Universal Lower Bounds on Energy and LP-Extremal Polynomials for (4,24)-Codes

Peter D. Dragnev

Indiana University-Purdue University Fort Wayne

Joint work with: P. Boyvalenkov (BAS); D. Hardin, Ed Saff (Vanderbilt); and M. Stoyanova (Sofia) (BDHSS)

Outline

- Why minimize energy?
- Delsarte-Yudin LP Energy Bound
- Universal Lower Bound for Energy (ULB)
- Subspace ULB
- Improvements of ULB via Test Functions
- $(4,24)$-code significance
- ULB for $(4,24)$-code

Why Minimize Potential Energy? Electrostatics:

Thomson Problem (1904) -
 ("plum pudding" model of an atom)

Find the (most) stable (ground state) energy configuration (code) of N classical electrons (Coulomb law) constrained to move on the sphere \mathbb{S}^{2}.

Generalized Thomson Problem ($1 / r^{s}$ potentials and $\log (1 / r)$)
A code $C:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{S}^{n-1}$ that minimizes Riesz s-energy

$$
E_{s}(C):=\sum_{j \neq k} \frac{1}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{s}}, \quad s>0, \quad E_{\log }\left(\omega_{N}\right):=\sum_{j \neq k} \log \frac{1}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|}
$$

is called an optimal s-energy code.

Why Minimize Potential Energy? Coding:

Tammes Problem (1930)

A Dutch botanist that studied modeling of the distribution of the orifices in pollen grain asked the following.

Tammes Problem (Best-Packing, $s=\infty$)
Place N points on the unit sphere so as to maximize the minimum distance between any pair of points.

Definition

Codes that maximize the minimum distance are called optimal (maximal) codes. Hence our choice of terms.

Why Minimize Potential Energy? Nanotechnology:

Fullerenes (1985) - (Buckyballs)

Vaporizing graphite, Curl, Kroto, Smalley, Heath, and O'Brian discovered C_{60} (Chemistry 1996 Nobel prize)

Duality structure: 32 electrons and C_{60}.

Optimal s-energy codes on \mathbb{S}^{2}

Known optimal s-energy codes on \mathbb{S}^{2}

- $s=\log$, Smale's problem, logarithmic points (known for $N=2-6,12$);
- $s=1$, Thomson Problem (known for $N=2-6,12$)
- $s=-1$, Fejes-Toth Problem (known for $N=2-6,12$)
- $s \rightarrow \infty$, Tammes Problem (known for $N=1-12,13,14,24$)

Limiting case - Best packing

For fixed N, any limit as $s \rightarrow \infty$ of optimal s-energy codes is an optimal (maximal) code.

Universally optimal codes

The codes with cardinality $N=2,3,4,6,12$ are special (sharp codes) and minimize large class of potential energies. First "non-sharp" is $N=5$ and very little is rigorously proven.

Minimal h-energy - preliminaries

- Spherical Code: A finite set $C \subset \mathbb{S}^{n-1}$ with cardinality $|C|$;
- Let the interaction potential $h:[-1,1] \rightarrow \mathbb{R} \cup\{+\infty\}$ be an absolutely monotone ${ }^{1}$ function;
- The h-energy of a spherical code C :

$$
E(n, C ; h):=\sum_{x, y \in C, y \neq x} h(\langle x, y\rangle), \quad|x-y|^{2}=2-2\langle x, y\rangle=2(1-t),
$$

where $t=\langle x, y\rangle$ denotes Euclidean inner product of x and y.

Problem

Determine

$$
\mathcal{E}(n, N ; h):=\min \left\{E(n, C ; h):|C|=N, C \subset \mathbb{S}^{n-1}\right\}
$$

and find (prove) optimal h-energy codes.

[^0]
Absolutely monotone potentials - examples

- Newton potential: $h(t)=(2-2 t)^{-(n-2) / 2}=|x-y|^{-(n-2)}$;
- Riesz s-potential: $h(t)=(2-2 t)^{-s / 2}=|x-y|^{-s}$;
- Log potential: $h(t)=-\log (2-2 t)=-\log |x-y|$;
- Gaussian potential: $h(t)=\exp (2 t-2)=\exp \left(-|x-y|^{2}\right)$;
- Korevaar potential: $h(t)=\left(1+r^{2}-2 r t\right)^{-(n-2) / 2}, \quad 0<r<1$.

Remark

Even if one 'knows' an optimal code, it is usually difficult to prove optimality-need lower bounds on $\mathcal{E}(n, N ; h)$.

Delsarte-Yudin linear programming bounds: Find a subpotential f such that $h \geq f$ for which we can obtain lower bounds for the minimal f-energy $\mathcal{E}(n, N ; f)$. Usually f is chosen to be appropriate polynomial.

'Good' potentials for lower bounds - Delsarte-Yudin LP

Delsarte-Yudin approach:

Find a potential f such that $h \geq f$ for which we can obtain lower bounds for the minimal f-energy $\mathcal{E}(n, N ; f)$.

Suppose $f:[-1,1] \rightarrow \mathbf{R}$ has a Gegenbauer expansion of the form

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} f_{k} P_{k}^{(n)}(t), \quad f_{k} \geq 0 \text { for all } k \geq 1 \tag{1}
\end{equation*}
$$

$f(1)=\sum_{k=0}^{\infty} f_{k}<\infty \Longrightarrow$ convergence is absolute and uniform.
Then:

$$
\begin{aligned}
E(n, C ; f) & =\sum_{x, y \in C} f(\langle x, y\rangle)-f(1) N \\
& =\sum_{k=0}^{\infty} f_{k} \sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle)-f(1) N \\
& \geq f_{0} N^{2}-f(1) N=N^{2}\left(f_{0}-\frac{f(1)}{N}\right) .
\end{aligned}
$$

Thm (Delsarte-Yudin LP Bound)

Let $A_{n, h}=\left\{f: f(t) \leq h(t), t \in[-1,1], f_{k} \geq 0, k=1,2, \ldots\right\}$. Then

$$
\begin{equation*}
\mathcal{E}(n, N ; h) \geq N^{2}\left(f_{0}-f(1) / N\right), \quad f \in A_{n, h} . \tag{2}
\end{equation*}
$$

An N-point spherical code C satisfies $E(n, C ; h)=N^{2}\left(f_{0}-f(1) / N\right)$ if and only if both of the following hold:
(a) $f(t)=h(t)$ for all $t \in\{\langle x, y\rangle: x \neq y, x, y \in C\}$.
(b) for all $k \geq 1$, either $f_{k}=0$ or $\sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle)=0$.

Thm (Delsarte-Yudin LP Bound)

Let $A_{n, h}=\left\{f: f(t) \leq h(t), t \in[-1,1], f_{k} \geq 0, k=1,2, \ldots\right\}$. Then

$$
\begin{equation*}
\mathcal{E}(n, N ; h) \geq N^{2}\left(f_{0}-f(1) / N\right), \quad f \in A_{n, h} . \tag{2}
\end{equation*}
$$

An N-point spherical code C satisfies $E(n, C ; h)=N^{2}\left(f_{0}-f(1) / N\right)$ if and only if both of the following hold:
(a) $f(t)=h(t)$ for all $t \in\{\langle x, y\rangle: x \neq y, x, y \in C\}$.
(b) for all $k \geq 1$, either $f_{k}=0$ or $\sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle)=0$.

Maximizing the lower bound (2) can be written as maximizing the objective function

$$
F\left(f_{0}, f_{1}, \ldots\right):=N\left(f_{0}(N-1)-\sum_{k=1}^{\infty} f_{k}\right),
$$

subject to $f \in A_{n, h}$.

Thm (Delsarte-Yudin LP Bound)

Let $A_{n, h}=\left\{f: f(t) \leq h(t), t \in[-1,1], f_{k} \geq 0, k=1,2, \ldots\right\}$. Then

$$
\begin{equation*}
\mathcal{E}(n, N ; h) \geq N^{2}\left(f_{0}-f(1) / N\right), \quad f \in A_{n, h} . \tag{2}
\end{equation*}
$$

An N-point spherical code C satisfies $E(n, C ; h)=N^{2}\left(f_{0}-f(1) / N\right)$ if and only if both of the following hold:
(a) $f(t)=h(t)$ for all $t \in\{\langle x, y\rangle: x \neq y, x, y \in C\}$.
(b) for all $k \geq 1$, either $f_{k}=0$ or $\sum_{x, y \in C} P_{k}^{(n)}(\langle x, y\rangle)=0$.

Infinite linear programming is too ambitious, truncate the program
$(L P) \quad$ Maximize $F_{m}\left(f_{0}, f_{1}, \ldots, f_{m}\right):=N\left(f_{0}(N-1)-\sum_{k=1}^{m} f_{k}\right)$,
subject to $f \in \mathcal{P}_{m} \cap A_{n, h}$.
Given n and N we obtain ULB by solving LP for all $m \leq \tau(n, N)$.

Levenshtein Framework - 1/N-Quadrature Rule

- For every fixed (cardinality) $N>D(n, 2 k-1)$ (the DGS bound) there exist real numbers $-1 \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{k}<1$ and $\rho_{1}, \rho_{2}, \ldots, \rho_{k}, \rho_{i}>0$ for $i=1,2, \ldots, k$, such that the equality

$$
f_{0}=\frac{f(1)}{N}+\sum_{i=1}^{k} \rho_{i} f\left(\alpha_{i}\right)
$$

holds for every real polynomial $f(t)$ of degree at most $2 k-1$.

- The numbers $\alpha_{i}, i=1,2, \ldots, k$, are the roots of the equation

$$
P_{k}(t) P_{k-1}(s)-P_{k}(s) P_{k-1}(t)=0,
$$

where $s=\alpha_{k}, P_{i}(t)=P_{i}^{(n-1) / 2,(n-3) / 2}(t)$ is a Jacobi polynomial.

- In fact, $\alpha_{i}, i=1,2, \ldots, k$, are the roots of the Levenshtein's polynomial $f_{2 k-1}^{\left(n, \alpha_{k}\right)}(t)$.

Universal Lower Bound (ULB)

ULB Theorem - (BDHSS - Constructive Approximation, 2016)

Let h be a fixed absolutely monotone potential, n and N be fixed, and $\tau=\tau(n, N)$ be such that $N \in[D(n, \tau), D(n, \tau+1))$. Then the Levenshtein nodes $\left\{\alpha_{i}\right\}$ provide the bounds

$$
\mathcal{E}(n, N, h) \geq N^{2} \sum_{i=1}^{k} \rho_{i} h\left(\alpha_{i}\right) .
$$

The Hermite interpolants at these nodes are the optimal polinomials which solve the finite LP in the class $\mathcal{P}_{\tau} \cap A_{n, h}$.

Gauss, Korevaar, and Newton potentials: $(4,24)$-codes

Subspace ULB and 1/N-Quadrature Rules

- Recall that $A_{n, h}$ is the set of functions f having positive Gegenbauer coefficients and $f \leq h$ on $[-1,1]$.
- For a subspace \wedge of $C([-1,1])$ of real-valued functions continuous on [$-1,1$], let

$$
\begin{equation*}
\mathcal{W}(n, N, \Lambda ; h):=\sup _{f \in \Lambda \cap A_{n, h}} N^{2}\left(f_{0}-f(1) / N\right) . \tag{3}
\end{equation*}
$$

- For a subspace $\Lambda \subset C([-1,1])$ and $N>1$, we say $\left\{\left(\alpha_{i}, \rho_{i}\right)\right\}_{i=1}^{k}$ is a $1 / N$-quadrature rule exact for Λ if $-1 \leq \alpha_{i}<1$ and $\rho_{i}>0$ for $i=1,2, \ldots, k$ if

$$
f_{0}=\gamma_{n} \int_{-1}^{1} f(t)\left(1-t^{2}\right)^{(n-3) / 2} d t=\frac{f(1)}{N}+\sum_{i=1}^{k} \rho_{i} f\left(\alpha_{i}\right), \quad(f \in \Lambda) .
$$

Subspace ULB and 1/N-Quadrature Rules

Subspace ULB Theorem [BDHSS, CA - 2016]

Let $\left\{\left(\alpha_{i}, \rho_{i}\right)\right\}_{i=1}^{k}$ be a $1 / N$-quadrature rule that is exact for a subspace $\Lambda \subset C([-1,1])$.
(a) If $f \in \Lambda \cap A_{n, h}$,

$$
\begin{equation*}
\mathcal{E}(n, N ; h) \geq N^{2}\left(f_{0}-\frac{f(1)}{N}\right)=N^{2} \sum_{i=1}^{k} \rho_{i} f\left(\alpha_{i}\right) . \tag{4}
\end{equation*}
$$

(b) We have

$$
\begin{equation*}
\mathcal{W}(n, N, \Lambda ; h) \leq N^{2} \sum_{i=1}^{k} \rho_{i} h\left(\alpha_{i}\right) . \tag{5}
\end{equation*}
$$

If there is some $f \in \Lambda \cap A_{n, h}$ such that $f\left(\alpha_{i}\right)=h\left(\alpha_{i}\right)$ for $i=1, \ldots, k$, then equality holds in (5).

Improvement of ULB and Test Functions

Define test functions (Boyvalenkov, Danev, Boumova - IEEE TIT ‘96)

$$
Q_{j}\left(n, \alpha_{k}\right):=\frac{1}{N}+\sum_{i=1}^{k} \rho_{i} P_{j}^{(n)}\left(\alpha_{i}\right)
$$

ULB Improvement Characterization Theorem (BDHSS, CA - 2016)

The ULB bound

$$
\mathcal{E}(n, N, h) \geq N^{2} \sum_{i=1}^{k} \rho_{i} h\left(\alpha_{i}\right)
$$

can be improved by a polynomial from $A_{n, h}$ of degree at least $2 k$ if and only if $Q_{j}\left(n, \alpha_{k}\right)<0$ for some $j \geq 2 k$.

Moreover, if $Q_{j}\left(n, \alpha_{k}\right)<0$ for some $j \geq 2 k$ and h is strictly absolutely monotone, then that bound can be improved by a polynomial from $A_{n, h}$ of degree exactly j.

Furthermore, there is $j_{0}(n, N)$ such that $Q_{j}\left(n, \alpha_{k}\right) \geq 0, j \geq j_{0}(n, N)$.

Subspace ULB and Test Functions

Subspace ULB Improvement Theorem (BDHSS, CA - 2016)

Let $\left\{\left(\alpha_{i}, \rho_{i}\right)\right\}_{i=1}^{k}$ be a $1 / N$-quadrature rule that is exact for a subspace $\Lambda \subset C([-1,1])$ and such that equality holds in (5), namely

$$
\mathcal{W}(n, N, \Lambda ; h)=N^{2} \sum_{i=1}^{k} \rho_{i} h\left(\alpha_{i}\right)
$$

Suppose $\Lambda^{\prime}=\Lambda \bigoplus$ span $\left\{P_{j}^{(n)}: j \in \mathcal{I}\right\}$ for some index set $\mathcal{I} \subset \mathbb{N}$. If $Q_{j}^{(n)}:=\frac{1}{N}+\sum_{i=1}^{k} \rho_{i} P_{j}^{(n)}\left(\alpha_{i}\right) \geq 0$ for $j \in \mathcal{I}$, then

$$
\mathcal{W}\left(n, N, \Lambda^{\prime} ; h\right)=\mathcal{W}(n, N, \Lambda ; h)=N^{2} \sum_{i=1}^{k} \rho_{i} h\left(\alpha_{i}\right) .
$$

ULB Improvement for (4, 24)-codes

The case $n=4, N=24$ is important.

- Kissing numbers in \mathbb{R}^{4} - solved by Musin in 2003 in Math Annals paper.
- D_{4} is conjectured to be maximal code but not yet proved.
- D_{4} is not universally optimal - Cohn, Conway, Elkies, Kumar 2008.

Suboptimal LP solutions for $m \leq m(N, n)$

Suboptimal LP Solutions Theorem - (BDHSS, CA - 2016)

The linear program (LP) can be solved for any $m \leq \tau(n, N)$ and the suboptimal solution in the class $\mathcal{P}_{m} \cap A_{n, h}$ is given by the Hermite interpolants at the Levenshtein nodes determined by $N=L_{m}(n, s)$.

Suboptimal LP solutions for $N=24, n=4, m=1-5$


```
\(f_{1}(t)=.499 P_{0}(t)+.229 P_{1}(t)\)
\(f_{2}(t)=.581 P_{0}(t)+.305 P_{1}(t)+0.093 P_{2}(t)\)
\(f_{3}(t)=.658 P_{0}(t)+.395 P_{1}(t)+.183 P_{2}(t)+0.069 P_{3}(t)\)
\(f_{4}(t)=.69 P_{0}(t)+.43 P_{1}(t)+.23 P_{2}(t)+.10 P_{3}(t)+0.027 P_{4}(t)\)
\(f_{5}(t)=.71 P_{0}(t)+.46 P_{1}(t)+.26 P_{2}(t)+.13 P_{3}(t)+0.05 P_{4}(t)+0.01 P_{5}(t)\).
```

We seek optimal LP solution for $(4,24)$-codes in all $\mathcal{P} \cap \mathcal{A}_{4, h}$.

ULB Improvement for $(4,24)$-codes

For $n=4, N=24$ Levenshtein nodes and weights are:

$$
\begin{aligned}
\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\} & =\{-.817352 \ldots,-.257597 \ldots, .474950 \ldots\} \\
\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\} & =\{0.138436 \ldots, 0.433999 \ldots, 0.385897 \ldots\},
\end{aligned}
$$

The test functions for $(4,24)$-codes are:

Q_{6}	Q_{7}	Q_{8}	Q_{9}	Q_{10}	Q_{11}	Q_{12}
0.0857	0.1600	-0.0239	-0.0204	0.0642	0.0368	0.0598

Motivated by this we define

$$
\Lambda:=\operatorname{span}\left\{P_{0}^{(4)}, \ldots, P_{5}^{(4)}, P_{8}^{(4)}, P_{9}^{(4)}\right\} .
$$

ULB Improvement for $(4,24)$-codes - Main Theorem

Theorem

The collection of nodes and weights $\left\{\left(\alpha_{i}, \rho_{i}\right)\right\}_{i=1}^{4}$

$$
\begin{aligned}
\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} & =\{-0.86029 \ldots,-0.48984 \ldots,-0.19572,0.478545 \ldots\} \\
\left\{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right\} & =\{0.09960 \ldots, 0.14653 \ldots, 0.33372 \ldots, 0.37847 \ldots\}
\end{aligned}
$$

define a $1 / N$-quadrature rule that is exact for \wedge. A Hermite-type interpolant $H(t)=H\left(h ;\left(t-\alpha_{1}\right)^{2} \ldots\left(t-\alpha_{4}\right)^{2}\right) \in \Lambda \cap A_{n, h}$ s.t. ,

$$
H\left(\alpha_{i}\right)=h\left(\alpha_{i}\right), \quad H^{\prime}\left(\alpha_{i}\right)=h^{\prime}\left(\alpha_{i}\right), \quad i=1, \ldots, 4
$$

exists, and hence, improved ULB holds

$$
\mathcal{E}(4,24 ; h) \geq N^{2} \sum_{i=1}^{4} \rho_{i} h\left(\alpha_{i}\right) .
$$

Moreover, the new test functions $Q_{j}^{(n)} \geq 0, j=0,1, \ldots$, and hence $H(t)$ is the optimal LP solution among all polynomials in $\mathcal{A}_{4, h}$.

LP Optimal Polinomial for (4, 24)-code

Figure : The $(4,24)$-code optimal interpolant - Coulomb potential

Sketch of the proof

Step 1: Find a Quadrature Rule exact on \wedge

- Determine $\left\{\rho_{i}\right\}$ in terms of $\left\{\alpha_{i}\right\}$ using $\left\{1, x, x^{2}, x^{3}\right\}$ as f in QF

$$
\begin{equation*}
f_{0}=\frac{f(1)}{24}+\sum_{i=1}^{4} \rho_{i} f\left(\alpha_{i}\right), \quad f \in \Lambda . \tag{6}
\end{equation*}
$$

- Use Newton method to determine $\left\{\alpha_{i}\right\}$ using $P_{4}^{(4)}, P_{5}^{(4)}, P_{8}^{(4)}, P_{9}^{(4)}$. Verify (6) holds for $\left\{P_{i}^{(4)}, i=0, \ldots, 5,8,9\right\}$ and hence on \wedge.

Step 2: Find a Hermite-type interpolant

$$
H(t)=\sum_{i=0}^{6} \beta_{i} P_{i}^{(4)}(t)+\beta_{8} P_{8}^{(4)}+\beta_{9} P_{9}^{(4)}
$$

- Hermite interpolation conditions define a non-degenerate linear system.

Sketch of the proof

The following lemma plays an important role in the proof of the positive definiteness of the Hermite-type interpolants described in Theorem 1.

Lemma

Suppose $T:=\left\{t_{1} \leq \cdots \leq t_{k}\right\} \subset[a, b]$ is a set of nodes and $B:=\left\{g_{1}, \ldots, g_{k}\right\}$ is a linearly independent set of functions on $[a, b]$ such that the matrix $g_{B}=\left(g_{i}\left(t_{j}\right)\right)_{i, j=1}^{k}$ is invertible (repetition of points in the multiset yields corresponding derivatives). Let $H(t, h ; \operatorname{span}(B))$ denote the Hermite-type interpolant associated with T. Then

$$
\begin{equation*}
H(t, h ; \operatorname{span}(B))=\sum_{i=1}^{k} h\left[t_{1}, \ldots, t_{i}\right] H\left(t,\left(t-t_{1}\right) \cdots\left(t-t_{i-1}\right) ; \operatorname{span}(B)\right), \tag{7}
\end{equation*}
$$

where $h\left[t_{1}, \ldots, t_{i}\right]$ are the divided differences of h.

THANK YOU!

[^0]: ${ }^{1}$ A function f is absolutely monotone on I if $f(k)(t) \geq 0$ for $t \in I$ and $k=0,1,2, \ldots$..

