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Introduction

I Let F be a field of characteristic 0;

I Let A be associative algebra over F ;

I A function ∗ : A→ A is said to be an involution if ∗ is an
automorphism of the additive group of A such that
(ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ A.

I An example of such a map is the transpose in the algebra
Mn(F ) of n × n matrices over the field F .
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I Let (A, ∗) be a unitary algebra with involution ∗;

I Involution of the first kind: the restriction of ∗ on F is the
identical map

I Involution of the second kind: otherwise ∗ (the restriction of ∗
on F is ∗);

I The algebra (A, ∗) is said to be ∗-simple if A2 6= 0 and it has
no nontrivial ∗-invariant ideals.
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I The opposite algebra of A, denoted by Aop, is the algebra that
has the same elements as A, the same addition as A, and
multiplication given by a ◦b = ba, where ba is a product in A.

I It is easy to check that (Aop)op = A, A ∼= B if and only if
Aop ∼= Bop.

I The algebra A⊕ Aop has the exchange involution defined by
(a, b)∗ = (b, a).
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Theorem (Rowen)

Let A be a ∗-simple finite dimensional associative algebra over an
algebraically closed field. Then either A is simple as an algebra or
A is of the form A = B ⊕ Bop, where B is a simple algebra.

I Let the field F be an algebraically closed field;

I Then the ∗-simple finite dimension algebras are:

• (Mn(F ), t) with transpose;
• (Mn(F ), s) symplectic involution (for even n);
• Mn(F )⊕Mn(F )op with exchange involution.
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I Drensky and Giambruno have obtained the exact values of
the cocharacters, codimensions and the Hilbert series of the
polynomial identities of the ∗-simple algebras (M2(F ), t) and
(M2(F ), s).

I The subject of our study is the algebra M2(F )⊕M2(F )op

with the exchange involution.

I We obtain the sequence of colengths of its ∗-identities in the
case when F is of characteristic zero.
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I (A, ∗) over field F , char(F ) = 0

I The free associative algebra with involution F 〈X , ∗〉 is the free
associative algebra on the set of free generators X ∪ X ∗ where
X = {x1, x2, . . . } and X ∗ = {x∗1 , x∗2 , . . . } and involution that

extends the map xi
∗→ xi and x∗i

∗→ xi .

I A polynomial f (X ,X ∗) ∈ F 〈X , ∗〉 is a ∗-polynomial identity
for the algebra (A, ∗) if f (a1, . . . , an; a∗1, . . . , a

∗
n) = 0 for all

ai ∈ A.

I We denote by T (A, ∗) the ideal of all ∗-polynomial identities
of (A, ∗).
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I Let us denote the sets of symmetric and skew elements of A
by A+ = {a ∈ A | a∗ = a} and A− = {a ∈ A | a∗ = −a},
respectively.

I It is more convenient to change the variables xi , x
∗
i by

yi = 1
2(xi + x∗i ), zi = 1

2(xi − x∗i ) are the symmetric and skew
variables, respectively.

I Then F 〈X , ∗〉 = F 〈Y ,Z , ∗〉 where Yp = {y1, . . . , yp} is a set
of symmetric variables yi ∈ F 〈Y ,Z 〉, and Zq = {z1, . . . , zq} is
a set of skew variables zi ∈ F 〈Y ,Z 〉.

I Consequently, f (Y ,Z ) ∈ T (A, ∗) if and only if the polynomial
f (y1, . . . , yp, z1 . . . , zq) is such that
f (b1, . . . , bp, c1 . . . , cq) = 0 for all bi ∈ A+, i = 1, . . . p and
cj ∈ A−, j = 1, . . . , q.
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I The factor algebra F (A, ∗) = F 〈Y ,Z , ∗〉/T (A, ∗) is the
relatively free algebra in the variety of algebras with involution
generated by (A, ∗).

I We denote by Fp,q(A, ∗) the subalgebra of F (A, ∗) generated
by Yp = {y1, . . . , yp} and Zq = {z1, . . . zq} and assume that
by Fm(A, ∗) = Fm,m(A, ∗).
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I The Hilbert series of Fp,q(A, ∗) is defined as a formal power
series

H(A, ∗, y1, . . . , yp, z1 . . . , zq) =
∑
(a,b)

dim F
(a,b)
p,q ya1

1 . . . y
ap
p zb1

1 . . . z
bq
q

or if Y a
m = (ya1

1 . . . y
ap
p ) and Zb

m = (zb1
1 . . . z

bq
q ) then

H(A, ∗,Yp,Zq) =
∑
(a,b)

dim F
(a,b)
p,q Y a

p Zb
q
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I For ordinary polynomial identities one of the most important
numerical invariants of the polynomial identities of A is the
Sn-cocharacter sequence

χn(A) =
∑
λ`n

mλ(A)χλ, n = 0, 1, 2, . . . ,

where λ = (λ1, . . . , λn) is a partition of n and χλ is the
corresponding irreducible character of the symmetric group Sn;

I The n-th cocharacter

χn(A) = χSn(Pn/(T (A) ∩ Pn))

is equal to the character of the representation of Sn acting on
the vector subspace Pn ⊂ K 〈X 〉 of the multilinear polynomials
of degree n modulo the polynomial identities of A.
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I For ∗-polynomial identities one considers the characters of the
wreath product Z2 o Sn where Z2 = {1, ∗} is the multiplicative
group of order 2, and Sn (Giambruno and Regev).

I The wreath product is defined by

Z2 o Sn = {(a1, . . . , an;σ)|ai ∈ Z2, σ ∈ Sn}

with multiplication given by

(a1, . . . , an;σ)(b1, . . . , bn; τ) = (a1bσ−1(1), . . . , anbσ−1(n);στ).

I Let us denote by χλ,µ the irreducible Z2 o Sn-character
associated with the pair of partitions (λ, µ).
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I The Z2 o Sn-module structure of the set of multilinear
polynomilas in Y and Z (namely Pn(A, ∗)) and the
GLm × GLm-module structure of Fm(A, ∗) are related by the
following results given by Giambruno

Theorem

If
χn(A, ∗) =

∑
|λ|+|µ|=n

mλ,µχλ,µ,

H(A, ∗,Ym,Zm) =
∑
n≥0

∑
|λ|+|µ|=n

bλ,µSλ(Ym)Sµ(Zm),

then mλ,µ = bλ,µ for all λ, µ, where Sλ(Ym) and Sµ(Zm) are the
Schur functions indexed by λ and µ, respectively.

Silvia Boumova Colength of Simple ∗-Algebras



Schur functions

Sλ(X ) =
V (λ+ δ,X )

V (λ,X )
,

where λ = (λ1, . . . , λd), δ = (d − 1, d − 2, . . . , 2, 1, 0) and
µ = (µ1, . . . , µd)

V (µ,X ) =

∣∣∣∣∣∣∣∣∣
xµ11 xµ12 . . . xµ1d
xµ21 xµ22 . . . xµ2d

...
...

. . .
...

xµd1 xµd2 . . . xµdd

∣∣∣∣∣∣∣∣∣
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I In the ∗-case one considers the so-called Y -proper polynomial
identities. They are the ∗-identities in which all symmetric
variables participate in commutators only (Drensky,
Giambruno).

I The Hilbert series of the relatively free algebra and its proper
elements (Bm(A, ∗)) are related by

H(Fm(A, ∗),Yp,Zq) = H(Bm(A, ∗),Yp,Zq)
m∏
i=1

1

1− yi
.
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I Sequence of colengths in the ∗-case is

ln(A, ∗) =
n∑

k=0

lk,n−k(A, ∗)

where
lk,n−k(A, ∗) =

∑
λ`k

µ`n−k

mλµ, n = 1, 2, . . . ,

i.e. the sequence of lengths of the modules Pn(A, ∗).
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I Drensky and Giambruno have obtained the Hilbert series for
the proper elements Bp,q for algebra M2 ⊕Mop

2 , i.e

H(Bp,q,Tp,Uq) =

p∏
i=1

1

1− ti

q∏
j=1

1

(1− uj)2

(∑
n≥1

S(n,n)(Tp,Uq)

)
− c(Tp,Uq),

∑
S(n,n)(Tp,Uq) =

∑
S(λ1,λ2)(Tp)S(µ1,µ2)(Uq),

where the summation runs on all (λ1, λ2) and (µ1, µ2) with
λ1 + µ2 = λ2 + µ1
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I and the correction c(Tp,Uq) is

c(Tp,Uq) =

p∏
j=1

1

1− uj

(
S(13)(Tp,Uq) +

∑
n≥1

S(n)(Tp,Uq)

)
.
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I The description of the multiplicities mλ,µ usually is given in
terms of the multiplicity series of the polynomial f (Tp,Uq)

M(f ,Tp,Uq) =
∑
λµ

mλµTλ
p Uµ

q .

I Also we denote by YT (and similarly YU) the Young
operator which sends the multiplicities series of f (Tp,Uq) to
the multiplicities series of

∏p
i=1

1
1−ti f (Tp,Uq), i.e.,

YT (M(f (Tp,Uq))) = M

( p∏
i=1

1

1− ti
f (Tp,Uq)

)
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I Using Young tableaux one can obtains the

H

( ∑
λ1+µ2=λ2+µ1

S(λ1,λ2)(Tp)S(µ1,µ2)(Uq)

)
=

1

(1− t1t2)(1− u1u2)(1− t1u1)
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The main result of our paper is the following

Theorem

The colength series of the ∗-identities of M2 ⊕Mop
2 is

l(t, u) = M(H(B(M2 ⊕Mop
2 ), t, t, t, u, u, u, u)) = f1 − f2 − f3,

where f1, f2 and f3 are given bellow.

Nu := t5u9 + t4u8 − t4u4 + t3u7 − t3u4 − u3t3 − t2u6 − t2u5 + t2u2 − tu5 + tu + 1

De := (1 + u2)(1− t)2(1− t3)(1− t2u)(1 + u)3(1 + t)(1− tu)2(1 + tu)2(1− tu2)2×

×(1− u3)2(1− u)5

f 1 =
Nu

De
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f2 =

p∏
j=1

1

1− uj
S(1,1,1)(Tp ,Uq) =

p∏
j=1

1

1− uj

3∑
k=1

S(1k )(Tp)S(13−k )(Uq) =

p∏
j=1

1

1− uj
×

×
(
S(0)(T3)S(13)(U4) + S(1)(T3)S(12)(U4) + S(12)(T3)S(1)(U4) + S(13)(T3)S(0)(U4)

)
=

u3 + tu2 + t2u + t3

(1− u)4

f3 =

p∏
j=1

1

1− uj
S(n)(Tp ,Uq) =

p∏
j=1

1

1− uj

∑
n≥1

S(k) × S(n−k)

=
1

(1− u)4

(
1

(1− t)3(1− u)4
− 1

)
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I M(f ,T ,U) =
∑

n

∑
k

∑
λ,µ mλµTλUµ

I When one substitutes ti = t, i = 1, . . . , p and uj = u for
j = 1, . . . , q then obtains

M(f , t, u) =
∑
n

∑
k

(∑
λ,µ

mλµ

)
tkun−k =

∑
n

∑
k

lk,n−ktkun−k .

I The colength lk,n−k =
∑

λ,µ mλµ.
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THANK YOU!
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