On the algebraic structure of quasi-cyclic codes I, Finite fields* IEEE Trans. Inform. Theory. vol. 47, pp. 2751-2760, 2001.

F.J. MacWilliams, N.J.A. Sloane, *The Theory of Error-Correcting Codes*, Amsterdam, The Netherlands, North-Holland, 1977.

A.Munemasa,

http://math.is.tohoku.ac.jp/~munemasa/research/codes/sd2.htm V. Pless, *A classification of self-orthogonal codes over GF(2)*, Discrete Math., vol. 3, pp. 209-246, 1972.

E. Rains and N.J.A. Sloane, *Self-dual codes*, in *Handbook of Coding Theory*, V.S. Pless and W.C. Huffman, Eds. Amsterdam, The Netherlands: Elsevier, 1998.