On resolvable and near-resolvable BIB designs and q-ary equidistant codes ¹

L. A. BASSALYGO

V. A. ZINOVIEV

bass@iitp.ru zinov@iitp.ru

A.A. Kharkevich Institute for Problems of Information Transmission, Russian Academy of Sciences, Moscow, Russia

Abstract. Any resolvable BIB design (v, b, r, k, λ) with $\lambda = 1$ induces an optimal equidistant code C_1 with parameters $(n, N, d) = (r, v, r - 1)_{q_1}$ where $q_1 = v/k$ and vice versa. We add to this equivalence two more configurations: an optimal equidistant constant composition $(v, v, v - k + 2)_{q_2}$ code C_2 with $q_2 = r + 1$ and some additional properties and near-resolvable BIB design with parameters (v, b', r', k - 1, k - 2).

1 Introduction

Let $Q = \{0, 1, ..., q - 1\}$. Any subset $C \subseteq Q^n$ is a code denoted by $(n, N, d)_q$ of length n, cardinality N = |C| and minimum (Hamming) distance d. A code C is called *equidistant* if all the distances between distinct codewords are d (see, for example, [5] and references there).

Definition 1. A (v, b, r, k, λ) design (BIB design (v, k, λ)) is an incidence structure (X, B), where $X = \{1, \ldots, v\}$ is a set of elements and B is a collection of k-subsets of elements (called blocks) such that every two distinct elements are contained in exactly $\lambda > 0$ blocks $(0 < k \le v)$.

The other two parameters of a BIB (v, k, λ) design are b = vr/k (the number of blocks) and $r = \lambda(v-1)/(k-1)$ (the number of blocks containing one element).

In terms of binary incident matrix a (v, k, λ) design is a binary $(v \times b)$ matrix A with columns of weight k such that any two distinct rows contain exactly λ common nonzero positions.

Definition 2. A (v, k, λ) -design (X, B) is resolvable (called RBIB design) if the set B can be partitioned into not-intersecting subsets B_i , i = 1, ..., r,

$$B = \bigcup_{i=1}^{r} B_i,$$

¹This work has been partially supported by the Russian fund of fundamental researches (under the project No. 15-01-08051).

such that for every *i*, the set (X, B_i) is a trivial 1-design (i.e. any element of X occurs in B_i exactly one time).

The incident matrix A of a resolvable design (v, k, λ) looks as follows:

$$A = [A_1 \mid \dots \mid A_r],\tag{1}$$

where for any $i \in \{1, ..., r\}$ the every row of A_i has the weight 1.

Definition 3. A (v, k, k - 1)-design (X, B) is near-resolvable (NRBIB) if the set B can be partitioned into not-intersecting subsets B_i , i = 1, ..., v,

$$B = \bigcup_{i=1}^{v} B_i,$$

such that for every *i*, the set $(X \setminus \{i\}, B_i)$ is a trivial 1-design (i.e. any element of X (except *i*) occurs in B_i exactly one time).

The incident matrix A of a near-resolvable design (v, k, λ) can be presented as follows:

$$A = [A_1 \mid \dots \mid A_v], \tag{2}$$

where for any $i \in \{1, ..., r\}$ the every row of the submatrix A_i has the weight 1 with one exception; the *i*th row of A_i is the zero row.

See [1, 4] and references there for resolvable and near-resolvable designs.

2 Main results

The following result is known [6].

Theorem 1. An optimal equidistant $(n, d, N)_q$ code exists if and only if there exists a resolvable (v, k, λ) design, where

$$q = v/k, \ n = \lambda(v-1)/(k-1), \ N = v, \ d = n - \lambda.$$
 (3)

For a given q-ary code C with parameters $(n, N, d)_q$ denote by $M = M_C$ the matrix over Q of size $N \times n$ formed by the all codewords of C.

For the case $\lambda = 1$ we can add to Theorem 1 the following

Theorem 2. The following configurations are equivalent:

• (i) A resolvable (v, k, 1) design.

Bassalygo, Zinoviev

• (ii) An optimal equidistant $(n_1, d_1, N_1)_{q_1}$ code C_1 with parameters

$$q_1 = v/k, \ n_1 = (v-1)/(k-1), \ N_1 = v, \ d_1 = (v-k)/(k-1).$$

• (iii) An optimal equidistant constant composition $(n_2, N_2, d_2)_{q_2}$ -code C_2 with parameters

$$q_2 = (v + k - 2)/(k - 1), n_2 = v, N_2 = v, d_2 = v - k + 2$$

where every nonzero symbol occurs in every row (respectively, in every column) of the matrix M_2 exactly (k - 1) times and with the following property: every two rows of M coincide in k-2 positions, which have the same symbol of the alphabet.

• (iv) A near-resolvable (v, b', r', k - 1, k - 2) design, where

$$b' = v(v-1)/(k-1), r' = v-1.$$

Denote by $N_q(n, d, w)$ the maximal possible number N of codewords in the $(n, N, d)_q$ code, and by $N_q(n, d, w)$ the maximal possible number N of codewords of weight w in the $(n, N, d)_q$ code.

The equidistant $(n, N, d)_q$ code C is optimal if its cardinality meets the Plotkin bound

$$N_q(n,d) \le \frac{qd}{qd - (q-1)n}, \text{ if } qd > (q-1)n,$$
 (4)

The code C_1 from Theorem 2 is optimal according to the bound (4).

The equidistant constant weight $(n, N, d)_q$ code C with weight of codewords w is optimal if its cardinality meets the following bound [2]

$$N_q(n,d,w) \le \frac{(q-1)dn}{qw^2 - (q-1)(2w-d)n}, \text{ if } qw^2 > (q-1)(2w-d)n, \quad (5)$$

The code C_2 from Theorem 2 is optimal according to the bound (5).

We shortly explain the constructions.

(i) \leftrightarrow (ii) Let $X = \{x_1, x_2, \dots, x_v\}$ and let $Q = \{0, 1, \dots, q-1\}$. Given a symbol $i \in Q$ denote by T(i) a binary vector of length q and weight 1 with

(i + 1)th nonzero position. For a vector $c = (c_1, \ldots, c_n)$ of length n over Q denote by T(c) the binary vector $T(c) = (T(c_1), \ldots, T(c_n))$ of length $q \cdot n$. For a given $(n, N, d)_q$ code C with matrix M, denote by T(M) a binary $(N \times qn)$ -matrix obtained from M by applying the operator T(C) to all codewords. It is easy to see that if C is an equidistant $(n, N, d = n - 1)_q$ code then the matrix T(M) is an incident matrix A in the form (1) of the resolvable BIB design with parameters $v, b, r, k, \lambda = 1$, satisfying (3). Conversely, given an incident matrix A in the form (1) of the resolvable BIB design with parameters $v, b, r, k, \lambda = 1$, the matrix $T^{-1}(A)$ is the matrix M_1 formed by the all codewords of equidistant code C_1 with parameters n_1, N_1, d_1, q_1 satisfying (3)

(iii) \leftrightarrow (iv) Given a nonzero symbol $i \in Q$ denote by $\Gamma(i)$ a binary vector of length q-1 and weight 1 with *i*th nonzero position. For a vector $c = (c_1, \ldots, c_n)$ of length n over Q denote $\Gamma(c)$ the binary vector $\Gamma(c) = (\Gamma(c_1), \ldots, \Gamma(c_n))$ of length $(q-1) \cdot n$. For a given $(n, N, d)_q$ code C with matrix M denote by $\Gamma(M)$ a binary $(N \times (q-1)n)$ -matrix obtained from M by applying the operator $\Gamma(C)$ to all elements. It is easy to see that if C_2 is an equidistant $(n, n, d = n - k + 2)_q$ code with properties stated in Theorem 2, then the matrix $\Gamma(M_2)$ is an incident matrix A in the form (2) of the near-resolvable BIB design with parameters v, b', r', k - 1, k - 2, satisfying (3). Conversely, given an incident matrix A in the form (2) of the near-resolvable BIB design with parameters v, b, r, k - 1, k - 2, satisfying (3). Conversely, given an incident matrix A in the form (2) of the near-resolvable BIB design with parameters v, b, r, k - 1, k - 2, the matrix $\Gamma^{-1}(A)$ is the matrix M_2 formed by the all codewords of equidistant code C_2 with parameters and properties stated in Theorem 2.

(i) \leftrightarrow (iii) Given a resolvable BIB design (X, B) with parameters (v, b, r, k, 1), where $X = \{1, 2, \dots, v\}, B = \{z_1, z_2, \dots, z_b\}$, and

$$B = B_1 \cup B_2 \cup \cdots \cup B_r,$$

we build the q-ary $(v \times v)$ -matrix $M = [m_{f,g}]$ over $Q = \{0, 1, \ldots, q_2 - 1\}$ where $q_2 = r + 1$ as follows: to any block $z_{\ell} = \{i, j, u, \ldots, h\} \in B_s$, we associate the element

$$m_{f,q} = s$$
, for all $f, g \in z_{\ell}, f \neq g$,

and $m_{f,f} = 0$ for all $f \in \{1, 2, \ldots v\}$. Then it is easy to see that M is formed by the q-ary equidistant $(v, v, v-k+2)_{q_2}$ -code C_2 with properties stated in Theorem 2. Conversely, given an equidistant $(n, n, n-k+2)_q$ -code C_2 satisfying Theorem 2 with matrix M, for every jth row c(j) of $M, j \in \{1, \ldots, v\}$, we form q-1blocks $z_{j,1}, \ldots, z_{j,q-1}$ as follows: if c(j) contains k-1 elements s in positions $i_1, i_2, \ldots, i_{k-1}$ we form the block $z_{j,s} = \{j, i_1, i_2, \ldots, i_{k-1}\}$ and place this block to the set B_s . In this way we obtain b = n(q-1)/(k-1) blocks of size kpartitioned into r = q - 1 subsets B_s , containing v = n elements $\{1, 2, \ldots, n\}$. It is easy to see that every pair of elements $\{1, 2, \ldots, v\}$ occurs exactly once.

We give an example. Let A_1 be the incident matrix of the resolvable (16, 4, 1) design (or affine plane of order 4) (for shortness, we put only ones and omit

zeros):

From A_1 using our operator T^{-1} we obtain the optimal equidistant $(5, 16, 4)_4$ code C_1 (which is common known) and using our construction, we obtain the optimal equidistant constant composition $(16, 16, 14)_6$ code C_2 , whose matrices M_1 and M_2 of codewords we give.

		0	0			1	r	-1	-1	-1	0	0		~	0			4		-		
$M_1 =$	0	0	0	0	0	, $M_2 =$		T	T	T	2	3	4	5	2	5	3	4	2	4	5	3
	0	1	1	1	1		1	0	1	1	3	2	5	4	5	2	4	3	4	2	3	5
	0	2	2	2	2		1	1	0	1	4	5	2	3	3	4	2	5	5	3	2	4
	0	3	3	3	3		1	1	1	0	5	4	3	2	4	3	5	2	3	5	4	$2 \mid$
	1	0	1	2	3		$\boxed{2}$	3	4	5	0	1	1	1	2	4	5	3	2	5	3	4
	1	1	0	3	2		3	2	5	4	1	0	1	1	4	2	3	5	5	2	4	3
	1	2	3	0	1		4	5	2	3	1	1	0	1	5	3	2	4	3	4	2	5
	1	3	2	1	0		5	4	3	2	1	1	1	0	3	5	4	2	4	3	5	2
	2	0	2	3	1		$\overline{2}$	5	3	4	2	4	5	3	0	1	1	1	2	3	4	5
	2	1	3	2	0		5	2	4	3	4	2	3	5	1	0	1	1	3	2	5	4
	2	2	0	1	3		3	4	2	5	5	3	2	4	1	1	0	1	4	5	2	3
	2	3	1	0	2		4	3	5	2	3	5	4	2	1	1	1	0	5	4	3	$2 \mid$
	3	0	3	1	2		2	4	5	3	2	5	3	4	2	3	4	5	0	1	1	1
	3	1	2	0	3		4	2	3	5	5	2	4	3	3	2	5	4	1	0	1	1
	3	2	1	3	0		5	3	2	4	3	4	2	5	4	5	2	3	1	1	0	$1 \mid$
	3	3	0	2	1 _		3	5	4	2	4	3	5	2	5	4	3	2	1	1	1	0

Now applying the operator Γ to the matrix M_2 we obtain the binary (16×80) matrix which is the incident matrix A_2 of near-resolvable (16, 3, 2) design. We give the first 40 columns of this matrix.

$A_2 =$	00000	10000	10000	10000	01000	00100	00010	00001	
	10000	00000	10000	10000	00100	01000	00001	00010	
	10000	10000	00000	10000	00010	00001	01000	00100	
	10000	10000	10000	00000	00001	00010	00100	01000	
	01000	00100	00010	00001	00000	10000	10000	10000	
	00100	01000	00001	00010	10000	00000	10000	10000	
	00010	00001	01000	00100	10000	10000	00000	10000	
	00001	00010	00100	01000	10000	10000	10000	00000	
	01000	00001	00100	00010	01000	00010	00001	00100	•••
	00001	01000	00010	00100	00010	01000	00100	00001	
	00100	00010	01000	00001	00001	00100	01000	00010	
	00010	00100	00001	01000	00100	00001	00010	01000	
	01000	00010	00001	00100	01000	00001	00100	00010	
	00010	01000	00100	00001	00001	01000	00010	00100	
	00001	00100	01000	00010	00100	00010	01000	00001	
	00100	00001	00010	01000	00010	00100	00001	01000	

3 References

1. R.J.R. Abel, G. Ge, J. Yin, Resolvable and near-resolvable designs// Handbook of Combinatorial Designs. 2nd edition. Ed. by Colbourn C.J., Dinitz J.H., Boca Raton: Chapman and Hall/CRC Press, 2007. VI.7. P. 124 - 132.

2. Bassalygo L.A. New upper bounds for error-correcting codes// Problems of Information Transmission. 1965. vol. 1, No. 1. pp. 41 - 44.

3. L. A. Bassalygo, V. A. Zinoviev, Optimal equisymbol codes// *Problmes* of Information Transmissions, 2014. vol. 50, No. 4, pp. 18 - 24.

4. S. Furino, Y. Miao, J. Yin, *Frames and Resolvable Designs*, CRC Press, Boca Raton - New York - London - Tokyo. 1996.

5. G. T. Bogdanova, V. A. Zinoviev, T. J. Todorov, On construction of *q*-ary equidistant codes// *Problmes of Information Transmission*, 2007, vol. 43, No. 4, pp. 13 - 36.

6. N. V. Semakov, V. A. Zinoviev, Equidistant q-ary codes with maximal distance and resolvable balanced incomplete block-designs// *Problems of Information Transmission*, 1968, V. 4. No. 2, pp. 3 - 10.

46