Colength of *-Polynomial Identities of Simple *-Algebras

Silvia Boumova

ACCT, Albena, June 18 - 24, 2016

Introduction

- Let F be a field of characteristic 0;
- Let A be associative algebra over F;
- A function *: A → A is said to be an *involution* if * is an automorphism of the additive group of A such that (ab)* = b*a* and (a*)* = a for all a, b ∈ A.
- An example of such a map is the transpose in the algebra M_n(F) of n × n matrices over the field F.

- ▶ Let (A, *) be a unitary algebra with involution *;
- Involution of the first kind: the restriction of * on F is the identical map
- Involution of the second kind: otherwise * (the restriction of * on F is *);
- ► The algebra (A, *) is said to be *-simple if A² ≠ 0 and it has no nontrivial *-invariant ideals.

- ► The opposite algebra of A, denoted by A^{op}, is the algebra that has the same elements as A, the same addition as A, and multiplication given by a ∘ b = ba, where ba is a product in A.
- It is easy to check that (A^{op})^{op} = A, A ≅ B if and only if A^{op} ≅ B^{op}.
- The algebra A ⊕ A^{op} has the exchange involution defined by (a, b)* = (b, a).

化原因 化原因

Theorem (Rowen)

Let A be a *-simple finite dimensional associative algebra over an algebraically closed field. Then either A is simple as an algebra or A is of the form $A = B \oplus B^{\text{op}}$, where B is a simple algebra.

- Let the field F be an algebraically closed field;
- ► Then the *-simple finite dimension algebras are:
 - $(M_n(F), t)$ with transpose;
 - $(M_n(F), s)$ symplectic involution (for even n);
 - $M_n(F) \oplus M_n(F)^{op}$ with exchange involution.

- ► Drensky and Giambruno have obtained the exact values of the cocharacters, codimensions and the Hilbert series of the polynomial identities of the *-simple algebras (M₂(F), t) and (M₂(F), s).
- ► The subject of our study is the algebra M₂(F) ⊕ M₂(F)^{op} with the exchange involution.
- ► We obtain the sequence of colengths of its *-identities in the case when F is of characteristic zero.

- (A, *) over field F, char(F) = 0
- The free associative algebra with involution F ⟨X, *⟩ is the free associative algebra on the set of free generators X ∪ X* where X = {x₁, x₂, ...} and X* = {x₁^{*}, x₂^{*}, ...} and involution that extends the map x_i ^{*}→ x_i and x_i^{*} → x_i.
- A polynomial $f(X, X^*) \in F\langle X, * \rangle$ is a *-polynomial identity for the algebra (A, *) if $f(a_1, \ldots, a_n; a_1^*, \ldots, a_n^*) = 0$ for all $a_i \in A$.
- We denote by T(A, ∗) the ideal of all ∗-polynomial identities of (A, ∗).

- Let us denote the sets of symmetric and skew elements of A by A⁺ = {a ∈ A | a^{*} = a} and A⁻ = {a ∈ A | a^{*} = −a}, respectively.
- ► It is more convenient to change the variables x_i, x_i^{*} by y_i = ½(x_i + x_i^{*}), z_i = ½(x_i - x_i^{*}) are the symmetric and skew variables, respectively.
- Then F⟨X, *⟩ = F⟨Y, Z, *⟩ where Y_p = {y₁,..., y_p} is a set of symmetric variables y_i ∈ F⟨Y, Z⟩, and Z_q = {z₁,..., z_q} is a set of skew variables z_i ∈ F⟨Y, Z⟩.
- Consequently, $f(Y, Z) \in T(A, *)$ if and only if the polynomial $f(y_1, \ldots, y_p, z_1, \ldots, z_q)$ is such that $f(b_1, \ldots, b_p, c_1, \ldots, c_q) = 0$ for all $b_i \in A^+$, $i = 1, \ldots, p$ and $c_j \in A^-$, $j = 1, \ldots, q$.

イロト 不得 トイヨト イヨト 二日

- ► The factor algebra F(A, *) = F⟨Y, Z, *⟩/T(A, *) is the relatively free algebra in the variety of algebras with involution generated by (A, *).
- ▶ We denote by $F_{p,q}(A, *)$ the subalgebra of F(A, *) generated by $Y_p = \{y_1, \ldots, y_p\}$ and $Z_q = \{z_1, \ldots, z_q\}$ and assume that by $F_m(A, *) = F_{m,m}(A, *)$.

伺い イラト イラト

► The Hilbert series of F_{p,q}(A, *) is defined as a formal power series

$$H(A, *, y_1, \dots, y_p, z_1, \dots, z_q) = \sum_{(a,b)} \dim F_{p,q}^{(a,b)} y_1^{a_1} \dots y_p^{a_p} z_1^{b_1} \dots z_q^{b_q}$$

or if
$$Y_m^a = (y_1^{a_1} \dots y_p^{a_p})$$
 and $Z_m^b = (z_1^{b_1} \dots z_q^{b_q})$ then
$$H(A, *, Y_p, Z_q) = \sum_{(a,b)} \dim F_{p,q}^{(a,b)} Y_p^a Z_q^b$$

・ロト ・回ト ・ヨト ・ヨト

э

► For ordinary polynomial identities one of the most important numerical invariants of the polynomial identities of A is the S_n-cocharacter sequence

$$\chi_n(A) = \sum_{\lambda \vdash n} m_\lambda(A) \chi_\lambda, \quad n = 0, 1, 2, \dots,$$

where $\lambda = (\lambda_1, \dots, \lambda_n)$ is a partition of *n* and χ_{λ} is the corresponding irreducible character of the symmetric group S_n ;

The n-th cocharacter

$$\chi_n(A) = \chi_{S_n}(P_n/(T(A) \cap P_n))$$

is equal to the character of the representation of S_n acting on the vector subspace $P_n \subset K\langle X \rangle$ of the multilinear polynomials of degree *n* modulo the polynomial identities of *A*.

BA 4 BA

- For *-polynomial identities one considers the characters of the wreath product Z₂ ≥ S_n where Z₂ = {1, *} is the multiplicative group of order 2, and S_n (Giambruno and Regev).
- The wreath product is defined by

$$\mathbb{Z}_2 \wr S_n = \{(a_1, \ldots, a_n; \sigma) | a_i \in \mathbb{Z}_2, \sigma \in S_n\}$$

with multiplication given by

$$(a_1,\ldots,a_n;\sigma)(b_1,\ldots,b_n;\tau)=(a_1b_{\sigma^{-1}(1)},\ldots,a_nb_{\sigma^{-1}(n)};\sigma\tau).$$

Let us denote by χ_{λ,μ} the irreducible Z₂ ≥ S_n-character associated with the pair of partitions (λ, μ).

The Z₂ ≥ S_n-module structure of the set of multilinear polynomilas in Y and Z (namely P_n(A, *)) and the GL_m × GL_m-module structure of F_m(A, *) are related by the following results given by Giambruno

Theorem

lf

$$\chi_n(A,*) = \sum_{|\lambda|+|\mu|=n} m_{\lambda,\mu}\chi_{\lambda,\mu},$$

$$H(A,*,Y_m,Z_m) = \sum_{n\geq 0} \sum_{|\lambda|+|\mu|=n} b_{\lambda,\mu} S_{\lambda}(Y_m) S_{\mu}(Z_m),$$

then $m_{\lambda,\mu} = b_{\lambda,\mu}$ for all λ, μ , where $S_{\lambda}(Y_m)$ and $S_{\mu}(Z_m)$ are the Schur functions indexed by λ and μ , respectively.

Schur functions

$$S_{\lambda}(X) = rac{V(\lambda + \delta, X)}{V(\lambda, X)},$$

where $\lambda = (\lambda_1, \dots, \lambda_d), \ \delta = (d-1, d-2, \dots, 2, 1, 0)$ and $\mu = (\mu_1, \dots, \mu_d)$

$$V(\mu, X) = \begin{vmatrix} x_1^{\mu_1} & x_2^{\mu_1} & \dots & x_d^{\mu_1} \\ x_1^{\mu_2} & x_2^{\mu_2} & \dots & x_d^{\mu_2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{\mu_d} & x_2^{\mu_d} & \dots & x_d^{\mu_d} \end{vmatrix}$$

* E > * E >

- In the *-case one considers the so-called Y-proper polynomial identities. They are the *-identities in which all symmetric variables participate in commutators only (Drensky, Giambruno).
- ► The Hilbert series of the relatively free algebra and its proper elements (B_m(A, *)) are related by

$$H(F_m(A,*), Y_p, Z_q) = H(B_m(A,*), Y_p, Z_q) \prod_{i=1}^m \frac{1}{1-y_i}$$

4 B 6 4 B 6

Sequence of colengths in the *-case is

$$l_n(A,*) = \sum_{k=0}^n l_{k,n-k}(A,*)$$

where

$$l_{k,n-k}(A,*) = \sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda\mu}, \ n = 1, 2, \dots,$$

i.e. the sequence of lengths of the modules $P_n(A, *)$.

▶ Drensky and Giambruno have obtained the Hilbert series for the proper elements B_{p,q} for algebra M₂ ⊕ M₂^{op}, i.e

$$\begin{aligned} H(B_{p,q}, T_p, U_q) &= \\ \prod_{i=1}^p \frac{1}{1-t_i} \prod_{j=1}^q \frac{1}{(1-u_j)^2} \left(\sum_{n \ge 1} S_{(n,n)}(T_p, U_q) \right) - c(T_p, U_q), \\ \sum_{i=1}^p S_{(n,n)}(T_p, U_q) &= \sum_{i=1}^p S_{(\lambda_1, \lambda_2)}(T_p) S_{(\mu_1, \mu_2)}(U_q), \end{aligned}$$

where the summation runs on all (λ_1, λ_2) and (μ_1, μ_2) with $\lambda_1 + \mu_2 = \lambda_2 + \mu_1$

• and the correction $c(T_p, U_q)$ is

$$c(T_p, U_q) = \prod_{j=1}^p \frac{1}{1-u_j} \bigg(S_{(1^3)}(T_p, U_q) + \sum_{n \ge 1} S_{(n)}(T_p, U_q) \bigg).$$

・ロト ・回ト ・ヨト ・ヨト

æ

The description of the multiplicities m_{λ,μ} usually is given in terms of the multiplicity series of the polynomial f(T_p, U_q)

$$M(f, T_p, U_q) = \sum_{\lambda\mu} m_{\lambda\mu} T_p^{\lambda} U_q^{\mu}.$$

► Also we denote by Y_T (and similarly Y_U) the Young operator which sends the multiplicities series of f(T_p, U_q) to the multiplicities series of ∏^p_{i=1} 1/(1-t_i) f(T_p, U_q), i.e.,

$$\mathcal{Y}_{\mathcal{T}}(M(f(T_p, U_q))) = M\bigg(\prod_{i=1}^p \frac{1}{1-t_i}f(T_p, U_q)\bigg)$$

Using Young tableaux one can obtains the

(不良) (不良) (二)

э

The main result of our paper is the following

Theorem

The colength series of the *-identities of $M_2 \oplus M_2^{op}$ is

 $I(t, u) = M(H(B(M_2 \oplus M_2^{op}), t, t, t, u, u, u, u)) = f_1 - f_2 - f_3,$

where f_1 , f_2 and f_3 are given bellow.

$$f1 = \frac{Nu}{De}$$

4 3 5 4 3 5

$$\begin{split} f_2 &= \prod_{j=1}^p \frac{1}{1-u_j} S_{(1,1,1)}(T_p, U_q) = \prod_{j=1}^p \frac{1}{1-u_j} \sum_{k=1}^3 S_{(1^k)}(T_p) S_{(1^{3-k})}(U_q) = \prod_{j=1}^p \frac{1}{1-u_j} \times \\ &\times \left(S_{(0)}(T_3) S_{(1^3)}(U_4) + S_{(1)}(T_3) S_{(1^2)}(U_4) + S_{(1^2)}(T_3) S_{(1)}(U_4) + S_{(1^3)}(T_3) S_{(0)}(U_4) \right) \\ &= \frac{u^3 + tu^2 + t^2u + t^3}{(1-u)^4} \end{split}$$

$$\begin{split} f_3 &= \prod_{j=1}^p \frac{1}{1-u_j} S_{(n)}(T_p, U_q) = \prod_{j=1}^p \frac{1}{1-u_j} \sum_{n \ge 1} S_{(k)} \times S_{(n-k)} \\ &= \frac{1}{(1-u)^4} \left(\frac{1}{(1-t)^3 (1-u)^4} - 1 \right) \end{split}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

•
$$M(f, T, U) = \sum_{n} \sum_{k} \sum_{\lambda, \mu} m_{\lambda \mu} T^{\lambda} U^{\mu}$$

When one substitutes t_i = t, i = 1,..., p and u_j = u for j = 1,..., q then obtains

$$M(f,t,u) = \sum_{n} \sum_{k} \left(\sum_{\lambda,\mu} m_{\lambda\mu} \right) t^{k} u^{n-k} = \sum_{n} \sum_{k} l_{k,n-k} t^{k} u^{n-k}.$$

• The colength
$$I_{k,n-k} = \sum_{\lambda,\mu} m_{\lambda\mu}$$

THANK YOU!

Silvia Boumova Colength of Simple *-Algebras

(日) (部) (注) (注) ()

2