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Model of Algebraic Manipulations

Algebraic Manipulations

An algebraic manipulation is a model of an undesirable data modification
[Jongsma'08].

Briefly, an additive data distortion is called an algebraic manipulation if
its value does not depend on a value-to-be-distorted.

Algebraic manipulation detection (AMD) codes are designed to detect
algebraic manipulations.

Types of AMD codes:

m weak AMD codes (also known as robust codes)
m strong AMD codes
m include “stronger” AMD codes

Only systematic strong AMD codes over GF(2"™) will be examined.
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Model of Algebraic Manipulations

Strong Algebraic Manipulations

Distortion’s
source

Message

> Erroneous
codeword

Memory block

Abstract Storage Device

A strong algebraic manipulation model assumes:
m An additive error
m An error may be any nonzero element of GF(2")
m There is a dependency between an error and a message
® The Hamming metric
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Strong & Stronger AMD codes

Definitions, Decoding, Applications

Code Construction

A codeword

consists of 3 parts:
®m an informational message y € GF(2),
® a random number z € GF(2™),
m a check symbol f(x,y) € GF(2").

random
number x

message y ? \'L . ;
codeword ¢
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Strong & Stronger AMD codes

Definitions, Decoding, Applications

Decoding
For a distorted codeword

E=cte=(y+ey,r+es, flz,y) +ef)

= (337 z, f(x,y))

compute a syndrome:

S(@) = f(&@,9) + f(z,y).

If S(¢) =0 € GF(2"), then no errors detected,
otherwise an error is detected.

The main advantage of AMD codes comparing to classic linear codes is
that every g-ary linear code has ¢* — 1 nonzero undetectable errors,
where k is a dimension of a code.

AMD codes have no undetectable errors, each error is detected with
some nonzero probability 1 — P,y get-

Py ndet is a worst—case probability of error masking (an achievable bound).
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Strong & Stronger AMD codes

Definitions, Decoding, Applications

Applications

Were introduced in 2008 to detect cheaters in linear secret sharing
schemes [Cramer et al.’08].

More applications have been found [Cramer et al.'13]:
m Design of secure cryptographic devices (fault-injection attack, ...);
Fault—tolerant storage devices;
Robust fuzzy extractors;
Non-malleable codes;

Anonymous quantum communication; and others.
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Strong & Stronger AMD codes
Definitions, Decoding, Applications

Definition of Strong AMD Codes

Definition 1 (Strong AMD Codes)

A code
C={(y,z f(z,9)}

is a systematic strong AMD code if the encoding function f(x,y)
satisfies the following inequality:

[{z : S(¢) = 0}
< _ .
Pundet S y,Ic:Itlealy};O |{.’E}| <1 (1)

Classic strong AMD codes are based on [Cramer et al.'13]:
m Message authentication codes
m Error correction codes
m A multiplication in a finite field, and others.
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Strong & Stronger AMD codes

Definitions, Decoding, Applications

Definition of Stronger AMD Codes

There is a subset of strong AMD codes that are called stronger AMD
codes.

Definition 2 (Stronger AMD Codes)

Stronger codes satisfy the equation (1) for all e # 0 € GF(2"), not only
for e : e, # O:

By & e B3 SE =T

e SToST @)

There are two families of stronger AMD codes [Alekseev'15].
The most efficient one is based on polynomials. Initially, the next
encoding polynomial was proposed [Cramer et al.’08]:

f(z,y) = yix + yox® + ... + g’ + 22
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Strong & Stronger AMD codes

Examples

Examples of Stronger AMD Codes

Karpovsky et al. developed this code into a sophisticated and flexible
construction with a variety of encoding polynomials for different
parameters [Karpovsky et al."14].

An encoding function is always a sum of two polynomials:

f(z,y) = A(z) + B(y, ).

Another example of a stronger AMD code [Karpovsky et al.’14

The code with r = 2 bits,

k = 4r bits (y - (ylayQ,y37y4))'

m = 2r (two variables x — (21, z3)),
zi,y; € GF(27)

has the following encoding polynomial:

f(z,y) = A(z)+B(y,x) = (xlxg + $?$2)+(y1$1 + Y277 + y3m2 + y4w§) .
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Proposed strong AMD codes

New family of polynomials

Proposed family of polynomials

Let y € GF(25=97), y — (y1,¥2,-- -, ¥Ya), ¥i € GF(27), and
r € GF(2™=), z — (21, %2,...,7), ¥; € GF(27), a,b,r > 1.
Let us define the following family of polynomial functions:

Xa,b

flz,y) = puai™ ooy +pat™ Ly L Yy
7Zyz [e781 ozzz a,b Zyznxa” (3)
=1 j=1

where a; ; € {0,2'}, 0< I <.

For each consecutive ¢, a new set of a; ; is selected in order to minimize
the sum 3 av; j, and the set of all zeros is prohibited.
A number of available sets of « is limited due to the restriction:

E Qg5 < T
J
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Proposed strong AMD codes

Examples

Examples of proposed polynomials - |

An example polynomial #1

Let a =2, b =1, thus, y — (y1,y2) and there is one variable . Then
the next sets of « are chosen:

. _ 90
Y1t Q1] = 2 — T,
Y2 : Q21 = 21 — .

The obtained polynomial is:

2

0 1
flz,y) =nz + o2 = y1z + Yo’
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Proposed strong AMD codes

Examples

Examples of proposed polynomials - |l

An example polynomial #2

Let a = 3, b =3, thus, y — (y1,y2,y3) and x — (z1,z2,x3). The next
sets of « are chosen:

0 _ 90 _ _ 1..0,.0
Y1t 1] = 2 , (2 = 0,04173 =0 — T1XToTy = X1,
5 _ _ o0 _ 0,10 __
Yo : Q21 = 0, Q29 = 2 , 023 = 0 — T1TyT3 = T2,
. _ _ _ 90 0,01 __

Ys 31 = O, a3 o = 0,04373 =2 — T1ToX3 = X3.

The following polynomial is constructed:

f(z,y) = yiz1 + yaxa + yszs.
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Proposed strong AMD codes

Examples

Examples of proposed polynomials - 11l

An example polynomial #3

Let a = 6, b = 2, therefore, y — (y1,...,ys) and x — (21, x2). Then
the next sets of « are chosen:

Y1t a1 =2%a12=0 — i) =1,
Y2 agy =0,az7 =2° — 20z = x5,
Y3 31 = 217a3’2 =0 — x?ajg = x%
Ya © Q41 = 0, Qg9 = 2! — x?m% = 9:%,
Ys as1 = 20,a5,2 =920 — x%x% = X1%a,
Y6 - ap1 = 20,0!6,2 =2! — zia2 = zy22.

The constructed polynomial is:
2 2 2
f(x,y) = y171 + Y2m2 + Y327 + YaT3 + Y5172 + YeT125-
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Obtained strong AMD code
.
Code construction

C={(yeGF(2"),x € GF(2"), f(z,y) € GF(2"))}
with an encoding function f(x,y) defined by the equation (3) is a strong
AMD code providing an error masking probability
18 e = 1l — (O — )R
where p is the power of the encoding polynomial, and p = (2" — 1) + v,
u<b v<2" —1.
The proof is based on the following property of a Galois field GF(p™):
(a+ b)pi =a .

A code construction defined by the Theorem has the same formula of an
error masking probability as stronger codes based on polynomials
[Karpovsky et al.'14].
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Obtained strong AMD code
Performance comparison

|
Let p be a power of a polynomial for a stronger code from

[Karpovsky et al.’14] with parameters k, m and r,

and p’ be a power of a proposed polynomial for same parameters.

Then:

m if p<p—1, a proposed code provides lower P, 4.+ and lower
computational complexity.

m If p’ = p—1, a proposed code provides the same P, 4c¢, but its
polynomial has a lower power and less monomials (thus, lower
complexity).

m if p’ > p, a stronger code is more efficient than a proposed one.

A replacement of stronger AMD codes with proposed strong ones is
feasible only in cases when it is sufficient to provide error detection in
informational parts y of codewords (not in all parts).

However, this requirement seems to be adequate for most applications.
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Proposed strong AMD codes

Some cases when proposed codes are better

Some cases when proposed codes are better - |

In general, a power of a proposed polynomial grows faster than that of
stronger codes.

However, for small @ = k/r it is possible to construct a strong code with
a lower power of a polynomial.

Example 1:

k=8bits ie yeGF(2%),

m =4 bits ie z€GF(2%),

r=4bits e f(x,y) € GF(2%).

Therefore, a = k/r =2, y — (y1,y2),
andb=m/r=1z -z,
vi, r; € GF(2%).

Code ‘ flz,y) ‘ Poundet
Stronger | y1x 4y +2° | 0.25

Proposed | y12 + yox? 0.125
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Proposed strong AMD codes
Some cases when proposed codes are better

Some cases when proposed codes are better - |l

Example 2:

k=12 bits ie. ye€ GF(2'?),

m =12 bits i.e. z € GF(2'?),
r=4bits e f(r,y) € GF(2%).

Therefore, a = k/r =3, y = (y1,Y2,Y3),

and b=m/r =3, z = (z1,22,73),

Yi, T € GF(24).
Code ‘ f(l‘,y) Pundet
Stonger Y171 + Yoo + Y33 + 23 + 23 + 23 | 0.125

Proposed Y11 + Y22 + Y33 0.06
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Proposed strong AMD codes
Some cases when proposed codes are better

Some cases when proposed codes are better - I|lI

Example 3:

k=24 bits e ye GF(2*),

m =8 bits i.e. x € GF(28),
r=4bits e f(x,y) € GF(2%).

Therefore, a = k/r =6, y — (y1,-.-,Y6),
and b=m/r =2, v — (x1,x2),
yi, T € GF(2).

Code ‘ f(z,y) ‘ Pundet
Stronger | y121 + Yoo + Y327 + yaw3 + Y5170 + Yo + 2105 | 0.188

Proposed | y121 + yaza + Y323 + yax3 + Ysx122 + Y123 0.188
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Summary

Summary:

m A new family of polynomial encoding functions of strong AMD
codes is presented.

m In some cases proposed ones have less monomials (in fact, a part
A(x) of f(x,y) is omitted) and a lower power. This leads to a lower
error masking probability and lower computational complexity.

m Efficient encoding and decoding methods based on the Horner
scheme can be used for proposed codes [Karpovsky et al.'14].

m Find a formula to compute a power of f(x,y) (and, thus, Py,get) for
each set of k, m and r (determine when proposed codes are better).

m Check if codes lay on bounds.
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Thank you for your attention!
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