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Abstract. We study the Fourier transform of Preparata-like codes and perfect
codes containing Preparata-like codes. We try to reconstruct these codes by theirs
vertices belonging to two concentric spheres.

1 Introduction

We study codes in the n-dimensional binary Hamming space, or hypercube,
consisting from the set Qn of all binary n-tuples (words), with component-wise
modulo-2 addition and the Hamming metric. The support supp(α) of the word
α is the set of its nonzero positions; the cardinality of the support of a word α
is its Hamming weight wt(α). The Hamming distance ρ(α, β) between words α
and β is the Hamming weight of α + β.

A set C ⊆ Qn of M words with mutual distance at least d is called a binary
(n,M, d) code, i.e., a code of length n, size M , and distance d. A code is called
perfect (with distance 3) if the balls of radius 1 centered in the code words do
not intersect and cover all Qn. It is straightforward from the definition that the
minimal distance between codewords is 3. Perfect codes of length n exist for
every n of form n = 2t − 1 and do not exist for any other n. In the half of the
cases, namely, when t is even, there are Preparata-like codes (in what follows,
we will call them as Preparata codes) of length n = 2t − 1, which are defined
as the codes of distance 5 and size 2n+1/(n + 1)2. Every Preparata code P is
included in a unique perfect code [3]; we denote it as C(P ).

A vertex partition (D0, . . . , Dr) is called a perfect coloring (or equitable
partition, or regular partition, or partition design) if for every i, j ∈ {0, . . . , r}
there is an integer sij such that every vertex from Di has exactly sij neighbors
from Dj . The matrix S = (sij) is called the parameter matrix of the coloring.

It is well known that the eigenvalues of the graph of n-dimensional hyper-
cube are equal to n − 2i, i = 0, 1, . . . , n. The corresponding eigenfunctions
satisfy the equation

∑

y∈N(x)

f(y) = (n− 2i)f(x), i = 0, 1, . . . , n, (1)
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where x is an arbitrary vertex of the hypercube and N(x) is the set of all
neighbors of x.

Consider an orthogonal basis of a space of all real functions over the hyper-
cube: {

fa : Qn → R : fa(x) = (−1)〈a,x〉, a ∈ Qn
}

.

A function fa, a ∈ Qn, is the eigenfunction with the eigenvalue n − 2wt(a).
So, the set of functions

{fa : Qn → R : a ∈ Wi} (2)

forms the basis of the eigensubspace Vi with the eigenvalue λ = n − 2i, i =
0, 1, . . . , n. This subspace consists of all functions such that their Fourier coef-
ficients can be nonzero only on the i-th level of the hypercube. The subspace
V0 is 1-dimensional and consists of constant functions.

For any code C we denote by f
(h)
C the orthogonal projection of the character-

istic function χC onto the eigensubspace Vh. So, χC can be uniquely represented
as the sum

χC = f0
C + f1

C + . . . + fn
C .

The matrix A with elements axy = fx(y), x,y ∈ Qn, defines the orthog-
onal transform that is called Fourier transform. Let us denote by Aij

(n) the
submatrix of A with rows corresponding to the vertices from Wi and columns
corresponding to the vertices of Wj . Mentioned conditions can be expressed in
terms of submatrices of matrix A of the Fourier transform.

It was shown in [1] that under some condition any function from Vi is
uniquely determined by its values on Wi. Analogously, under some condition
any function from Vi × Vj is uniquely determined by its values on Wi ∪Wj [2].

Let us denote by Ki(t,N), i = 0, . . . , N, the Krawtchouk polynomial:

Ki(t,N) =
i∑

j=0

(−1)j

(
t
j

) (
N − t
i− j

)
.

2 Fourier transform of Preparata codes

It is known that each Preparata code P induces a perfect coloring D by distances
from the code P . The coloring D has four colors D0 = P, D1, D2, D3, moreover,
D3 = C(P ) \ P . The parameter matrix of the coloring D is

S =




0 n 0 0
1 0 n− 1 0
0 2 n− 3 1
0 0 n 0


 .
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Since the eigenvalues of S are

n,−1,−1±√n + 1,

then the characteristic function of each color belongs to the subspace

V0 × Vk × V(n+1)/2 × Vh, k =
n + 1

2
−
√

n + 1
2

, h =
n + 1

2
+
√

n + 1
2

.

Then the characteristic function of the color Di, i = 0, 1, 2, 3, is represented as
a sum of four eigenfunctions:

χDi = f
(0)
Di

+ f
(k)
Di

+ f
((n+1)/2)
Di

+ f
(h)
Di

.

It is easy to see that f
(0)
P = 2

(n+1)2
.

Lemma 1 Let P be a Preparata code and C(P ) be the perfect code which con-
tains P . Then

f
((n+1)/2)
P =

2
n + 1

f
((n+1)/2)
C(P ) .

Proof. It is well-known that for any perfect code C holds χC − 1/(n + 1) ∈
V(n+1)/2, i.e.

χC = 1/(n + 1) + f
((n+1)/2)
C .

In particular, it is true for the perfect code which contains the Preparata code
P . As far as D3 = C(P ) \ P and χC(P ) = χP + χD3 then

f
(k)
P + f

(k)
D3

= 0,

f
(h)
P + f

(h)
D3

= 0,

f
(((n+1)/2)
P + f

(((n+1)/2))
D3

= f
(((n+1)/2)
C(P ) . (3)

The set D2 is, on the one hand, the set of all vertices at distance 2 from the
code P , on the other hand, the set of all vertices at distance 1 from the set
D3 = C(P ) \ P . Then first,

χD2(x) =
∑

1≤i<j≤n

χP (x + ei + ej),

and second,

χD2(x) =
n∑

i=1

χD3(x + ei).
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Using these equations and the definition of eigenfunction, we get the equations
for the eigenfunctions. First,

f
((n+1)/2)
D2

(x) =
∑

1≤i<j≤n

f
((n+1)/2)
P (x + ei + ej) =

1
2




n∑

i=1

n∑

j=1

f
((n+1)/2)
P ((x + ej) + ei)− nf

((n+1)/2)
P (x)


 =

1
2




n∑

j=1

(−f
((n+1)/2)
P (x + ej)− nf

((n+1)/2)
P (x)


 =

1
2

(
f

((n+1)/2)
P (x)− nf

((n+1)/2)
P (x)

)
= −n− 1

2
f

((n+1)/2)
P (x).

Second,

f
((n+1)/2)
D2

(x) =
n∑

i=1

f
((n+1)/2)
D3

(x + ei) = −f
((n+1)/2)
D3

(x).

Comparing two expressions for f
((n+1)/2)
D2

we have that

n− 1
2

f
((n+1)/2)
P = f

((n+1)/2)
D3

.

Now using 3 we finally get that

f
((n+1)/2)
P =

2
n + 1

f
((n+1)/2)
C(P ) .

Lemma is proved.
For a Preparata code P define the function FP = χP − 2

n+1χC(P ) with the
following values:

FP (x) =





n−1
n+1 , x ∈ P

− 2
n+1 , x ∈ C(P ) \ P

0, x /∈ C(P )

This function is antipodal, i.e. FP (x) = FP (1 + x), because the codes P and
C(P ) are antipodal.

Lemma 1 implies the following

Theorem 1 Let P be a Preparata code. Then

FP ∈ Vk × Vh, k =
n + 1

2
−
√

n + 1
2

, h =
n + 1

2
+
√

n + 1
2

.
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We try to use Theorem 1 to reconstructing a Preparata code by its subset.

Theorem 2 Let P be a Preparata code. If

Ki(i, 2i +
√

n + 1) 6= 0, i = 0, . . . , k, (4)

then the pair of codes P and C(P ) is uniquely determined by the sets P ∩
(Wk−1 ∪Wk) and C(P ) ∩ (Wk−1 ∪Wk).

Proof. Any function f ∈ Vk × Vh is uniquely determined by its values
{f(x) : x ∈ Wk ∪Wh} if and only if the matrix

[
Akk

(n) Akh
(n)

Ahk
(n) Ahh

(n)

]

is invertible [2]. It is easy to see that
[

Akk
(n) Akh

(n)

Ahk
(n) Ahh

(n)

]
= Akk

(n+1).

The eigenvalues of Akk
(n+1) are

λj(k, n + 1) = (−2)jKk−j(k − j, n + 1− 2j), j = 0, . . . , k

Substitution i = k − j implies that Akk
(n+1) is invertible if and only if Ki(i, 2i +√

n + 1) 6= 0 for all i = 0, . . . , k. Theorem is proved.
The value Ki(i, 2i+

√
n + 1) is equal to the coefficient at ti of the polynomial

(1− t2)i(1 + t)
√

n+1.
The values Ki(i, 2i +

√
n + 1) 6= 0 for all i = 0, . . . , k, are nonzero for small

n, more exactly, for n = 15 and n = 63. The author hopes to prove these
inequalities for all n = 4m − 1.
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