# Decoding Interleaved Gabidulin Codes using Alekhnovich's Algorithm ${ }^{1}$ 

Sven Puchinger<br>sven. puchinger@uni-ulm.de<br>Institute of Communications Engineering, University of Ulm, Germany<br>SVEN MÜELICH sven.mueelich@uni-ulm.de<br>Institute of Communications Engineering, University of Ulm, Germany<br>DAVID MÖDINGER david.moedinger@uni-ulm.de<br>Institute of Distributed Systems, University of Ulm, Germany<br>Johan S. R. Nielsen jsrn@jsrn.dk<br>Dpt. of App. Mat. \& Computer Science, Technical University of Denmark, Denmark Martin Bossert<br>martin.bossert@uni-ulm.de<br>Institute of Communications Engineering, University of Ulm, Germany


#### Abstract

We prove that Alekhnovich's algorithm can be used for row reduction of skew polynomial matrices. This yields an $O\left(\ell^{3} n^{(\omega+1) / 2} \log (n)\right)$ decoding algorithm for $\ell$-Interleaved Gabidulin codes of length $n$, where $\omega$ is the matrix multiplication exponent, improving in the exponent of $n$ compared to previous results.


## 1 Introduction

It is shown in [1, 2] that Interleaved Gabidulin codes of length $n \in \mathbb{N}$ and interleaving degree $\ell \in \mathbb{N}$ can be error- and erasure-decoded by transforming the following skew polynomial [3] matrix into weak Popov form (cf. Section 2) ${ }^{2}$ :

$$
\mathbf{B}=\left[\begin{array}{ccccc}
x^{\gamma_{0}} & s_{1} x_{1}^{\gamma_{1}} & s_{2} x^{\gamma_{2}} & \ldots & s_{\ell} x^{\gamma_{\ell}}  \tag{1}\\
0 & g_{1} x^{\gamma_{1}} & 0 & 0 & 0 \\
0 & 0 & g_{2} x^{\gamma_{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & g_{\ell} x^{\gamma_{\ell}}
\end{array}\right],
$$

where the skew polynomials $s_{1}, \ldots, s_{\ell}, g_{1}, \ldots, g_{\ell}$ and the non-negative integers $\gamma_{0}, \ldots, \gamma_{\ell}$ arise from the decoding problem and are known at the receiver. Due to lack of space, we cannot give a comprehensive description of Interleaved Gabidulin codes, the mentioned procedure and the resulting decoding radius here and therefore refer to [2, Section 3.1.3]. By adapting row reduction ${ }^{3}$ algorithms known for polynomial rings $\mathbb{F}[x]$ to skew polynomial rings, decoding

[^0]complexities of $O\left(\ell^{2} n^{2}\right)$ and $O\left(\ell n^{2}\right)$ can be achieved [2], the latter being as fast as the algorithm in [5]. In this paper, we adapt Alekhnovich's algorithm [7] for row reduction of $\mathbb{F}[x]$ matrices to the skew polynomial case.

## 2 Preliminaries

Let $\mathbb{F}$ be a finite field and $\sigma$ an $\mathbb{F}$-automorphism. A skew polynomial ring $\mathbb{F}[x, \sigma][3]$ contains polynomials of the form $a=\sum_{i=0}^{\operatorname{deg} a} a_{i} x^{i}$, where $a_{i} \in \mathbb{F}$ and $a_{\operatorname{deg} a} \neq 0(\operatorname{deg} a$ is the degree of $a)$, which are multiplied according to the rule $x \cdot a=\sigma(a) \cdot x$, extended recursively to arbitrary degrees. This ring is noncommutative in general. All polynomials in this paper are skew polynomials.

It was shown in [6] for linearized polynomials and generalized in [4] to arbitrary skew polynomials that multiplication of two such polynomials of degrees $\leq s$ can be multiplied with complexity $\mathcal{M}(s) \in O\left(s^{(\omega+1) / 2}\right)$ in operations over $\overline{\mathbb{F}}$, where $\omega$ is the matrix multiplication exponent.

We say that a polynomial $a$ has length len $a$ if $a_{i}=0$ for all $i=0, \ldots, \operatorname{deg} a-$ $\operatorname{len} a$ and $a_{\operatorname{deg} a-\operatorname{len} a+1} \neq 0$. Thus, it can be written as $a=\tilde{a} x^{\operatorname{deg} a-\operatorname{len} a+1}$, where $\operatorname{deg} \tilde{a} \leq \operatorname{len} a$ and the multiplication of two polynomials $a, b$ of length $\leq s$ can be accomplished as $a \cdot b=\left[\tilde{a} \cdot \sigma^{\operatorname{deg} a-\operatorname{len} a+1}(\tilde{b})\right] x^{\operatorname{deg} a+\operatorname{deg} a-\operatorname{len} a-\operatorname{len} b+1}$. It is a reasonable assumption in a that computing $\sigma^{i}(\alpha)$ with $\alpha \in \mathbb{F}, i \in \mathbb{N}$ is in $O(1)$ (cf. [4]). Hence, $a$ and $b$ can be multiplied in $\mathcal{M}(s)$ time, although their degrees might be $\gg s$.

Vectors $\mathbf{v}$ and matrices $\mathbf{M}$ are denoted by bold and small/capital letters. Indices start at 1 , e.g. $\mathbf{v}=\left(v_{1}, \ldots, v_{r}\right)$ for $r \in \mathbb{N}$. $\mathbf{E}_{i, j}$ is the matrix containing only one non-zero entry $=1$ at position $(i, j)$ and $\mathbf{I}$ is the identity matrix. We denote the $i$ th row of a matrix $\mathbf{M}$ by $\mathbf{m}_{i}$. The degree of a vector $\mathbf{v} \in \mathbb{F}[x, \sigma]^{r}$ is the maximum of the degrees of its components $\operatorname{deg} \mathbf{v}=\max _{i}\left\{\operatorname{deg} v_{i}\right\}$ and the degree of a matrix $\mathbf{M}$ is the sum of its rows' $\operatorname{degrees} \operatorname{deg} \mathbf{M}=\sum_{i} \operatorname{deg} \mathbf{m}_{i}$.

The leading position (LP) of $\mathbf{v}$ is the rightmost position of maximal degree $\operatorname{LP}(\mathbf{v})=\max \left\{i: \operatorname{deg} v_{i}=\operatorname{deg} \mathbf{v}\right\}$. We say that the leading coefficient (LC) of a polynomial $a$ is $\operatorname{LT}(a)=a_{\operatorname{deg} a} x^{\operatorname{deg} a}$ and the leading term (LT) of a vector $\mathbf{v}$ is $\operatorname{LT}(\mathbf{v})=v_{\mathrm{LP}(\mathbf{v})}$. A matrix $\mathbf{M} \in \mathbb{F}[x, \sigma]^{r \times r}$ is in weak Popov form (wPf) if the leading positions of its rows are pairwise distinct. E.g., the following matrix is in weak Popov form since $\operatorname{LP}\left(\mathbf{m}_{1}\right)=2$ and $\operatorname{LP}\left(\mathbf{m}_{2}\right)=1$

$$
\mathbf{M}=\left[\begin{array}{cc}
x^{2}+x & x^{2}+1 \\
x^{4} & x^{3}+x^{2}+x+1
\end{array}\right]
$$

Similar to [7], we define an accuracy approximation to depth $t \in \mathbb{N}_{0}$ of skew polynomials as $\left.a\right|_{t}=\sum_{i=\operatorname{deg} a-t+1}^{\operatorname{deg} a} a_{i} x^{i}$. For vectors, it is defined as $\left.\mathbf{v}\right|_{t}=$ $\left(\left.v_{1}\right|_{\min \left\{0, t-\left(\operatorname{deg} \mathbf{v}-\operatorname{deg} v_{1}\right)\right\}}, \ldots,\left.v_{r}\right|_{\min \left\{0, t-\left(\operatorname{deg} \mathbf{v}-\operatorname{deg} v_{r}\right)\right\}}\right)$ and for matrices row-wise, where the degrees of the rows are allowed to be different. E.g., with $\mathbf{M}$ as above,

$$
\left.\mathbf{M}\right|_{2}=\left[\begin{array}{cc}
x^{2}+x & x^{2} \\
x^{4} & x^{3}
\end{array}\right] \text { and }\left.\mathbf{M}\right|_{1}=\left[\begin{array}{cc}
x^{2} & x^{2} \\
x^{4} & 0
\end{array}\right]
$$

We can extend the definition of the length of a polynomial to vectors $\mathbf{v}$ as $\operatorname{len} \mathbf{v}=\max _{i}\left\{\operatorname{deg} \mathbf{v}-\operatorname{deg} v_{i}+\operatorname{len} v_{i}\right\}$ and to matrices as len $\mathbf{M}=\max _{i}\left\{\operatorname{len} \mathbf{m}_{i}\right\}$. With this notation, we have len $\left(\left.a\right|_{t}\right) \leq t, \operatorname{len}\left(\left.\mathbf{v}\right|_{t}\right) \leq t$ and $\operatorname{len}\left(\left.\mathbf{M}\right|_{t}\right) \leq t$.

## 3 Alekhnovich's Algorithm over Skew Polynomials

Alekhnovich's algorithm [7] was proposed for transforming matrices over ordinary polynomials $\mathbb{F}[x]$ into weak Popov form. In this section, we show that, with a few modifications, it also works with skew polynomial matrices. As in the original paper, we prove the correctness of Algorithm 2 (main algorithm) using the auxiliary Algorithm 1.

```
Algorithm 1: R(M)
    Input: Module basis \(\mathbf{M} \in \mathbb{F}[x, \sigma]^{r \times r}\) with \(\operatorname{deg} \mathbf{M}=n\)
    Output: \(\mathbf{U} \in \mathbb{F}[x, \sigma]^{r \times r}: \mathbf{U} \cdot \mathbf{M}\) is in \(w P f\) or \(\operatorname{deg}(\mathbf{U} \cdot \mathbf{M}) \leq \operatorname{deg} \mathbf{M}-1\)
    \(\mathrm{U} \leftarrow \mathrm{I}\)
    while \(\operatorname{deg} \mathbf{M}=n\) and \(\mathbf{M}\) is not in weak Popov form do
        Find \(i, j\) such that \(\operatorname{LP}\left(\mathbf{m}_{i}\right)=\operatorname{LP}\left(\mathbf{m}_{j}\right)\) and \(\operatorname{deg} \mathbf{m}_{i} \geq \operatorname{deg} \mathbf{m}_{j}\)
        \(\delta \leftarrow \operatorname{deg} \mathbf{m}_{i}-\operatorname{deg} \mathbf{m}_{j}\) and \(\alpha \leftarrow \operatorname{LC}\left(\operatorname{LT}\left(\mathbf{m}_{i}\right)\right) / \theta^{\delta}\left(\operatorname{LC}\left(\operatorname{LT}\left(\mathbf{m}_{j}\right)\right)\right)\)
        \(\mathbf{U} \leftarrow\left(\mathbf{I}-\alpha x^{\delta} \mathbf{E}_{i, j}\right) \cdot \mathbf{U}\) and \(\mathbf{M} \leftarrow\left(\mathbf{I}-\alpha x^{\delta} \mathbf{E}_{i, j}\right) \cdot \mathbf{M}\)
    return U
```

Theorem 1 Algorithm 1 is correct and if $\operatorname{len}(\mathbf{M}) \leq 1$, it has complexity $O\left(r^{3}\right)$.
Proof Inside the while loop, the algorithm performs a so-called simple transformation. It is shown in [2] that such a simple transformation on an $\mathbb{F}[x, \sigma]$-matrix M preserves both its rank and row space (note that this does not trivially follow from the $\mathbb{F}[x]$ case due to non-commutativity) and reduces either $\operatorname{LP}\left(\mathbf{m}_{i}\right)$ or $\operatorname{deg} \mathbf{m}_{i}$. At some point, $\mathbf{M}$ is in weak Popov form (iff no simple transformation is possible anymore), or $\operatorname{deg} \mathbf{m}_{i}$ and likewise $\operatorname{deg} \mathbf{M}$ is reduced by one. The matrix $\mathbf{U}$ keeps track of the simple transformations, i.e. multiplying $\mathbf{M}$ by ( $\mathbf{I}-\alpha x^{\delta} \mathbf{E}_{i, j}$ ) from the left is the same as applying a simple transformation on $\mathbf{M}$. At termination, $\mathbf{M}=\mathbf{U} \cdot \mathbf{M}^{\prime}$, where $\mathbf{M}^{\prime}$ is the input matrix of the algorithm. Since $\sum_{i} \operatorname{LP}\left(\mathbf{m}_{i}\right)$ can be decreased at most $r^{2}$ times without changing $\operatorname{deg} \mathbf{M}$, the algorithm performs at most $r^{2}$ simple transformations. Multiplying $\left(\mathbf{I}-\alpha x^{\delta} \mathbf{E}_{i, j}\right)$ by a matrix $\mathbf{V}$ consists of scaling a row with $\alpha x^{\delta}$ and adding it to another (target) row. Due to the accuracy approximation, all monomials of the non-zero polynomials in the scaled and the target row have the same power, implying a cost of $r$ for each simple transformation. The claim follows.

We can decrease a matrix' degree by at least $t$ or transform it into weak Popov form by $t$ recursive calls of Algorithm 1. We can write this operation as
$\mathrm{R}(\mathbf{M}, t)=\mathbf{U} \cdot \mathrm{R}(\mathbf{U} \cdot \mathbf{M})$, where $\mathbf{U}=\mathrm{R}(\mathbf{M}, t-1)$ for $t>1$ and $\mathbf{U}=\mathbf{I}$ if $t=1$. As in [7], we speed this method up by two modifications. The first one is a divide-\&-conquer trick, where instead of reducing the degree of a " $(t-1)$-reduced" matrix $\mathbf{U} \cdot \mathbf{M}$ by 1 as above, we reduce a " $t$ '-reduced" matrix by another $t-t^{\prime}$ for an arbitrary $t^{\prime}$. For $t^{\prime} \approx t / 2$, the recursion tree has a balanced workload.

Lemma 1 Let $t^{\prime}<t$ and $\mathbf{U}=\mathrm{R}\left(\mathbf{M}, t^{\prime}\right)$. Then,

$$
\mathrm{R}(\mathbf{M}, t)=\mathrm{R}[\mathbf{U} \cdot \mathbf{M}, t-(\operatorname{deg} \mathbf{M}-\operatorname{deg}(\mathbf{U} \cdot \mathbf{M}))] \cdot \mathbf{U}
$$

Proof $\mathbf{U}$ is a matrix that reduces $\operatorname{deg} \mathbf{M}$ by at least $t^{\prime}$ or transforms $\mathbf{M}$ into wPf. Multiplication by $\mathrm{R}[\mathbf{U} \cdot \mathbf{M}, t-(\operatorname{deg} \mathbf{M}-\operatorname{deg}(\mathbf{U} \cdot \mathbf{M}))]$ further reduces the degree of this matrix by $t-(\operatorname{deg} \mathbf{M}-\operatorname{deg}(\mathbf{U} \cdot \mathbf{M})) \geq t-t^{\prime}($ or $\mathbf{U} \cdot \mathbf{M}$ in $w P f)$.

The second lemma allows to compute only on the top coefficients of the input matrix inside the divide-\&-conquer tree, thus reducing the overall complexity.

Lemma $2 \mathrm{R}(\mathbf{M}, t)=\mathrm{R}\left(\left.\mathbf{M}\right|_{t}, t\right)$

Proof Elementary row operations as in Algorithm 1 behave exactly as their $\mathbb{F}[x]$ equivalent, cf. [2]. Hence, the arguments of [7, Lemma 2.7] hold.

Lemma $3 \mathrm{R}(\mathbf{M}, t)$ contains polynomials of length $\leq t$.
Proof The proof works as in the $\mathbb{F}[x]$ case, cf. [7, Lemma 2.8], by taking care of the fact that $\alpha x^{a} \cdot \beta x^{b}=\alpha \sigma^{c}(\beta) x^{a+b}$ for all $\alpha, \beta \in \mathbb{F}, a, b \in \mathbb{N}_{0}$.

```
Algorithm 2: \(\hat{\mathrm{R}}(\mathrm{M}, t)\)
    Input: Module basis \(\mathbf{M} \in \mathbb{F}[x, \sigma]^{r \times r}\) with \(\operatorname{deg} \mathbf{M}=n\)
    Output: \(\mathbf{U} \in \mathbb{F}[x, \sigma]^{r \times r}: \mathbf{U} \cdot \mathbf{M}\) is in \(\mathbf{w P f}\) or \(\operatorname{deg}(\mathbf{U} \cdot \mathbf{M}) \leq \operatorname{deg} \mathbf{M}-t\)
    \(\left.\mathbf{M} \leftarrow \mathbf{M}\right|_{t}\)
    if \(t=1\) then
        return \(R(\mathbf{M})\)
    \(\mathbf{U}_{1} \leftarrow \hat{\mathrm{R}}(\mathbf{M},\lfloor t / 2\rfloor)\)
    \(\mathrm{M}_{1} \leftarrow \mathrm{U}_{1} \cdot \mathrm{M}\)
    return \(\hat{R}\left(\mathbf{M}_{1}, t-\left(\operatorname{deg} \mathbf{M}-\operatorname{deg} \mathbf{M}_{1}\right)\right) \cdot \mathbf{U}_{1}\)
```

Theorem 2 Algorithm 2 is correct and has complexity $O\left(r^{3} \mathcal{M}(t)\right)$.

Proof Correctness follows from $\mathrm{R}(\mathbf{M}, t)=\hat{\mathrm{R}}(\mathbf{M}, t)$, which can be proven by induction (for $t=1$, see Theorem 1). Let $\hat{\mathbf{U}}=\hat{\mathrm{R}}\left(\left.\mathbf{M}\right|_{t},\left\lfloor\frac{t}{2}\right\rfloor\right)$ and $\mathbf{U}=\mathrm{R}\left(\left.\mathbf{M}\right|_{t},\left\lfloor\frac{t}{2}\right\rfloor\right)$.

$$
\hat{\mathrm{R}}(\mathbf{M}, t)=\hat{\mathrm{R}}\left(\left.\hat{\mathbf{U}} \cdot \mathbf{M}\right|_{t}, t-\left(\left.\operatorname{deg} \mathbf{M}\right|_{t}-\operatorname{deg}\left(\left.\hat{\mathbf{U}} \cdot \mathbf{M}\right|_{t}\right)\right)\right) \cdot \hat{\mathbf{U}}
$$

$$
\stackrel{(\mathrm{i})}{=} \mathrm{R}\left(\left.\mathbf{U} \cdot \mathbf{M}\right|_{t}, t-\left(\left.\operatorname{deg} \mathbf{M}\right|_{t}-\operatorname{deg}\left(\left.\mathbf{U} \cdot \mathbf{M}\right|_{t}\right)\right)\right) \cdot \mathbf{U} \stackrel{(\mathrm{iii})}{=} \mathrm{R}\left(\left.\mathbf{M}\right|_{t}, t\right) \stackrel{(\mathrm{iii})}{=} \mathrm{R}(\mathbf{M}, t),
$$

where (i) follows from the induction hypothesis, (ii) by Lemma 1, and (iii) by Lemma 2. Algorithm 2 calls itself twice on inputs of sizes $\approx \frac{t}{2}$. The only other costly operations are the matrix multiplications in Lines 5 and 6 of matrices containing only polynomials of length $\leq t$ (cf. Lemma 3). In order to control the size of the polynomial operations within the matrix multiplication, sophisticated matrix multiplication algorithms are not suitable in this case. E.g., in divide-\&conquer methods like Strassen's algorithm the length of polynomials in intermediate computations might be much larger than $t$. Using the definition of matrix multiplication, we will have $r^{2}$ times $r$ multiplications $\mathcal{M}(t)$ and $r^{2}$ times $r$ additions $O(t)$ of polynomials of length $\leq t$, having complexity $O\left(r^{3} \mathcal{M}(t)\right)$. The recursive complexity relation reads $f(t)=2 \cdot f\left(\frac{t}{2}\right)+O\left(r^{3} \mathcal{M}(t)\right)$. The base case operation $\mathrm{R}\left(\left.\mathbf{M}\right|_{1}\right)$ with cost $f(1)$ is called at most $t$ times since it decreases $\operatorname{deg} \mathbf{M}$ by 1 each time. With the master theorem, we obtain $f(t) \in O\left(t f(1)+r^{3} \mathcal{M}(t)\right)$. $\mathrm{R}\left(\left.\mathbf{M}\right|_{1}\right)$ calls Algorithm 1 on input matrices of length 1, implying $f(1) \in O\left(r^{3}\right)$ (cf. Theorem 1). Hence, $f(t) \in O\left(r^{3} \mathcal{M}(t)\right)$.

## 4 Implications and Conclusion

The orthogonality defect [2] of a square, full-rank, skew polynomial matrix M is $\Delta(\mathbf{M})=\operatorname{deg} \mathbf{M}-\operatorname{deg} \operatorname{det} \mathbf{M}$, where det is any Dieudonné determinant; see [2] why $\Delta(\mathbf{M})$ does not depend on the choice of det. It can be shown that $\operatorname{deg} \operatorname{det} \mathbf{M}$ is invariant under row operations and a matrix $\mathbf{M}$ in weak Popov form has $\Delta(\mathbf{M})=0$. Thus, if $\mathbf{V}$ is in wPf and obtained from $\mathbf{M}$ by simple transformations, then $\operatorname{deg} \mathbf{V}=\Delta(\mathbf{V})+\operatorname{deg} \operatorname{det} \mathbf{V}=0+\operatorname{deg} \operatorname{det} \mathbf{M}=\operatorname{deg} \mathbf{M}-\Delta(\mathbf{M})$. In combination with $\Delta(\mathbf{M}) \geq 0$, this implies that $\hat{\mathrm{R}}(\mathbf{M}, \Delta(\mathbf{M})) \cdot \mathbf{M}$ is always in weak Popov form. It was shown in [2] that $\mathbf{B}$ from Equation (1) has orthogonality defect $\Delta(\mathbf{B}) \in O(n)$, which implies the following theorem.

Theorem 3 (Main Statement) $\hat{\mathrm{R}}(\mathbf{B}, \Delta(\mathbf{B})) \cdot \mathbf{B}$ is in weak Popov form. This implies that we can decode Interleaved Gabidulin codes $i^{4} O\left(\ell^{3} n^{(\omega+1) / 2} \log (n)\right)$.

Table 1 compares the complexities of known decoding algorithms for Interleaved Gabidulin codes. Which algorithm is asymptotically fastest depends on the relative size of $\ell$ and $n$. Usually, one considers $n \gg \ell$, in which case the algorithm of

[^1]this paper provides - to the best of our knowledge - the fastest known algorithm for decoding Interleaved Gabidulin codes.

| Algorithm | Complexity |
| :--- | :--- |
| Generalized Berlekamp-Massey [5] | $O\left(\ell n^{2}\right)$ |
| Mulders-Storjohann* [2] | $O\left(\ell^{2} n^{2}\right)$ |
| Demand-Driven* [2] | $O\left(\ell n^{2}\right)$ |
| Alekhnovich* (Theorem 2) | $O\left(\ell^{3} n^{\frac{\omega+1}{2}} \log (n)\right)$ |
|  | $\subseteq \begin{cases}O\left(\ell^{3} n^{1.91} \log (n)\right), \quad \omega \approx 2.81, \\ O\left(\ell^{3} n^{1.69} \log (n)\right), \quad \omega \approx 2.37 . \\ \hline\end{cases}$ |

Table 1: Comparison of decoding algorithms for Interleaved Gabidulin codes. Algorithms marked with * are based on the row reduction problem of [2].

Note that in the case of non-interleaved Gabidulin codes $(\ell=1)$, we obtain an alternative to the Linearized Extended Euclidean algorithm from [6] of almost the same complexity. In fact, the two algorithms are equivalent except for the implementation of a simple transformation.

## References

[1] W. Li, J. S. R. Nielsen, S. Puchinger, and V. Sidorenko, "Solving Shift Register Problems over Skew Polynomial Rings using Module Minimisation," in International Workshop on Coding and Cryptography, Paris, 2015.
[2] S. Puchinger, J. S. R. Nielsen, W. Li, and V. Sidorenko, "Row Reduction Applied to Rank Metric and Subspace Codes," Submitted to Designs, Codes and Cryptography, 2015, arXiv preprint 1510.04728.
[3] O. Ore, "Theory of Non-commutative Polynomials," Annals of mathematics, pp. 480-508, 1933.
[4] S. Puchinger and A. Wachter-Zeh, "Fast Operations on Linearized Polynomials and their Applications in Coding Theory," Submitted to: Journal of Symbolic Computation, 2016, arXiv preprint 1512.06520.
[5] V. Sidorenko, L. Jiang, and M. Bossert, "Skew-Feedback Shift-Register Synthesis and Decoding Interleaved Gabidulin Codes," IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 621-632, 2011.
[6] A. Wachter-Zeh, "Decoding of Block and Convolutional Codes in Rank Metric," Ph.D. dissertation, Ulm University and University of Rennes, 2013.
[7] M. Alekhnovich, "Linear Diophantine Equations over Polynomials and Soft Decoding of Reed-Solomon Codes," IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2257-2265, 2005.


[^0]:    ${ }^{1}$ This work was supported by Deutsche Forschungsgemeinschaft under grant BO 867/29-3.
    ${ }^{2}$ Afterwards, the corresponding information words are obtained by $\ell$ many divisions of skew polynomials of degree $O(n)$, which can be done in $O\left(\ell_{n}^{(\omega+1) / 2} \log (n)\right)$ time [4].
    ${ }^{3}$ By row reduction we mean to transform a matrix into weak Popov form by row operations.

[^1]:    ${ }^{4}$ The $\log (n)$ factor is due to the divisions in the decoding algorithm, following the row reduction step (see Footnote 2 on the first page) and can be omitted if $\log (n) \in o\left(\ell^{2}\right)$.

