On the reconstruction of Preparata-like codes ${ }^{1}$

Anastasia Vasil'eva
vasilan@math.nsc.ru

Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, RUSSIA

Abstract

We study the Fourier transform of Preparata-like codes and perfect codes containing Preparata-like codes. We try to reconstruct these codes by theirs vertices belonging to two concentric spheres.

1 Introduction

We study codes in the n-dimensional binary Hamming space, or hypercube, consisting from the set Q_{n} of all binary n-tuples (words), with component-wise modulo-2 addition and the Hamming metric. The support $\operatorname{supp}(\alpha)$ of the word α is the set of its nonzero positions; the cardinality of the support of a word α is its Hamming weight $\mathrm{wt}(\alpha)$. The Hamming distance $\rho(\alpha, \beta)$ between words α and β is the Hamming weight of $\alpha+\beta$.

A set $C \subseteq Q^{n}$ of M words with mutual distance at least d is called a binary (n, M, d) code, i.e., a code of length n, size M, and distance d. A code is called perfect (with distance 3) if the balls of radius 1 centered in the code words do not intersect and cover all Q_{n}. It is straightforward from the definition that the minimal distance between codewords is 3 . Perfect codes of length n exist for every n of form $n=2^{t}-1$ and do not exist for any other n. In the half of the cases, namely, when t is even, there are Preparata-like codes (in what follows, we will call them as Preparata codes) of length $n=2^{t}-1$, which are defined as the codes of distance 5 and size $2^{n+1} /(n+1)^{2}$. Every Preparata code P is included in a unique perfect code [3]; we denote it as $C(P)$.

A vertex partition $\left(D_{0}, \ldots, D_{r}\right)$ is called a perfect coloring (or equitable partition, or regular partition, or partition design) if for every $i, j \in\{0, \ldots, r\}$ there is an integer $s_{i j}$ such that every vertex from D_{i} has exactly $s_{i j}$ neighbors from D_{j}. The matrix $S=\left(s_{i j}\right)$ is called the parameter matrix of the coloring.

It is well known that the eigenvalues of the graph of n-dimensional hypercube are equal to $n-2 i, i=0,1, \ldots, n$. The corresponding eigenfunctions satisfy the equation

$$
\begin{equation*}
\sum_{\mathbf{y} \in N(\mathbf{x})} f(\mathbf{y})=(n-2 i) f(\mathbf{x}), \quad i=0,1, \ldots, n \tag{1}
\end{equation*}
$$

[^0]where \mathbf{x} is an arbitrary vertex of the hypercube and $N(\mathbf{x})$ is the set of all neighbors of \mathbf{x}.

Consider an orthogonal basis of a space of all real functions over the hypercube:

$$
\left\{f^{\mathbf{a}}: \mathbf{Q}^{n} \rightarrow \mathbf{R}: f^{\mathbf{a}}(\mathbf{x})=(-1)^{\langle\mathbf{a}, \mathbf{x}\rangle}, \mathbf{a} \in \mathbf{Q}^{n}\right\} .
$$

A function $f^{\mathbf{a}}, \mathbf{a} \in \mathbf{Q}^{n}$, is the eigenfunction with the eigenvalue $n-2 w t(\mathbf{a})$. So, the set of functions

$$
\begin{equation*}
\left\{f^{\mathbf{a}}: \mathbf{Q}^{n} \rightarrow \mathbf{R}: \mathbf{a} \in W_{i}\right\} \tag{2}
\end{equation*}
$$

forms the basis of the eigensubspace V_{i} with the eigenvalue $\lambda=n-2 i, i=$ $0,1, \ldots, n$. This subspace consists of all functions such that their Fourier coefficients can be nonzero only on the i-th level of the hypercube. The subspace V_{0} is 1-dimensional and consists of constant functions.

For any code C we denote by $f_{C}^{(h)}$ the orthogonal projection of the characteristic function χ_{C} onto the eigensubspace V_{h}. So, χ_{C} can be uniquely represented as the sum

$$
\chi_{C}=f_{C}^{0}+f_{C}^{1}+\ldots+f_{C}^{n} .
$$

The matrix A with elements $a_{\mathbf{x y}}=f^{\mathbf{x}}(\mathbf{y}), \mathbf{x}, \mathbf{y} \in \mathbf{Q}^{n}$, defines the orthogonal transform that is called Fourier transform. Let us denote by $A_{(n)}^{i j}$ the submatrix of A with rows corresponding to the vertices from W_{i} and columns corresponding to the vertices of W_{j}. Mentioned conditions can be expressed in terms of submatrices of matrix A of the Fourier transform.

It was shown in [1] that under some condition any function from V_{i} is uniquely determined by its values on W_{i}. Analogously, under some condition any function from $V_{i} \times V_{j}$ is uniquely determined by its values on $W_{i} \cup W_{j}[2]$.

Let us denote by $K_{i}(t, N), i=0, \ldots, N$, the Krawtchouk polynomial:

$$
K_{i}(t, N)=\sum_{j=0}^{i}(-1)^{j}\binom{t}{j}\binom{N-t}{i-j} .
$$

2 Fourier transform of Preparata codes

It is known that each Preparata code P induces a perfect coloring D by distances from the code P. The coloring D has four colors $D_{0}=P, D_{1}, D_{2}, D_{3}$, moreover, $D_{3}=C(P) \backslash P$. The parameter matrix of the coloring D is

$$
S=\left[\begin{array}{cccc}
0 & n & 0 & 0 \\
1 & 0 & n-1 & 0 \\
0 & 2 & n-3 & 1 \\
0 & 0 & n & 0
\end{array}\right] .
$$

Since the eigenvalues of S are

$$
n,-1,-1 \pm \sqrt{n+1}
$$

then the characteristic function of each color belongs to the subspace

$$
V_{0} \times V_{k} \times V_{(n+1) / 2} \times V_{h}, \quad k=\frac{n+1}{2}-\frac{\sqrt{n+1}}{2}, \quad h=\frac{n+1}{2}+\frac{\sqrt{n+1}}{2} .
$$

Then the characteristic function of the color $D_{i}, i=0,1,2,3$, is represented as a sum of four eigenfunctions:

$$
\chi_{D_{i}}=f_{D_{i}}^{(0)}+f_{D_{i}}^{(k)}+f_{D_{i}}^{((n+1) / 2)}+f_{D_{i}}^{(h)}
$$

It is easy to see that $f_{P}^{(0)}=\frac{2}{(n+1)^{2}}$.
Lemma 1 Let P be a Preparata code and $C(P)$ be the perfect code which contains P. Then

$$
f_{P}^{((n+1) / 2)}=\frac{2}{n+1} f_{C(P)}^{((n+1) / 2)}
$$

Proof. It is well-known that for any perfect code C holds $\chi_{C}-1 /(n+1) \in$ $V_{(n+1) / 2}$, i.e.

$$
\chi_{C}=1 /(n+1)+f_{C}^{((n+1) / 2)}
$$

In particular, it is true for the perfect code which contains the Preparata code P. As far as $D_{3}=C(P) \backslash P$ and $\chi_{C(P)}=\chi_{P}+\chi_{D_{3}}$ then

$$
\begin{gather*}
f_{P}^{(k)}+f_{D_{3}}^{(k)}=0 \\
f_{P}^{(h)}+f_{D_{3}}^{(h)}=0 \\
f_{P}^{(((n+1) / 2)}+f_{D_{3}}^{(((n+1) / 2))}=f_{C(P)}^{(((n+1) / 2)} . \tag{3}
\end{gather*}
$$

The set D_{2} is, on the one hand, the set of all vertices at distance 2 from the code P, on the other hand, the set of all vertices at distance 1 from the set $D_{3}=C(P) \backslash P$. Then first,

$$
\chi_{D_{2}}(\mathbf{x})=\sum_{1 \leq i<j \leq n} \chi_{P}\left(\mathbf{x}+\mathbf{e}^{\mathbf{i}}+\mathbf{e}^{\mathbf{j}}\right)
$$

and second,

$$
\chi_{D_{2}}(\mathbf{x})=\sum_{i=1}^{n} \chi_{D_{3}}\left(\mathbf{x}+\mathbf{e}^{\mathbf{i}}\right)
$$

Using these equations and the definition of eigenfunction, we get the equations for the eigenfunctions. First,

$$
\begin{gathered}
f_{D_{2}}^{((n+1) / 2)}(\mathbf{x})=\sum_{1 \leq i<j \leq n} f_{P}^{((n+1) / 2)}\left(\mathbf{x}+\mathbf{e}^{\mathbf{i}}+\mathbf{e}^{\mathbf{j}}\right)= \\
\frac{1}{2}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} f_{P}^{((n+1) / 2)}\left(\left(\mathbf{x}+\mathbf{e}^{\mathbf{j}}\right)+\mathbf{e}^{\mathbf{i}}\right)-n f_{P}^{((n+1) / 2)}(\mathbf{x})\right)= \\
\frac{1}{2}\left(\sum_{j=1}^{n}\left(-f_{P}^{((n+1) / 2)}\left(\mathbf{x}+\mathbf{e}^{\mathbf{j}}\right)-n f_{P}^{((n+1) / 2)}(\mathbf{x})\right)=\right. \\
\frac{1}{2}\left(f_{P}^{((n+1) / 2)}(\mathbf{x})-n f_{P}^{((n+1) / 2)}(\mathbf{x})\right)=-\frac{n-1}{2} f_{P}^{((n+1) / 2)}(\mathbf{x}) .
\end{gathered}
$$

Second,

$$
f_{D_{2}}^{((n+1) / 2)}(\mathbf{x})=\sum_{i=1}^{n} f_{D_{3}}^{((n+1) / 2)}\left(\mathbf{x}+\mathbf{e}^{\mathbf{i}}\right)=-f_{D_{3}}^{((n+1) / 2)}(\mathbf{x}) .
$$

Comparing two expressions for $f_{D_{2}}^{((n+1) / 2)}$ we have that

$$
\frac{n-1}{2} f_{P}^{((n+1) / 2)}=f_{D_{3}}^{((n+1) / 2)} .
$$

Now using 3 we finally get that

$$
f_{P}^{((n+1) / 2)}=\frac{2}{n+1} f_{C(P)}^{((n+1) / 2)} .
$$

Lemma is proved.
For a Preparata code P define the function $F_{P}=\chi_{P}-\frac{2}{n+1} \chi_{C(P)}$ with the following values:

$$
F_{P}(\mathbf{x})= \begin{cases}\frac{n-1}{n+1}, & \mathbf{x} \in P \\ -\frac{2}{n+1}, & \mathrm{x} \in C(P) \backslash P \\ 0, & \mathrm{x} \notin C(P)\end{cases}
$$

This function is antipodal, i.e. $F_{P}(\mathbf{x})=F_{P}(\mathbf{1}+\mathbf{x})$, because the codes P and $C(P)$ are antipodal.

Lemma 1 implies the following
Theorem 1 Let P be a Preparata code. Then

$$
F_{P} \in V_{k} \times V_{h}, \quad k=\frac{n+1}{2}-\frac{\sqrt{n+1}}{2}, \quad h=\frac{n+1}{2}+\frac{\sqrt{n+1}}{2}
$$

We try to use Theorem 1 to reconstructing a Preparata code by its subset.
Theorem 2 Let P be a Preparata code. If

$$
\begin{equation*}
K_{i}(i, 2 i+\sqrt{n+1}) \neq 0, \quad i=0, \ldots, k, \tag{4}
\end{equation*}
$$

then the pair of codes P and $C(P)$ is uniquely determined by the sets $P \cap$ $\left(W_{k-1} \cup W_{k}\right)$ and $C(P) \cap\left(W_{k-1} \cup W_{k}\right)$.

Proof. Any function $f \in V_{k} \times V_{h}$ is uniquely determined by its values $\left\{f(\mathbf{x}): \mathbf{x} \in W_{k} \cup W_{h}\right\}$ if and only if the matrix

$$
\left[\begin{array}{ll}
A_{(n)}^{k k} & A_{(n)}^{k h} \\
A_{(n)}^{h k} & A_{(n)}^{h h}
\end{array}\right]
$$

is invertible [2]. It is easy to see that

$$
\left[\begin{array}{ll}
A_{(n)}^{k k} & A_{(n)}^{k h} \\
A_{(n)}^{h k} & A_{(n)}^{h h}
\end{array}\right]=A_{(n+1)}^{k k} .
$$

The eigenvalues of $A_{(n+1)}^{k k}$ are

$$
\lambda_{j}(k, n+1)=(-2)^{j} K_{k-j}(k-j, n+1-2 j), \quad j=0, \ldots, k
$$

Substitution $i=k-j$ implies that $A_{(n+1)}^{k k}$ is invertible if and only if $K_{i}(i, 2 i+$ $\sqrt{n+1}) \neq 0$ for all $i=0, \ldots, k$. Theorem is proved.

The value $K_{i}(i, 2 i+\sqrt{n+1})$ is equal to the coefficient at t^{i} of the polynomial $\left(1-t^{2}\right)^{i}(1+t)^{\sqrt{n+1}}$.

The values $K_{i}(i, 2 i+\sqrt{n+1}) \neq 0$ for all $i=0, \ldots, k$, are nonzero for small n, more exactly, for $n=15$ and $n=63$. The author hopes to prove these inequalities for all $n=4^{m}-1$.

References

[1] A.Yu. Vasil'eva, On reconstruction of generalized centered functions, Proc. of Ninth Int. Workshop on Algebraic and Combinatorial Coding Theory 19-25 June, 2004, Kranevo, Bulgaria. P. 384-389.
[2] A. Yu. Vasil'eva, On reconstructive sets of vertices in the Boolean cube, Diskretn. Anal. Issled. Oper., 19:1 (2012), P. 316.
[3] G. V. Zaitsev, V. A. Zinoviev, and N. V. Semakov. Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes. In P. N. Petrov and F. Csaki, editors, Proc. 2nd Int. Symp. Information Theory, Tsahkadsor, Armenia, USSR, 1971, P. 257-264, Budapest, Hungary, 1973. Akademiai Kiado.

[^0]: ${ }^{1}$ The work was funded by the Russian science foundation (grant 14-11-00555)

