On maximal antipodal spherical codes with few distances

Peter Boyvalenkov
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Joint work with:
Konstantin Delchev, Institute of Mathematics and Informatics, Bulgarian
Academy of Sciences

Albena, June 23, 2016

Contents

- Antipodal spherical codes
- Linear programming bounds on the size of antipodal codes
- Antipodal codes with inner products $\pm s$ (equiangular lines)
- Antipodal codes with inner products 0 and $\pm s$
- Antipodal codes with inner products $\pm s_{1}$ and $\pm s_{2}$

Antipodal spherical codes

- $C \subset \mathbb{S}^{n-1},|C|<\infty$, - spherical code
- If $C=-C$, then C is called antipodal
- Problem: Given dimension n, find the maximum possible cardinality of an antipodal code which under certain restrictions (for example, all inner products in $\{-1\} \cup[-s, s]$; or in $\{-1, \pm s\}$, etc.)
- Distance distribution with respect to $x \in C$ - the system $\left(A_{t}(x): t \in[-1,1), \exists y \in C,\langle x, y\rangle=t\right)$, where

$$
A_{t}(x)=|\{y \in C:\langle x, y\rangle=t\}|
$$

Obvious properties: $A_{-1}(x)=1$ for every $x \in C, A_{t}(x)=A_{-t}(x)$ for every $t \in(-1,1)$ and every $x \in C$

LP bounds (1)

- For fixed dimension n, the Gegenbauer polynomials are defined by $P_{0}^{(n)}=1, P_{1}^{(n)}=t$ and the three-term recurrence relation

$$
(i+n-2) P_{i+1}^{(n)}(t)=(2 i+n-2) t P_{i}^{(n)}(t)-i P_{i-1}^{(n)}(t)
$$

for $i \geq 1$

- If $f(t) \in \mathbb{R}[t]$ is a real polynomial of degree k, then $f(t)$ can be uniquely expanded in terms of the Gegenbauer polynomials as $f(t)=\sum_{i=0}^{k} f_{i} P_{i}^{(n)}(t)$

LP bounds (2)

- We use the identity

$$
\begin{equation*}
|C| f(1)+\sum_{x, y \in C, x \neq y} f(\langle x, y\rangle)=|C|^{2} f_{0}+\sum_{i=1}^{k} f_{i} M_{i} \tag{1}
\end{equation*}
$$

as a source of estimations by polynomial techniques. Here $M_{i}:=\frac{1}{r_{i}} \sum_{j=1}^{r_{i}}\left(\sum_{x \in C} Y_{i j}(x)\right)^{2}$ is the i-th moment of C, the functions $\left\{Y_{i, j}, j=1,2, \ldots, r_{i}\right\}$, are the so-called spherical harmonics of degree i, and $r_{i}=\binom{n+i-3}{n-2} \frac{2 i+n-2}{i}$

- C is antipodal iff $M_{i}=0$ for every odd i. Further, a code C is a spherical τ-design if and only if its moments satisfy $M_{i}=0$ for every positive integer $i \leq \tau$

Antipodal codes with inner products -1 and $\pm s$ (1)

- $C \subset \mathbb{S}^{n-1}$ - antipodal, $M=|C|, C$ has inner products -1 and $\pm s$ (i.e C defines a system equiangular lines). Well known - if $M>2 n$ then $s=\frac{1}{2 \ell+1}$, where ℓ is a positive integer. Denote by $M_{2 \ell+1}(n)$ the maximum possible size of such C.
LP bounds for equiangular lines were obtained by Barg and Yu (arxiv.org/abs/1311.3219). A. Barg, W.-H. Yu, New bounds on equiangular lines, in Discrete Geometry and Algebraic Combinatorics, A. Barg and O. Musin, eds., (Contemporary Mathematics, vol. 625), Amer. Math. Soc., Providence, RI, 2014, 111-121.

Theorem

(Barg, $Y u$) If $P_{2 k}^{(n)}\left(\frac{1}{2 \ell+1}\right)<0$, then $M_{2 \ell+1}(n) \leq 2-\frac{2}{P_{2 k}^{(n)}\left(\frac{1}{2 \ell+1}\right)}$.

$$
\text { Proof. Set } f(t)=P_{2 k}^{(n)}(t) \text { in (1). }
$$

Antipodal codes with inner products -1 and $\pm s$ (2)

- For $k=1$ we have $P_{2}^{(n)}(t)=\frac{n t^{2}-1}{n-1}$ and therefore

$$
M_{2 \ell+1}(n) \leq \frac{8 n \ell(\ell+1)}{(2 \ell+1)^{2}-n}
$$

(this is usually called relative bound) provided $n<(2 \ell+1)^{2}$.

- For $k=2$ we have $P_{4}^{(n)}(t)=\frac{(n+2)(n+4) t^{4}-6(n+2) t^{2}+3}{n^{2}-1}$ and therefore

$$
\begin{equation*}
M_{2 \ell+1}(n) \leq \frac{2(n-2)\left((2 \ell+1)^{4}(n+2)+6(2 \ell+1)^{2}-n-4\right)}{6(2 \ell+1)^{2}(n+2)-3(2 \ell+1)^{4}-(n+2)(n+4)} \tag{2}
\end{equation*}
$$

provided $6(2 \ell+1)^{2}(n+2)-3(2 \ell+1)^{4}-(n+2)(n+4)>0$. The bound (2) is better than the relative bound for $n \geq 96$ and for every ℓ.

Generalizations?

- Free the inner products - consider codes with two possible inner products a and b (two-distance sets on \mathbb{S}^{n-1}).

1. A. Barg, W-H. Yu, New upper bound for spherical two-distance sets, Experimental Math., 22, 2013, 187—194. arXiv:1204.5268 2. A. Barg, A. Glazyrin, K. Okoudjou, W-H. Yu, Finite two-distance tight frames, Linear Algebra and its Application, 474, 2015, 163-175. arXiv:1402.3521

- Allow more inner products - this talk

Antipodal codes with inner products $-1,0$ and $\pm s$ (1)

- $C \subset \mathbb{S}^{n-1}$ - antipodal, $M=|C|$, inner products $-1,0$ and $\pm s$, where $0<s<1$.

Theorem

If $s^{2}<\frac{3}{n+2}$, then

$$
\begin{equation*}
M \leq \frac{2 n(n+2)\left(1-s^{2}\right)}{3-s^{2}(n+2)} \tag{3}
\end{equation*}
$$

$$
\text { Proof. Set } f(t)=t^{2}\left(t^{2}-s^{2}\right) \text { in (1). }
$$

- If (3) is attained, then $M_{2}=M_{4}=0$, i.e. C is a spherical 5 -design.

Then we compute the distance distribution $A_{s}(x)=A_{s}=\frac{M-2 n}{2 n s^{2}}$,

$$
A_{0}(x)=A_{0}=M-2-2 A_{s}=\frac{M\left(n s^{2}-1\right)+n\left(1-2 s^{2}\right)}{n s^{2}}
$$

Antipodal codes with inner products $-1,0$ and $\pm s$ (2)

We consider a derived code of C to obtain a Lloyd-type theorem.

Theorem

If C attains the bound (3) then s is rational.
Proof. Some algebraic manipulations.

Theorem

If C is a spherical 3-design, $k \geq 2$ and $P_{2 k}^{(n)}(s)+\left(n s^{2}-1\right) P_{2 k}^{(n)}(0)<0$, then

$$
\begin{equation*}
M \leq \frac{n\left(2 n s+\left(1-2 s^{2}\right) P_{2 k}^{(n)}(0)-P_{2 k}^{(n)}(s)\right)}{\left|P_{2 k}^{(n)}(s)+\left(n s^{2}-1\right) P_{2 k}^{(n)}(0)\right|} . \tag{4}
\end{equation*}
$$

Proof. We set $f(t)=P_{2 k}^{(n)}(t)$ in (1).

Antipodal codes with inner products $-1, \pm s_{1}$ and $\pm s_{2}$ (1)

- $C \subset \mathbb{S}^{n-1}$ - antipodal, $M=|C|$, inner products $-1, \pm s_{1}$ and $\pm s_{2}$, where $0<s_{1}<s_{2}<1$. Again, we first derive the analog of the relative bound.

Theorem

If $s_{1}^{2} s_{2}^{2}+\frac{3-(n+2)\left(s_{1}^{2}+s_{2}^{2}\right)}{n(n+2)}>0$ and $6-(n+4)\left(s_{1}^{2}+s_{2}^{2}\right)>0$, then

$$
\begin{equation*}
M \leq \frac{n(n+2)\left(1-s_{1}^{2}\right)\left(1-s_{2}^{2}\right)}{n(n+2) s_{1}^{2} s_{2}^{2}-(n+2)\left(s_{1}^{2}+s_{2}^{2}\right)+3} \tag{5}
\end{equation*}
$$

Proof. Set $f(t)=\left(t^{2}-s_{1}^{2}\right)\left(t^{2}-s_{2}^{2}\right)$ in (1).
If (5) is attained, then C must be a spherical 5 -design. Therefore

$$
A_{s_{1}}=\frac{M-2 n-n s_{1}^{2}(M-2)}{2 n\left(s_{1}^{2}-s_{2}^{2}\right)}, \quad A_{s_{2}}=\frac{M-2 n-n s_{2}^{2}(M-2)}{2 n\left(s_{1}^{2}-s_{2}^{2}\right)} .
$$

Antipodal codes with inner products $-1, \pm s_{1}$ and $\pm s_{2}$ (2)

- The investigation of the derived codes imply, similarly to the previous case, the following assertion.

Theorem

If C attains the bound (5) then s_{1} are simultaneously rational or simultaneously irrational.

Proof. By calculation of the distance distribution of the derived codes $C_{s_{1}}(x)$ and $C_{s_{2}}(x)$.

Antipodal codes with inner products $-1, \pm s_{1}$ and $\pm s_{2}$ (3)

- Analog of Theorems 1 and 4 follows from $M_{2 k} \geq 0$.

Theorem

If C is a spherical 5-design, $k \geq 2$ and
$\left(1-n s_{1}^{2}\right) P_{2 k}^{(n)}\left(s_{1}\right)+\left(1-n s_{2}^{2}\right) \bar{P}_{2 k}^{(n)}\left(s_{2}\right)<0$, then

$$
\begin{equation*}
M \leq \frac{\left.2 n\left(\left(1-s_{1}^{2}\right) P_{2 k}^{(n)}\left(s_{1}\right)+\left(1-s_{2}^{2}\right) P_{2 k}^{(n)}\left(s_{2}\right)+s_{2}^{2}-s_{1}^{2}\right)\right)}{\left|\left(1-n s_{1}^{2}\right) P_{2 k}^{(n)}\left(s_{1}\right)+\left(1-n s_{2}^{2}\right) P_{2 k}^{(n)}\left(s_{2}\right)\right|} \tag{6}
\end{equation*}
$$

Proof. Set $f(t)=P_{2 k}^{(n)}(t)$ in (1).

Thank you for your attention!

