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Why Minimize Potential Energy? Electrostatics:

Thomson Problem (1904) -
(“plum pudding” model of an atom)

Find the (most) stable (ground state) energy
configuration (code) of N classical electrons
(Coulomb law) constrained to move on the
sphere S2.

Generalized Thomson Problem (1/r s potentials and log(1/r))

A code C := {x1, . . . ,xN} ⊂ Sn−1 that minimizes Riesz s-energy

Es(C) :=
∑
j 6=k

1
|xj − xk |s

, s > 0, Elog(ωN) :=
∑
j 6=k

log
1

|xj − xk |

is called an optimal s-energy code.
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Why Minimize Potential Energy? Coding:

Tammes Problem (1930)

A Dutch botanist that studied modeling of the
distribution of the orifices in pollen grain
asked the following.

Tammes Problem (Best-Packing, s =∞)

Place N points on the unit sphere so as to
maximize the minimum distance between
any pair of points.

Definition
Codes that maximize the minimum distance are called optimal
(maximal) codes. Hence our choice of terms.
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Why Minimize Potential Energy? Nanotechnology:

Fullerenes (1985) - (Buckyballs)

Vaporizing graphite, Curl, Kroto, Smalley,
Heath, and O’Brian discovered C60
(Chemistry 1996 Nobel prize)

Duality structure: 32 electrons and C60.
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Optimal s-energy codes on S2

Known optimal s-energy codes on S2

• s = log, Smale’s problem, logarithmic points (known for
N = 2− 6, 12);

• s = 1, Thomson Problem (known for N = 2− 6, 12)
• s = −1, Fejes-Toth Problem (known for N = 2− 6, 12)
• s →∞, Tammes Problem (known for N = 1− 12, 13,14, 24)

Limiting case - Best packing

For fixed N, any limit as s →∞ of optimal s-energy codes is an
optimal (maximal) code.

Universally optimal codes

The codes with cardinality N = 2,3,4,6,12 are special (sharp codes)
and minimize large class of potential energies. First "non-sharp" is
N = 5 and very little is rigorously proven.
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Minimal h-energy - preliminaries

• Spherical Code: A finite set C ⊂ Sn−1 with cardinality |C|;
• Let the interaction potential h : [−1,1]→ R ∪ {+∞} be an

absolutely monotone1 function;
• The h-energy of a spherical code C:

E(n,C; h) :=
∑

x,y∈C,y 6=x

h(〈x , y〉), |x−y |2 = 2−2〈x , y〉 = 2(1−t),

where t = 〈x , y〉 denotes Euclidean inner product of x and y .

Problem
Determine

E(n,N; h) := min{E(n,C; h) : |C| = N,C ⊂ Sn−1}

and find (prove) optimal h-energy codes.

1A function f is absolutely monotone on I if f (k)(t) ≥ 0 for t ∈ I and k = 0, 1, 2, . . ..
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Absolutely monotone potentials - examples

• Newton potential: h(t) = (2− 2t)−(n−2)/2 = |x − y |−(n−2);
• Riesz s-potential: h(t) = (2− 2t)−s/2 = |x − y |−s;
• Log potential: h(t) = − log(2− 2t) = − log |x − y |;
• Gaussian potential: h(t) = exp(2t − 2) = exp(−|x − y |2);
• Korevaar potential: h(t) = (1 + r2 − 2rt)−(n−2)/2, 0 < r < 1.

Remark
Even if one ‘knows’ an optimal code, it is usually difficult to prove
optimality–need lower bounds on E(n,N; h).

Delsarte-Yudin linear programming bounds: Find a subpotential f
such that h ≥ f for which we can obtain lower bounds for the minimal
f -energy E(n,N; f ). Usually f is chosen to be appropriate polynomial.
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‘Good’ potentials for lower bounds - Delsarte-Yudin LP

Delsarte-Yudin approach:

Find a potential f such that h ≥ f for which we can obtain lower
bounds for the minimal f -energy E(n,N; f ).

Suppose f : [−1,1]→ R has a Gegenbauer expansion of the form

f (t) =
∞∑

k=0

fk P(n)
k (t), fk ≥ 0 for all k ≥ 1. (1)

f (1) =
∑∞

k=0 fk <∞ =⇒ convergence is absolute and uniform.

Then:

E(n,C; f ) =
∑

x,y∈C

f (〈x , y〉)− f (1)N

=
∞∑

k=0

fk
∑

x,y∈C

P(n)
k (〈x , y〉)− f (1)N

≥ f0N2 − f (1)N = N2
(

f0 −
f (1)

N

)
.



Peter Dragnev, IPFW

Thm (Delsarte-Yudin LP Bound)

Let An,h = {f : f (t) ≤ h(t), t ∈ [−1,1], fk ≥ 0, k = 1,2, . . . }. Then

E(n,N; h) ≥ N2(f0 − f (1)/N), f ∈ An,h. (2)

An N-point spherical code C satisfies E(n,C; h) = N2(f0 − f (1)/N) if
and only if both of the following hold:
(a) f (t) = h(t) for all t ∈ {〈x , y〉 : x 6= y , x , y ∈ C}.
(b) for all k ≥ 1, either fk = 0 or

∑
x,y∈C P(n)

k (〈x , y〉) = 0.
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Thm (Delsarte-Yudin LP Bound)

Let An,h = {f : f (t) ≤ h(t), t ∈ [−1,1], fk ≥ 0, k = 1,2, . . . }. Then

E(n,N; h) ≥ N2(f0 − f (1)/N), f ∈ An,h. (2)

An N-point spherical code C satisfies E(n,C; h) = N2(f0 − f (1)/N) if
and only if both of the following hold:
(a) f (t) = h(t) for all t ∈ {〈x , y〉 : x 6= y , x , y ∈ C}.
(b) for all k ≥ 1, either fk = 0 or

∑
x,y∈C P(n)

k (〈x , y〉) = 0.

Maximizing the lower bound (2) can be written as maximizing the
objective function

F (f0, f1, . . .) := N

(
f0(N − 1)−

∞∑
k=1

fk

)
,

subject to f ∈ An,h.
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Thm (Delsarte-Yudin LP Bound)

Let An,h = {f : f (t) ≤ h(t), t ∈ [−1,1], fk ≥ 0, k = 1,2, . . . }. Then

E(n,N; h) ≥ N2(f0 − f (1)/N), f ∈ An,h. (2)

An N-point spherical code C satisfies E(n,C; h) = N2(f0 − f (1)/N) if
and only if both of the following hold:
(a) f (t) = h(t) for all t ∈ {〈x , y〉 : x 6= y , x , y ∈ C}.
(b) for all k ≥ 1, either fk = 0 or

∑
x,y∈C P(n)

k (〈x , y〉) = 0.

Infinite linear programming is too ambitious, truncate the program

(LP) Maximize Fm(f0, f1, . . . , fm) := N

(
f0(N − 1)−

m∑
k=1

fk

)
,

subject to f ∈ Pm ∩ An,h.

Given n and N we obtain ULB by solving LP for all m ≤ τ(n,N).
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Levenshtein Framework - 1/N-Quadrature Rule

• For every fixed (cardinality) N > D(n,2k − 1)(the DGS bound)
there exist real numbers −1 ≤ α1 < α2 < · · · < αk < 1 and
ρ1, ρ2, . . . , ρk , ρi > 0 for i = 1,2, . . . , k , such that the equality

f0 =
f (1)

N
+

k∑
i=1

ρi f (αi )

holds for every real polynomial f (t) of degree at most 2k − 1.
• The numbers αi , i = 1,2, . . . , k , are the roots of the equation

Pk (t)Pk−1(s)− Pk (s)Pk−1(t) = 0,

where s = αk , Pi (t) = P(n−1)/2,(n−3)/2
i (t) is a Jacobi polynomial.

• In fact, αi , i = 1,2, . . . , k , are the roots of the Levenshtein’s
polynomial f (n,αk )

2k−1 (t).
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Universal Lower Bound (ULB)

ULB Theorem - (BDHSS - Constructive Approximation, 2016)

Let h be a fixed absolutely monotone potential, n and N be fixed, and
τ = τ(n,N) be such that N ∈ [D(n, τ),D(n, τ + 1)). Then the
Levenshtein nodes {αi} provide the bounds

E(n,N,h) ≥ N2
k∑

i=1

ρih(αi ).

The Hermite interpolants at these nodes are the optimal polinomials
which solve the finite LP in the class Pτ ∩ An,h.
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Gauss, Korevaar, and Newton potentials: (4,24)-codes
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Subspace ULB and 1/N-Quadrature Rules

• Recall that An,h is the set of functions f having positive
Gegenbauer coefficients and f ≤ h on [−1,1].

• For a subspace Λ of C([−1,1]) of real-valued functions
continuous on [−1,1], let

W(n,N,Λ; h) := sup
f∈Λ∩An,h

N2(f0 − f (1)/N). (3)

• For a subspace Λ ⊂ C([−1,1]) and N > 1, we say {(αi , ρi )}k
i=1 is

a 1/N-quadrature rule exact for Λ if −1 ≤ αi < 1 and ρi > 0 for
i = 1,2, . . . , k if

f0 = γn

∫ 1

−1
f (t)(1− t2)(n−3)/2dt =

f (1)

N
+

k∑
i=1

ρi f (αi ), (f ∈ Λ).
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Subspace ULB and 1/N-Quadrature Rules

Subspace ULB Theorem [BDHSS, CA - 2016]

Let {(αi , ρi )}k
i=1 be a 1/N-quadrature rule that is exact for a subspace

Λ ⊂ C([−1,1]).
(a) If f ∈ Λ ∩ An,h,

E(n,N; h) ≥ N2
(

f0 −
f (1)

N

)
= N2

k∑
i=1

ρi f (αi ). (4)

(b) We have

W(n,N,Λ; h) ≤ N2
k∑

i=1

ρih(αi ). (5)

If there is some f ∈ Λ ∩ An,h such that f (αi ) = h(αi ) for
i = 1, . . . , k , then equality holds in (5).
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Improvement of ULB and Test Functions

Define test functions (Boyvalenkov, Danev, Boumova - IEEE TIT ‘96)

Qj (n, αk ) :=
1
N

+
k∑

i=1

ρiP
(n)
j (αi ).

ULB Improvement Characterization Theorem (BDHSS, CA - 2016)
The ULB bound

E(n,N,h) ≥ N2
k∑

i=1

ρih(αi )

can be improved by a polynomial from An,h of degree at least 2k if
and only if Qj (n, αk ) < 0 for some j ≥ 2k .

Moreover, if Qj (n, αk ) < 0 for some j ≥ 2k and h is strictly absolutely
monotone, then that bound can be improved by a polynomial from
An,h of degree exactly j .

Furthermore, there is j0(n,N) such that Qj (n, αk ) ≥ 0, j ≥ j0(n,N).



Peter Dragnev, IPFW

Subspace ULB and Test Functions

Subspace ULB Improvement Theorem (BDHSS, CA - 2016)

Let {(αi , ρi )}k
i=1 be a 1/N-quadrature rule that is exact for a subspace

Λ ⊂ C([−1,1]) and such that equality holds in (5), namely

W(n,N,Λ; h) = N2
k∑

i=1

ρih(αi ).

Suppose Λ′ = Λ
⊕

span {P(n)
j : j ∈ I} for some index set I ⊂ N. If

Q(n)
j := 1

N +
∑k

i=1 ρiP
(n)
j (αi ) ≥ 0 for j ∈ I, then

W(n,N,Λ′; h) =W(n,N,Λ; h) = N2
k∑

i=1

ρih(αi ).
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ULB Improvement for (4,24)-codes

The case n = 4, N = 24 is important.
• Kissing numbers in R4 - solved by Musin in 2003 in Math Annals

paper.

• D4 is conjectured to be maximal code but not yet proved.

• D4 is not universally optimal - Cohn, Conway, Elkies, Kumar -
2008.
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Suboptimal LP solutions for m ≤ m(N,n)

Suboptimal LP Solutions Theorem - (BDHSS, CA - 2016)

The linear program (LP) can be solved for any m ≤ τ(n,N) and the
suboptimal solution in the class Pm ∩ An,h is given by the Hermite
interpolants at the Levenshtein nodes determined by N = Lm(n, s).
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Suboptimal LP solutions for N = 24, n = 4, m = 1− 5

f1(t) = .499P0(t) + .229P1(t)
f2(t) = .581P0(t) + .305P1(t) + 0.093P2(t)
f3(t) = .658P0(t) + .395P1(t) + .183P2(t) + 0.069P3(t)
f4(t) = .69P0(t) + .43P1(t) + .23P2(t) + .10P3(t) + 0.027P4(t)
f5(t) = .71P0(t)+.46P1(t)+.26P2(t)+.13P3(t)+0.05P4(t)+0.01P5(t).

We seek optimal LP solution for (4,24)-codes in all P ∩ A4,h.
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ULB Improvement for (4,24)-codes

For n = 4, N = 24 Levenshtein nodes and weights are:

{α1, α2, α3} = {−.817352...,−.257597..., .474950...}
{ρ1, ρ2, ρ3} = {0.138436...,0.433999...,0.385897...},

The test functions for (4,24)-codes are:

Q6 Q7 Q8 Q9 Q10 Q11 Q12

0.0857 0.1600 −0.0239 −0.0204 0.0642 0.0368 0.0598

Motivated by this we define

Λ := span{P(4)
0 , . . . ,P(4)

5 ,P(4)
8 ,P(4)

9 }.
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ULB Improvement for (4,24)-codes - Main Theorem

Theorem

The collection of nodes and weights {(αi , ρi )}4
i=1

{α1, α2, α3, α4} = {−0.86029...,−0.48984...,−0.19572,0.478545...}
{ρ1, ρ2, ρ3, ρ4} = {0.09960...,0.14653...,0.33372...,0.37847...},

define a 1/N-quadrature rule that is exact for Λ. A Hermite-type
interpolant H(t) = H(h; (t − α1)2 . . . (t − α4)2) ∈ Λ ∩ An,h s. t. ,

H(αi ) = h(αi ), H ′(αi ) = h′(αi ), i = 1, . . . ,4

exists, and hence, improved ULB holds

E(4,24; h) ≥ N2
4∑

i=1

ρih(αi ).

Moreover, the new test functions Q(n)
j ≥ 0, j = 0,1, . . . , and hence

H(t) is the optimal LP solution among all polynomials in A4,h.
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LP Optimal Polinomial for (4,24)-code
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Figure : The (4, 24)-code optimal interpolant - Coulomb potential
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Sketch of the proof
Step 1: Find a Quadrature Rule exact on Λ

• Determine {ρi} in terms of {αi} using {1, x , x2, x3} as f in QF

f0 =
f (1)

24
+

4∑
i=1

ρi f (αi ), f ∈ Λ. (6)

• Use Newton method to determine {αi} using P(4)
4 ,P(4)

5 ,P(4)
8 ,P(4)

9 .
Verify (6) holds for {P(4)

i , i = 0, . . . ,5,8,9} and hence on Λ.

Step 2: Find a Hermite-type interpolant

H(t) =
6∑

i=0

βiP
(4)
i (t) + β8P(4)

8 + β9P(4)
9 .

• Hermite interpolation conditions define a non-degenerate linear
system.
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Sketch of the proof

The following lemma plays an important role in the proof of the
positive definiteness of the Hermite-type interpolants described in
Theorem 1.

Lemma

Suppose T := {t1 ≤ · · · ≤ tk} ⊂ [a,b] is a set of nodes and
B := {g1, . . . ,gk} is a linearly independent set of functions on [a,b]

such that the matrix gB = (gi (tj ))k
i,j=1 is invertible (repetition of points

in the multiset yields corresponding derivatives). Let H(t ,h; span(B))
denote the Hermite-type interpolant associated with T . Then

H(t ,h; span(B)) =
k∑

i=1

h[t1, . . . , ti ]H(t , (t−t1) · · · (t−ti−1); span(B)), (7)

where h[t1, . . . , ti ] are the divided differences of h.
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THANK YOU!
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