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Abstract. Our approach is a natural continuation of the algorithm which is pre-
sented in [3]. We prove the nonexistence of BOAs of parameters (length, cardinality,
strength) = (9, 7.24 = 112, 4) and (10, 7.25 = 224, 5), resolving two cases where the
existence was undecided up to now.

1 Introduction

Let H(n, 2) be the binary Hamming space of dimension n and the usual Ham-
ming distance d(x, y) between every two points x, y ∈ H(n, 2). An orthogonal
array (OA) of strength τ and index λ in H(n, 2) (or binary orthogonal array,
BOA), consists of the rows of an M ×n matrix C with the property that every
M ×τ submatrix of C contains all ordered τ -tuples of H(τ, 2), each one exactly
λ = M/2τ times as rows.

Let C ⊂ H(n, 2) be an (n,M, τ) BOA. The distance distribution of C with
respect to c ∈ H(n, 2) if the (n+1)-tuple w = w(c) = (w0(c), w1(c), . . . , wn(c)),
where wi(c) = |{x ∈ C|d(x, c) = i}|, i = 0, . . . , n. All feasible distance distribu-
tions of BOA of parameters (n,M, τ) can be computed effectively for relatively
small n and τ as shown in [1] (see also [3]).

For fixed n, M and τ ≤ n we denote by P (n, M, τ) and Q(n, M, τ) the sets
of all possible distance distributions of a (n,M, τ) BOA with respect to internal
point and external point respectively. Denote also W (n, M, τ) = P (n,M, τ) ∪
Q(n,M, τ). Here we start with the sets P (n,M, τ), Q(n,M, τ) and W (n,M, τ)
which are obtained after applying the distance distributions algorithm from [3].

In this paper we present a natural generalization of the algorithm in [3]
which again works on the sets P (n,M, τ), Q(n,M, τ) and W (n,M, τ) utilizing
new connections between related BOAs. During the implementation of general
algorithm these sets are changed by ruling out some distance distributions.

In Section 2 we prove several new relations between distance distributions of
arrays under consideration and their relatives. As in [3] this imposes significant
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constraints on the targeted BOAs and allows us to collect rules for removing
distance distributions from the sets P (n,M, τ), Q(n,M, τ) and W (n,M, τ).
The logic of our algorithm and two new nonexistence results are described in
Section 3.

2 Further relations between distance distributions of
(n,M, τ) BOA and its derived BOAs

Let n, M and 3 ≤ τ < n + 1 be fixed. Let C ⊂ H(n, 2) be an (n,M, τ) BOA
with sets of distance distributions P (n, M, τ), Q(n,M, τ) and W (n,M, τ) after
[3]. For every W ∈ W (n,M, τ) we know all remaining couples (W,W ′) and for
every such couple we have an uniquely determined corresponding couple (Y, X)
which is obtained as a solution of system (2) from [3, Theorem 3]. So, for
every W ∈ W (n, M, τ) we know all remaining triples (W ′, X, Y ) which are not
ruled out in [3]. Without loss of generality (as in [3]), W ∈ W (n,M, τ) is the
distance distribution of C with respect to c = 0 ∈ H(n, 2) and in (W ′, Y, X)
we have: W ′ = (w′0, w

′
1, . . . , w

′
n−1) ∈ W (n− 1,M, τ) – the distance distribution

of C ′ with respect to c′ = 0 ∈ H(n − 1, 2), Y = (y0, y1, . . . , yn−1) ∈ W (n −
1,M/2, τ − 1) – the distance distribution of C0 with respect to c′ and X =
(x1, x2, . . . , xn) ∈ W (n − 1,M/2, τ − 1) – the distance distribution of C1 with
respect to c′, where the BOA C0 (C1, respectively) is obtained from the rows of
C with first coordinate 0 (1, respectively) after removing that first coordinate
(see Fig.1 bellow).

We consider the BOAs C0 and C1 in the role of C and apply for both the
DDA (part one), i.e. we removing the first column of C0 and C1 together and
obtain BOAs A0, A1, B0 and B1 which distance distributions denote by R, Z,
U and V , respectively. All BOAs and their distance distributions are illustrated
of the Fig. 1 bellow. We apply Theorem 3 from [3] for C0 and its derived BOAs
(C ′

0, A0 and A1) and for C1 and its derived (C ′
1, B0 and B1) together to obtain

distance distributions R,Z, U, V ∈ W (n− 2,M/4, τ − 2).

Lemma 1. The nonnegative integer numbers ri, zi, ui, vi, i = 0, 1, . . . , n− 1,
satisfy the following system of linear equations

∣∣∣∣∣∣∣∣∣∣∣∣

zi + ri = yi, i = 1, 2, . . . , n− 2
zi+1 + ri = y′i, i = 0, 1, . . . , n− 2
r0 = y0, zn−1 = yn−1

vi + ui = xi+1, i = 1, 2, . . . , n− 2
vi+1 + ui = x′i+1, i = 0, 1, . . . , n− 2
u0 = x1, vn−1 = xn

. (1)
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C′ − (n− 1, M, τ), W ′

C′′ − (n− 2, M, τ), W ′′

0 0 R = (r0, r1, . . . , rn−2)
...

... A0 − (n− 2, M/4, τ − 2)
0 0 C0, C′0
0 1 Z = (z1, z2, . . . , zn−1) Y, Y ′

...
... A1 − (n− 2, M/4, τ − 2)

0 1
1 0 U = (u0, u1, . . . , un−2)
...

... B0 − (n− 2, M/4, τ − 2)
1 0 C1, C′1
1 1 V = (v1, v2, . . . , vn−1) X, X ′

...
... B1 − (n− 2, M/4, τ − 2)

1 1

Fig.1

C′, W ′

C′′, W ′′

0 0 R
...

... A0

0 0 D0, D′
0

1 0 U G, G′

...
... B0

1 0
0 1 Z
...

... A1

0 1 D1, D′
1

1 1 V H, H ′

...
... B1

1 1

Fig.2

We next apply the permutation (0 → 1, 1 → 0) in the first column (see
the comment before Theorem 10 in [3]) to obtain C1,0

0 and C1,0
1 with pa-

rameters (n − 1,M/2, τ − 1) and distance distributions Ŷ and X̂, respec-
tively. The by Theorem 10 and Corollary 11 from [3] the BOAs C1,0

0 and
C1,0

1 have distance distributions Ŷ = (z1, z2 + r0, . . . , zn−1 + rn−3, rn−2) and
X̂ = (v1, v2 + u0, . . . , vn−1 + un−3, un−2), respectively.

As we discuss in the beginning of this section, for every W ∈ W (n,M, τ) we
know the all remaining triples (W ′, Y,X) and for every such triple we have the
sets {(Y, Y ′, R, Z)} and {(X,X ′, U, V )} of all possible distance distributions of
the relatives BOAs which can obtain from the considering BOA C with this
distance distribution W ∈ W (n,M, τ).

Now, for fixed W ∈ W (n,M, τ) we have a unique relation (W ′, Y,X)-
(Y, Y ′, R, Z)-(X, X ′, U, V ) (see Fig. 1). Notice that the obtained BOA C ′′ with
parameters (n− 2,M, τ) has distance distribution W ′′ = (w′′0 , w′′1 , . . . , w′′n−2) =
(r0+u0+z1+v1, r1+u1+z2+v2, . . . , rn−2+un−2+zn−1+vn−1) ∈ W (n−2,M, τ).

At the next step we reorder the rows of C ′ (simultaneously reordering the
rows of the whole C) as we first take the rows with first coordinate 0, then
we put the rows with first coordinate 1, respectively and remove that first
coordinate. We again obtain C ′′ with the same distance distribution W ′′, but
the derived BOAs with parameters (n− 1,M/2, τ − 1) are new. Let we denote
them by D0, D1, D′

0 and D′
1 and let their distance distributions be G, H, G′

and H ′, respectively. Furthermore, we again have the BOAs A0, A1, B0 and
B1 with the same distance distributions R, Z, U, V ∈ W (n− 2, M/4, τ − 2) All
BOAs (in this step) and their distance distributions are illustrated on the Fig.
2 above. We continue with description of the distance distributions D0, D1, D′

0
and D′

1 using the numbers ri, zi, ui, vi, i = 0, 1, . . . , n− 1.
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Theorem 2. D0 and D1 are BOAs of parameters (n− 1,M/2, τ − 1) and dis-
tance distributions G = (g0, g1, . . . , gn−1) = (r0, r1 + u0, . . . , rn−2 + un−3, un−2)
and H = (h1, h2, . . . , hn) = (z1, z2 + v1, . . . , zn−1 + vn−2, vn−1), i.e. G,H ∈
W (n− 1,M/2, τ − 1).

Proof. The number of the points of D0 at distance 0 from c′ is r0 (coming
only from A0), the number of the points of D0 at distance i, 1 ≤ i ≤ n − 2,
from c′ is ri + ui−1 (as union of the points of A0 at distance i from c′ with the
points of B0 at distance i − 1 from c′), and, finally, the number of the points
of D0 at distance n − 1 from c′ is un−2 (coming only from B0). Therefore the
distance distribution of D0 with respect to c′ is G = (g0, g1, . . . , gn−1) = (r0, r1+
u0, . . . , rn−2+un−3, un−2). Similarly the distance distribution of D1 with respect
to c′ is H = (h1, h2, . . . , hn) = (z1, z2 + v1, . . . , zn−1 + vn−2, vn−1).

Corollary 3. a) The distance distribution G is ruled out if some of the related
distance distributions G, Ĝ and Ĝ does not belong to W (n− 1,M/2, τ − 1);

b) The distance distribution H is ruled out if some of the related distance
distributions H, Ĥ and Ĥ does not belong to W (n− 1,M/2, τ − 1).

Theorem 4. D′
0 and D′

1 are BOAs of parameters (n− 2,M/2, τ − 1) and dis-
tance distributions with respect to c′′ = 0′′ ∈ H(n−2, 2) are G′ = (g′0, g

′
1, . . . , g

′
n−2) =

(r0 + u0, r1 + u1, . . . , rn−2 + un−2) and H ′ = (h′1, h
′
2, . . . , h

′
n−1) = (z1 + v1, z2 +

v2, . . . , zn−1 + vn−1), respectively, i.e. G′, H ′ ∈ W (n− 2,M/2, τ − 1).

Corollary 5. a) The distance distribution G′ is ruled out if some of the related

distance distributions G′, Ĝ′ and Ĝ′ does not belong to W (n− 2,M/2, τ − 1);
b) The distance distribution H ′ is ruled out if some of the related distance

distributions H ′, Ĥ ′ and Ĥ ′ does not belong to W (n− 2,M/2, τ − 1).

Further, we remove the second column of C to obtain a BOA C ′
2 with

parameters (n−1,M, τ). Let W̃ ′ be the distance distribution of C ′
2 with respect

to c′.

Theorem 6. a) We have W̃ ′ = (r0 + z1, u0 + r1 + v1 + z2, . . . , un−3 + rn−2 +
vn−2 + zn−1, un−2 + vn−1) ∈ W (n− 1,M, τ).

b) The distance distribution of (C ′
2)

1,0 with respect to c′ is ̂̃
W ′ = (u0+v1, r0+

u1 + z1 + v2, . . . , rn−3 + un−2 + zn−2 + vn−1, rn−2 + zn−1) ∈ W (n− 1,M, τ).

Corollary 7. The distance distribution W̃ ′ is ruled out if some of the related

distance distributions W̃ ′, ̂̃
W ′ and ̂̃

W ′ does not belong to W (n− 1,M, τ).

Next, we consider the effect of the permutation (0 → 1, 1 → 0) in the first
two columns (simultaneously). Denote the new BOA with C̃.
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Theorem 8. The distance distribution of C̃ with respect to c is W̃ = (v1, u0 +
z1+v2, r0+u1+z2+v3, . . . , rn−4+un−3+zn−2+vn−1, rn−3+un−2+zn−1, rn−2) ∈
W (n,M, τ).

Corollary 9. The distance distribution W̃ is ruled out if some of the related

distance distributions W̃ , ̂̃W and ̂̃W does not belong to W (n, M, τ).

After all above checks, for every survival W ∈ W (n,M, τ) we have attached
triples (W ′, Y, X)-(Y, Y ′, R, Z)-(X, X ′, U, V ). We now free the cut of the second
column and thus consider all possible n− 1 cuts of columns of C ′. These cuts
produce all possible pairs {(Y, Y ′, R, Z)} - {(X, X ′, U, V )}. Let

(z(i)
0 = 0, z

(i)
1 , . . . , z

(i)
n−2, z

(i)
n−1; r

(i)
0 , r

(i)
1 , . . . , r

(i)
n−2, r

(i)
n−1 = 0), i = 1, . . . , s,

(v(j)
0 = 0, v

(j)
1 , . . . , v

(j)
n−2, v

(j)
n−1; u

(j)
0 , u

(j)
1 , . . . , u

(j)
n−2, v

(j)
n−1 = 0), j = 1, . . . , t,

are all solutions of system (1) for the triple (W ′, Y,X) that remain after applying
Corollary 3, Corollary 5, Corollary 7 and Corollary 9.

Theorem 10. The nonnegative integers ki,j, i = 1, . . . , s; j = 1, . . . , t, satisfy
the following system of linear equations
∣∣∣∣∣∣∣

∑
i,j

ki,j = n,
∑
i,j

ki,jz
(i,j)
1 = y1,

∑
i,j

ki,jz
(i,j)
2 = 2y2, . . . ,

∑
i,j

ki,jz
(i,j)
n−1 = nyn−1

∑
i,j

ki,jv
(i,j)
1 = x2,

∑
i,j

ki,jv
(i,j)
2 = 2x3, . . . ,

∑
i,j

ki,jv
(i,j)
n−1 = nxn

.

(2)

Proof. This follows from counting in two ways the number of the ones in the
i-blocks of C0 and C1, respectively (see Theorem 13 in [3]).

Corollary 11. The triple (W ′, Y,X) is ruled out if the system (2) does not
have solutions.

3 Two new nonexistence results

Let C = (n,M, τ) be a BOA of targeted parameters, where τ ≥ 3. First we
apply the algorithm from [3], and obtain reduced sets P , Q and W for C and its
relatives. We also have, for every W ∈ W (n,M, τ), the sets of all feasible triples
(W ′, Y,X). For every such triple we find the corresponding sets {(Y, Y ′, R, Z)}
and {(X,X ′, U, V )} as explained in the previous section. We continue with
the implementation of new observations and organize them to work together as
follows.

For every fixed W -(W ′, Y, X)-(Y, Y ′, R, Z)-(X,X ′, U, V ) we apply Theorems
2, 4, 6, 8 and 10 in every row separately from left to right to reduce the sets P ,
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Q and W . Of course, this process is fueled with information from the columns
(starting from the bottom end) according to Corollaries 3, 5, 7, 9 and 11. The
algorithm stops when no new rulings out are possible. An entry at the right
end, showing that some of the sets P (n,M, τ), Q(n,M, τ) and W (n, M, τ) is
empty, means nonexistence of the corresponding BOA.

For a putative BOAs with parameters (9, 112, 4) and (10, 224, 5) we end
with empty W (9, 112, 4) and W (10, 224, 5).

Theorem 12. There exist no binary orthogonal arrays of parameters (9, 112, 4)
and (10, 224, 5).

The second results follows also from the first one and the coexistence of
(n,N, 2k) and (n + 1, 2N, 2k + 1) (see [5], [4, Theorem 2.24]).

The nonexistence results of Theorem 12 give exact values for the function
L(n, τ) – the minimum possible index λ of an (n,M = λ2τ , τ) binary orthogonal
array. We have L(n, τ) = 8 instead of 7 ≤ L(n, τ) ≤ 8 for (n, τ) = (9, 4) and
(10, 5).

All calculations in this paper were performed by programs in Maple. All
results can be seen at [6]. All programs are available upon request [6].
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