On resolvable and near-resolvable BIB designs and q-ary equidistant codes

L. A. Bassalygo
bass@iitp.ru
V. A. Zinoviev zinov@iitp.ru

A.A. Kharkevich Institute for Problems of Information Transmission, Russian Academy of Sciences, Moscow, Russia

Abstract

Any resolvable BIB design (v, b, r, k, λ) with $\lambda=1$ induces an optimal equidistant code C_{1} with parameters $(n, N, d)=(r, v, r-1)_{q_{1}}$ where $q_{1}=v / k$ and vice versa. We add to this equivalence two more configurations: an optimal equidistant constant composition $(v, v, v-k+2)_{q_{2}}$ code C_{2} with $q_{2}=r+1$ and some additional properties and near-resolvable BIB design with parameters ($v, b^{\prime}, r^{\prime}, k-$ $1, k-2)$.

1 Introduction

Let $Q=\{0,1, \ldots, q-1\}$. Any subset $C \subseteq Q^{n}$ is a code denoted by $(n, N, d)_{q}$ of length n, cardinality $N=|C|$ and minimum (Hamming) distance d. A code C is called equidistant if all the distances between distinct codewords are d (see, for example, [5] and references there).

Definition 1. $A(v, b, r, k, \lambda)$ design ($B I B$ design (v, k, λ)) is an incidence structure (X, B), where $X=\{1, \ldots, v\}$ is a set of elements and B is a collection of k-subsets of elements (called blocks) such that every two distinct elements are contained in exactly $\lambda>0$ blocks $(0<k \leq v)$.

The other two parameters of a $\operatorname{BIB}(v, k, \lambda)$ design are $b=v r / k$ (the number of blocks) and $r=\lambda(v-1) /(k-1)$ (the number of blocks containing one element).

In terms of binary incident matrix a (v, k, λ) design is a binary $(v \times b)$ matrix A with columns of weight k such that any two distinct rows contain exactly λ common nonzero positions.

Definition 2. $A(v, k, \lambda)$-design (X, B) is resolvable (called $R B I B$ design) if the set B can be partitioned into not-intersecting subsets $B_{i}, i=1, \ldots, r$,

$$
B=\bigcup_{i=1}^{r} B_{i}
$$

[^0]such that for every i, the set $\left(X, B_{i}\right)$ is a trivial 1-design (i.e. any element of X occurs in B_{i} exactly one time).

The incident matrix A of a resolvable design (v, k, λ) looks as follows:

$$
\begin{equation*}
A=\left[A_{1}|\cdots| A_{r}\right], \tag{1}
\end{equation*}
$$

where for any $i \in\{1, \ldots, r\}$ the every row of A_{i} has the weight 1 .
Definition 3. $A(v, k, k-1)$-design (X, B) is near-resolvable (NRBIB) if the set B can be partitioned into not-intersecting subsets $B_{i}, i=1, \ldots, v$,

$$
B=\bigcup_{i=1}^{v} B_{i}
$$

such that for every i, the set $\left(X \backslash\{i\}, B_{i}\right)$ is a trivial 1-design (i.e. any element of X (except i) occurs in B_{i} exactly one time).

The incident matrix A of a near-resolvable design (v, k, λ) can be presented as follows:

$$
\begin{equation*}
A=\left[A_{1}|\cdots| A_{v}\right] \tag{2}
\end{equation*}
$$

where for any $i \in\{1, \ldots, r\}$ the every row of the submatrix A_{i} has the weight 1 with one exception; the i th row of A_{i} is the zero row.

See $[1,4]$ and references there for resolvable and near-resolvabe designs.

2 Main results

The following result is known [6].
Theorem 1. An optimal equidistant $(n, d, N)_{q}$ code exists if and only if there exists a resolvable (v, k, λ) design, where

$$
\begin{equation*}
q=v / k, \quad n=\lambda(v-1) /(k-1), \quad N=v, \quad d=n-\lambda . \tag{3}
\end{equation*}
$$

For a given q-ary code C with parameters $(n, N, d)_{q}$ denote by $M=M_{C}$ the matrix over Q of size $N \times n$ formed by the all codewords of C.

For the case $\lambda=1$ we can add to Theorem 1 the following

Theorem 2. The following configurations are equivalent:

- (i) A resolvable $(v, k, 1)$ design.
- (ii) An optimal equidistant $\left(n_{1}, d_{1}, N_{1}\right)_{q_{1}}$ code C_{1} with parameters

$$
q_{1}=v / k, \quad n_{1}=(v-1) /(k-1), \quad N_{1}=v, \quad d_{1}=(v-k) /(k-1) .
$$

- (iii) An optimal equidistant constant composition $\left(n_{2}, N_{2}, d_{2}\right)_{q_{2}}$-code C_{2} with parameters

$$
q_{2}=(v+k-2) /(k-1), \quad n_{2}=v, \quad N_{2}=v, \quad d_{2}=v-k+2
$$

where every nonzero symbol occurs in every row (respectively, in every column) of the matrix M_{2} exactly $(k-1)$ times and with the following property: every two rows of M coincide in $k-2$ positions, which have the same symbol of the alphabet.

- (iv) A near-resolvable $\left(v, b^{\prime}, r^{\prime}, k-1, k-2\right)$ design, where

$$
b^{\prime}=v(v-1) /(k-1), \quad r^{\prime}=v-1 .
$$

Denote by $N_{q}(n, d, w)$ the maximal possible number N of codewords in the $(n, N, d)_{q}$ code, and by $N_{q}(n, d, w)$ the maximal possible number N of codewords of weight w in the $(n, N, d)_{q}$ code.

The equidistant $(n, N, d)_{q}$ code C is optimal if its cardinality meets the Plotkin bound

$$
\begin{equation*}
N_{q}(n, d) \leq \frac{q d}{q d-(q-1) n}, \text { if } q d>(q-1) n \tag{4}
\end{equation*}
$$

The code C_{1} from Theorem 2 is optimal according to the bound (4).
The equidistant constant weight $(n, N, d)_{q}$ code C with weight of codewords w is optimal if its cardinality meets the following bound [2]

$$
\begin{equation*}
N_{q}(n, d, w) \leq \frac{(q-1) d n}{q w^{2}-(q-1)(2 w-d) n}, \text { if } q w^{2}>(q-1)(2 w-d) n \tag{5}
\end{equation*}
$$

The code C_{2} from Theorem 2 is optimal according to the bound (5).
We shortly explain the constructions.
(i) \leftrightarrow (ii) Let $X=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ and let $Q=\{0,1, \ldots, q-1\}$. Given a symbol $i \in Q$ denote by $T(i)$ a binary vector of length q and weight 1 with
$(i+1)$ th nonzero position. For a vector $c=\left(c_{1}, \ldots, c_{n}\right)$ of length n over Q denote by $T(c)$ the binary vector $T(c)=\left(T\left(c_{1}\right), \ldots, T\left(c_{n}\right)\right)$ of length $q \cdot n$. For a given $(n, N, d)_{q}$ code C with matrix M, denote by $T(M)$ a binary ($N \times q n$)matrix obtained from M by applying the operator $T(C)$ to all codewords. It is easy to see that if C is an equidistant $(n, N, d=n-1)_{q}$ code then the matrix $T(M)$ is an incident matrix A in the form (1) of the resolvable BIB design with parameters $v, b, r, k, \lambda=1$, satisfying (3). Conversely, given an incident matrix A in the form (1) of the resolvable BIB design with parameters $v, b, r, k, \lambda=1$, the matrix $T^{-1}(A)$ is the matrix M_{1} formed by the all codewords of equidistant code C_{1} with parameters $n_{1}, N_{1}, d_{1}, q_{1}$ satisfying (3)
(iii) \leftrightarrow (iv) Given a nonzero symbol $i \in Q$ denote by $\Gamma(i)$ a binary vector of length $q-1$ and weight 1 with i th nonzero position. For a vector $c=\left(c_{1}, \ldots, c_{n}\right)$ of length n over Q denote $\Gamma(c)$ the binary vector $\Gamma(c)=\left(\Gamma\left(c_{1}\right), \ldots, \Gamma\left(c_{n}\right)\right)$ of length $(q-1) \cdot n$. For a given $(n, N, d)_{q}$ code C with matrix M denote by $\Gamma(M)$ a binary $(N \times(q-1) n)$-matrix obtained from M by applying the operator $\Gamma(C)$ to all elements. It is easy to see that if C_{2} is an equidistant $(n, n, d=n-k+2)_{q}$ code with properties stated in Theorem 2, then the matrix $\Gamma\left(M_{2}\right)$ is an incident matrix A in the form (2) of the near-resolvable BIB design with parameters $v, b^{\prime}, r^{\prime}, k-1, k-2$), satisfying (3). Conversely, given an incident matrix A in the form (2) of the near-resolvable BIB design with parameters $v, b, r, k-1, k-2$, the matrix $\Gamma^{-1}(A)$ is the matrix M_{2} formed by the all codewords of equidistant code C_{2} with parameters and properties stated in Theorem 2.
(i) \leftrightarrow (iii) Given a resolvable BIB design (X, B) with parameters $(v, b, r, k, 1)$, where $X=\{1,2, \ldots, v\}, B=\left\{z_{1}, z_{2}, \ldots, z_{b}\right\}$, and

$$
B=B_{1} \cup B_{2} \cup \cdots \cup B_{r}
$$

we build the q-ary $(v \times v)$-matrix $M=\left[m_{f, g}\right]$ over $Q=\left\{0,1, \ldots, q_{2}-1\right\}$ where $q_{2}=r+1$ as follows: to any block $z_{\ell}=\{i, j, u, \ldots, h\} \in B_{s}$, we associate the element

$$
m_{f, g}=s, \text { for all } f, g \in z_{\ell}, f \neq g
$$

and $m_{f, f}=0$ for all $f \in\{1,2, \ldots v\}$. Then it is easy to see that M is formed by the q-ary equidistant $(v, v, v-k+2)_{q_{2}}$-code C_{2} with properties stated in Theorem 2. Conversely, given an equidistant $(n, n, n-k+2)_{q}$-code C_{2} satisfying Theorem 2 with matrix M, for every j th row $c(j)$ of $M, j \in\{1, \ldots, v\}$, we form $q-1$ blocks $z_{j, 1}, \ldots, z_{j, q-1}$ as follows: if $c(j)$ contains $k-1$ elements s in positions $i_{1}, i_{2}, \ldots, i_{k-1}$ we form the block $z_{j, s}=\left\{j, i_{1}, i_{2}, \ldots, i_{k-1}\right\}$ and place this block to the set B_{s}. In this way we obtain $b=n(q-1) /(k-1)$ blocks of size k partitioned into $r=q-1$ subsets B_{s}, containing $v=n$ elements $\{1,2, \ldots, n\}$. It is easy to see that every pair of elements $\{1,2, \ldots, v\}$ occurs exactly once.

We give an example. Let A_{1} be the incident matrix of the resolvable $(16,4,1)$ design (or affine plane of order 4) (for shortness, we put only ones and omit
zeros):

From A_{1} using our operator T^{-1} we obtain the optimal equidistant $(5,16,4)_{4}$ code C_{1} (which is common known) and using our construction, we obtain the optimal equidistant constant composition $(16,16,14)_{6}$ code C_{2}, whose matrices M_{1} and M_{2} of codewords we give.

Now applying the operator Γ to the matrix M_{2} we obtain the binary (16×80) matrix which is the incident matrix A_{2} of near-resolvable $(16,3,2)$ design. We give the first 40 columns of this matrix.
$A_{2}=\left[\begin{array}{llll|llll|l|}\hline 00000 & 10000 & 10000 & 10000 & 01000 & 00100 & 00010 & 00001 & \cdots \\ 10000 & 00000 & 10000 & 10000 & 00100 & 01000 & 00001 & 00010 & \cdots \\ 10000 & 10000 & 00000 & 10000 & 00010 & 00001 & 01000 & 00100 & \cdots \\ 10000 & 10000 & 10000 & 00000 & 00001 & 00010 & 00100 & 01000 & \cdots \\ \hline 01000 & 00100 & 00010 & 00001 & 00000 & 10000 & 10000 & 10000 & \cdots \\ 00100 & 01000 & 00001 & 00010 & 10000 & 00000 & 10000 & 10000 & \cdots \\ 00010 & 00001 & 01000 & 00100 & 10000 & 10000 & 00000 & 10000 & \cdots \\ 00001 & 00010 & 00100 & 01000 & 10000 & 10000 & 10000 & 00000 & \cdots \\ \hline 01000 & 00001 & 00100 & 00010 & 01000 & 00010 & 00001 & 00100 & \cdots \\ 00001 & 01000 & 00010 & 00100 & 00010 & 01000 & 00100 & 00001 & \cdots \\ 00100 & 00010 & 01000 & 00001 & 00001 & 00100 & 01000 & 00010 & \cdots \\ 00010 & 00100 & 00001 & 01000 & 00100 & 00001 & 00010 & 01000 & \cdots \\ \hline 01000 & 00010 & 00001 & 00100 & 01000 & 00001 & 00100 & 00010 & \cdots \\ 00010 & 01000 & 00100 & 00001 & 00001 & 01000 & 00010 & 00100 & \cdots \\ 00001 & 00100 & 01000 & 00010 & 00100 & 00010 & 01000 & 00001 & \cdots \\ 00100 & 00001 & 00010 & 01000 & 00010 & 00100 & 00001 & 01000 & \cdots\end{array}\right]$

3 References

1. R.J.R. Abel, G. Ge, J. Yin, Resolvable and near-resolvable designs// Handbook of Combinatorial Designs. 2nd edition. Ed. by Colbourn C.J., Dinitz J.H., Boca Raton: Chapman and Hall/CRC Press, 2007. VI.7. P. 124-132.
2. Bassalygo L.A. New upper bounds for error-correctng codes// Problems of Information Transmission. 1965. vol. 1, No. 1. pp. 41-44.
3. L. A. Bassalygo, V. A. Zinoviev, Optimal equisymbol codes// Problmes of Information Transmissions, 2014. vol. 50, No. 4, pp. 18-24.
4. S. Furino, Y. Miao, J. Yin, Frames and Resolvable Designs, CRC Press, Boca Raton - New York - London - Tokyo. 1996.
5. G. T. Bogdanova, V. A. Zinoviev, T. J. Todorov, On construction of q-ary equidistant codes// Problmes of Information Transmission, 2007, vol. 43, No. 4, pp. 13-36.
6. N. V. Semakov, V. A. Zinoviev, Equidistant q-ary codes with maximal distance and resolvable balanced incomplete block-designs// Problems of Information Transmission, 1968, V. 4. No. 2, pp. 3-10.

[^0]: ${ }^{1}$ This work has been partially supported by the Russian fund of fundamental researches (under the project No. 15-01-08051).

