Nonexistence of $(9,112,4)$ and $(10,224,5)$ binary orthogonal arrays ${ }^{1}$

Tanya Marinova
Maya Stoyanova
tanya.marinova@fmi.uni-sofia.bg
stoyanova@fmi.uni-sofia.bg
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, BULGARIA

Abstract

Our approach is a natural continuation of the algorithm which is presented in [3]. We prove the nonexistence of BOAs of parameters (length, cardinality, strength $)=\left(9,7.2^{4}=112,4\right)$ and $\left(10,7.2^{5}=224,5\right)$, resolving two cases where the existence was undecided up to now.

1 Introduction

Let $H(n, 2)$ be the binary Hamming space of dimension n and the usual Hamming distance $d(x, y)$ between every two points $x, y \in H(n, 2)$. An orthogonal array (OA) of strength τ and index λ in $H(n, 2)$ (or binary orthogonal array, BOA), consists of the rows of an $M \times n$ matrix C with the property that every $M \times \tau$ submatrix of C contains all ordered τ-tuples of $H(\tau, 2)$, each one exactly $\lambda=M / 2^{\tau}$ times as rows.

Let $C \subset H(n, 2)$ be an (n, M, τ) BOA. The distance distribution of C with respect to $c \in H(n, 2)$ if the $(n+1)$-tuple $w=w(c)=\left(w_{0}(c), w_{1}(c), \ldots, w_{n}(c)\right)$, where $w_{i}(c)=|\{x \in C \mid d(x, c)=i\}|, i=0, \ldots, n$. All feasible distance distributions of BOA of parameters (n, M, τ) can be computed effectively for relatively small n and τ as shown in [1] (see also [3]).

For fixed n, M and $\tau \leq n$ we denote by $P(n, M, \tau)$ and $Q(n, M, \tau)$ the sets of all possible distance distributions of a (n, M, τ) BOA with respect to internal point and external point respectively. Denote also $W(n, M, \tau)=P(n, M, \tau) \cup$ $Q(n, M, \tau)$. Here we start with the sets $P(n, M, \tau), Q(n, M, \tau)$ and $W(n, M, \tau)$ which are obtained after applying the distance distributions algorithm from [3].

In this paper we present a natural generalization of the algorithm in [3] which again works on the sets $P(n, M, \tau), Q(n, M, \tau)$ and $W(n, M, \tau)$ utilizing new connections between related BOAs. During the implementation of general algorithm these sets are changed by ruling out some distance distributions.

In Section 2 we prove several new relations between distance distributions of arrays under consideration and their relatives. As in [3] this imposes significant

[^0]constraints on the targeted BOAs and allows us to collect rules for removing distance distributions from the sets $P(n, M, \tau), Q(n, M, \tau)$ and $W(n, M, \tau)$. The logic of our algorithm and two new nonexistence results are described in Section 3.

2 Further relations between distance distributions of (n, M, τ) BOA and its derived BOAs

Let n, M and $3 \leq \tau<n+1$ be fixed. Let $C \subset H(n, 2)$ be an $(n, M, \tau) \mathrm{BOA}$ with sets of distance distributions $P(n, M, \tau), Q(n, M, \tau)$ and $W(n, M, \tau)$ after [3]. For every $W \in W(n, M, \tau)$ we know all remaining couples $\left(W, W^{\prime}\right)$ and for every such couple we have an uniquely determined corresponding couple (Y, X) which is obtained as a solution of system (2) from [3, Theorem 3]. So, for every $W \in W(n, M, \tau)$ we know all remaining triples $\left(W^{\prime}, X, Y\right)$ which are not ruled out in [3]. Without loss of generality (as in [3]), W $\in W(n, M, \tau)$ is the distance distribution of C with respect to $c=\mathbf{0} \in H(n, 2)$ and in $\left(W^{\prime}, Y, X\right)$ we have: $W^{\prime}=\left(w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{n-1}^{\prime}\right) \in W(n-1, M, \tau)$ - the distance distribution of C^{\prime} with respect to $c^{\prime}=\mathbf{0} \in H(n-1,2), Y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in W(n-$ $1, M / 2, \tau-1)$ - the distance distribution of C_{0} with respect to c^{\prime} and $X=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in W(n-1, M / 2, \tau-1)$ - the distance distribution of C_{1} with respect to c^{\prime}, where the BOA $C_{0}\left(C_{1}\right.$, respectively) is obtained from the rows of C with first coordinate 0 (1, respectively) after removing that first coordinate (see Fig. 1 bellow).

We consider the BOAs C_{0} and C_{1} in the role of C and apply for both the DDA (part one), i.e. we removing the first column of C_{0} and C_{1} together and obtain BOAs A_{0}, A_{1}, B_{0} and B_{1} which distance distributions denote by R, Z, U and V, respectively. All BOAs and their distance distributions are illustrated of the Fig. 1 bellow. We apply Theorem 3 from [3] for C_{0} and its derived BOAs $\left(C_{0}^{\prime}, A_{0}\right.$ and $\left.A_{1}\right)$ and for C_{1} and its derived $\left(C_{1}^{\prime}, B_{0}\right.$ and $\left.B_{1}\right)$ together to obtain distance distributions $R, Z, U, V \in W(n-2, M / 4, \tau-2)$.

Lemma 1. The nonnegative integer numbers $r_{i}, z_{i}, u_{i}, v_{i}, i=0,1, \ldots, n-1$, satisfy the following system of linear equations

$$
\begin{align*}
& z_{i}+r_{i}=y_{i}, i=1,2, \ldots, n-2 \\
& z_{i+1}+r_{i}=y_{i}^{\prime}, i=0,1, \ldots, n-2 \\
& r_{0}=y_{0}, z_{n-1}=y_{n-1} \tag{1}\\
& v_{i}+u_{i}=x_{i+1}, \quad i=1,2, \ldots, n-2 \\
& v_{i+1}+u_{i}=x_{i+1}^{\prime}, \quad i=0,1, \ldots, n-2 \\
& u_{0}=x_{1}, \quad v_{n-1}=x_{n}
\end{align*}
$$

\[

\]

Fig. 1

	$\begin{aligned} & C^{\prime}, W^{\prime} \\ & C^{\prime \prime}, W^{\prime \prime} \end{aligned}$		
0	0	R	$\begin{gathered} D_{0}, D_{0}^{\prime} \\ G, G^{\prime} \end{gathered}$
\vdots	\vdots	A_{0}	
0	0		
$\overline{1}$	$\overline{0}$	U	
;	\vdots	B_{0}	
1	0		
$\overline{0}$	$\overline{1}$	Z	$\begin{gathered} D_{1}, D_{1}^{\prime} \\ H, H^{\prime} \end{gathered}$
:	:	A_{1}	
0	1		
$\overline{1}$	$\overline{1}$	V	
:	:	B_{1}	
1	1		

Fig. 2

We next apply the permutation $(0 \rightarrow 1,1 \rightarrow 0)$ in the first column (see the comment before Theorem 10 in [3]) to obtain $C_{0}^{1,0}$ and $C_{1}^{1,0}$ with parameters ($n-1, M / 2, \tau-1$) and distance distributions \widehat{Y} and \widehat{X}, respectively. The by Theorem 10 and Corollary 11 from [3] the BOAs $C_{0}^{1,0}$ and $C_{1}^{1,0}$ have distance distributions $\widehat{Y}=\left(z_{1}, z_{2}+r_{0}, \ldots, z_{n-1}+r_{n-3}, r_{n-2}\right)$ and $\widehat{X}=\left(v_{1}, v_{2}+u_{0}, \ldots, v_{n-1}+u_{n-3}, u_{n-2}\right)$, respectively.

As we discuss in the beginning of this section, for every $W \in W(n, M, \tau)$ we know the all remaining triples (W^{\prime}, Y, X) and for every such triple we have the sets $\left\{\left(Y, Y^{\prime}, R, Z\right)\right\}$ and $\left\{\left(X, X^{\prime}, U, V\right)\right\}$ of all possible distance distributions of the relatives BOAs which can obtain from the considering BOA C with this distance distribution $W \in W(n, M, \tau)$.

Now, for fixed $W \in W(n, M, \tau)$ we have a unique relation $\left(W^{\prime}, Y, X\right)$ $\left(Y, Y^{\prime}, R, Z\right)-\left(X, X^{\prime}, U, V\right)$ (see Fig. 1). Notice that the obtained BOA $C^{\prime \prime}$ with parameters $(n-2, M, \tau)$ has distance distribution $W^{\prime \prime}=\left(w_{0}^{\prime \prime}, w_{1}^{\prime \prime}, \ldots, w_{n-2}^{\prime \prime}\right)=$ $\left(r_{0}+u_{0}+z_{1}+v_{1}, r_{1}+u_{1}+z_{2}+v_{2}, \ldots, r_{n-2}+u_{n-2}+z_{n-1}+v_{n-1}\right) \in W(n-2, M, \tau)$.

At the next step we reorder the rows of C^{\prime} (simultaneously reordering the rows of the whole C) as we first take the rows with first coordinate 0 , then we put the rows with first coordinate 1, respectively and remove that first coordinate. We again obtain $C^{\prime \prime}$ with the same distance distribution $W^{\prime \prime}$, but the derived BOAs with parameters $(n-1, M / 2, \tau-1)$ are new. Let we denote them by $D_{0}, D_{1}, D_{0}^{\prime}$ and D_{1}^{\prime} and let their distance distributions be G, H, G^{\prime} and H^{\prime}, respectively. Furthermore, we again have the BOAs A_{0}, A_{1}, B_{0} and B_{1} with the same distance distributions $R, Z, U, V \in W(n-2, M / 4, \tau-2)$ All BOAs (in this step) and their distance distributions are illustrated on the Fig. 2 above. We continue with description of the distance distributions $D_{0}, D_{1}, D_{0}^{\prime}$ and D_{1}^{\prime} using the numbers $r_{i}, z_{i}, u_{i}, v_{i}, i=0,1, \ldots, n-1$.

Theorem 2. D_{0} and D_{1} are BOAs of parameters ($n-1, M / 2, \tau-1$) and distance distributions $G=\left(g_{0}, g_{1}, \ldots, g_{n-1}\right)=\left(r_{0}, r_{1}+u_{0}, \ldots, r_{n-2}+u_{n-3}, u_{n-2}\right)$ and $H=\left(h_{1}, h_{2}, \ldots, h_{n}\right)=\left(z_{1}, z_{2}+v_{1}, \ldots, z_{n-1}+v_{n-2}, v_{n-1}\right)$, i.e. $G, H \in$ $W(n-1, M / 2, \tau-1)$.

Proof. The number of the points of D_{0} at distance 0 from c^{\prime} is r_{0} (coming only from A_{0}), the number of the points of D_{0} at distance $i, 1 \leq i \leq n-2$, from c^{\prime} is $r_{i}+u_{i-1}$ (as union of the points of A_{0} at distance i from c^{\prime} with the points of B_{0} at distance $i-1$ from c^{\prime}), and, finally, the number of the points of D_{0} at distance $n-1$ from c^{\prime} is u_{n-2} (coming only from B_{0}). Therefore the distance distribution of D_{0} with respect to c^{\prime} is $G=\left(g_{0}, g_{1}, \ldots, g_{n-1}\right)=\left(r_{0}, r_{1}+\right.$ $\left.u_{0}, \ldots, r_{n-2}+u_{n-3}, u_{n-2}\right)$. Similarly the distance distribution of D_{1} with respect to c^{\prime} is $H=\left(h_{1}, h_{2}, \ldots, h_{n}\right)=\left(z_{1}, z_{2}+v_{1}, \ldots, z_{n-1}+v_{n-2}, v_{n-1}\right)$.

Corollary 3. a) The distance distribution G is ruled out if some of the related distance distributions \bar{G}, \widehat{G} and $\overline{\widehat{G}}$ does not belong to $W(n-1, M / 2, \tau-1)$;
b) The distance distribution H is ruled out if some of the related distance distributions \bar{H}, \widehat{H} and $\overline{\widehat{H}}$ does not belong to $W(n-1, M / 2, \tau-1)$.

Theorem 4. D_{0}^{\prime} and D_{1}^{\prime} are BOAs of parameters $(n-2, M / 2, \tau-1)$ and distance distributions with respect to $c^{\prime \prime}=\mathbf{0}^{\prime \prime} \in H(n-2,2)$ are $G^{\prime}=\left(g_{0}^{\prime}, g_{1}^{\prime}, \ldots, g_{n-2}^{\prime}\right)=$ $\left(r_{0}+u_{0}, r_{1}+u_{1}, \ldots, r_{n-2}+u_{n-2}\right)$ and $H^{\prime}=\left(h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{n-1}^{\prime}\right)=\left(z_{1}+v_{1}, z_{2}+\right.$ $\left.v_{2}, \ldots, z_{n-1}+v_{n-1}\right)$, respectively, i.e. $G^{\prime}, H^{\prime} \in W(n-2, M / 2, \tau-1)$.

Corollary 5. a) The distance distribution G^{\prime} is ruled out if some of the related distance distributions $\overline{G^{\prime}}, \widehat{G^{\prime}}$ and $\overline{\widehat{G^{\prime}}}$ does not belong to $W(n-2, M / 2, \tau-1)$;
b) The distance distribution H^{\prime} is ruled out if some of the related distance distributions $\overline{H^{\prime}}, \widehat{H^{\prime}}$ and $\widehat{\widehat{H}^{\prime}}$ does not belong to $W(n-2, M / 2, \tau-1)$.

Further, we remove the second column of C to obtain a BOA C_{2}^{\prime} with parameters $(n-1, M, \tau)$. Let \tilde{W}^{\prime} be the distance distribution of C_{2}^{\prime} with respect to c^{\prime}.
Theorem 6. a) We have $\tilde{W}^{\prime}=\left(r_{0}+z_{1}, u_{0}+r_{1}+v_{1}+z_{2}, \ldots, u_{n-3}+r_{n-2}+\right.$ $\left.v_{n-2}+z_{n-1}, u_{n-2}+v_{n-1}\right) \in W(n-1, M, \tau)$.
b) The distance distribution of $\left(C_{2}^{\prime}\right)^{1,0}$ with respect to c^{\prime} is $\widehat{\tilde{W}^{\prime}}=\left(u_{0}+v_{1}, r_{0}+\right.$ $\left.u_{1}+z_{1}+v_{2}, \ldots, r_{n-3}+u_{n-2}+z_{n-2}+v_{n-1}, r_{n-2}+z_{n-1}\right) \in W(n-1, M, \tau)$.
Corollary 7. The distance distribution \tilde{W}^{\prime} is ruled out if some of the related distance distributions $\overline{\tilde{W}^{\prime}}$, $\widehat{\tilde{W}^{\prime}}$ and $\overline{\hat{\tilde{W}}^{\prime}}$ does not belong to $W(n-1, M, \tau)$.

Next, we consider the effect of the permutation $(0 \rightarrow 1,1 \rightarrow 0)$ in the first two columns (simultaneously). Denote the new BOA with \tilde{C}.

Theorem 8. The distance distribution of \tilde{C} with respect to c is $\tilde{W}=\left(v_{1}, u_{0}+\right.$ $\left.z_{1}+v_{2}, r_{0}+u_{1}+z_{2}+v_{3}, \ldots, r_{n-4}+u_{n-3}+z_{n-2}+v_{n-1}, r_{n-3}+u_{n-2}+z_{n-1}, r_{n-2}\right) \in$ $W(n, M, \tau)$.
Corollary 9. The distance distribution \tilde{W} is ruled out if some of the related distance distributions $\overline{\tilde{W}}, \widehat{\tilde{W}}$ and $\overline{\widehat{\tilde{W}}}$ does not belong to $W(n, M, \tau)$.

After all above checks, for every survival $W \in W(n, M, \tau)$ we have attached triples $\left(W^{\prime}, Y, X\right)-\left(Y, Y^{\prime}, R, Z\right)-\left(X, X^{\prime}, U, V\right)$. We now free the cut of the second column and thus consider all possible $n-1$ cuts of columns of C^{\prime}. These cuts produce all possible pairs $\left\{\left(Y, Y^{\prime}, R, Z\right)\right\}-\left\{\left(X, X^{\prime}, U, V\right)\right\}$. Let

$$
\begin{aligned}
& \left(z_{0}^{(i)}=0, z_{1}^{(i)}, \ldots, z_{n-2}^{(i)}, z_{n-1}^{(i)} ; r_{0}^{(i)}, r_{1}^{(i)}, \ldots, r_{n-2}^{(i)}, r_{n-1}^{(i)}=0\right), \quad i=1, \ldots, s, \\
& \left(v_{0}^{(j)}=0, v_{1}^{(j)}, \ldots, v_{n-2}^{(j)}, v_{n-1}^{(j)} ; u_{0}^{(j)}, u_{1}^{(j)}, \ldots, u_{n-2}^{(j)}, v_{n-1}^{(j)}=0\right), \quad j=1, \ldots, t
\end{aligned}
$$

are all solutions of system (1) for the triple $\left(W^{\prime}, Y, X\right)$ that remain after applying Corollary 3 , Corollary 5 , Corollary 7 and Corollary 9.
Theorem 10. The nonnegative integers $k_{i, j}, i=1, \ldots, s ; j=1, \ldots, t$, satisfy the following system of linear equations

$$
\left\lvert\, \begin{align*}
& \sum_{i, j} k_{i, j}=n, \sum_{i, j} k_{i, j} z_{1}^{(i, j)}=y_{1}, \sum_{i, j} k_{i, j} z_{2}^{(i, j)}=2 y_{2}, \ldots, \sum_{i, j} k_{i, j} z_{n-1}^{(i, j)}=n y_{n-1} \\
& \sum_{i, j} k_{i, j} v_{1}^{(i, j)}=x_{2}, \sum_{i, j} k_{i, j} v_{2}^{(i, j)}=2 x_{3}, \ldots, \sum_{i, j} k_{i, j} v_{n-1}^{(i, j)}=n x_{n} \tag{2}
\end{align*} .\right.
$$

Proof. This follows from counting in two ways the number of the ones in the i-blocks of C_{0} and C_{1}, respectively (see Theorem 13 in [3]).
Corollary 11. The triple $\left(W^{\prime}, Y, X\right)$ is ruled out if the system (2) does not have solutions.

3 Two new nonexistence results

Let $C=(n, M, \tau)$ be a BOA of targeted parameters, where $\tau \geq 3$. First we apply the algorithm from [3], and obtain reduced sets P, Q and W for C and its relatives. We also have, for every $W \in W(n, M, \tau)$, the sets of all feasible triples (W^{\prime}, Y, X). For every such triple we find the corresponding sets $\left\{\left(Y, Y^{\prime}, R, Z\right)\right\}$ and $\left\{\left(X, X^{\prime}, U, V\right)\right\}$ as explained in the previous section. We continue with the implementation of new observations and organize them to work together as follows.

For every fixed $W-\left(W^{\prime}, Y, X\right)-\left(Y, Y^{\prime}, R, Z\right)-\left(X, X^{\prime}, U, V\right)$ we apply Theorems $2,4,6,8$ and 10 in every row separately from left to right to reduce the sets P,
Q and W. Of course, this process is fueled with information from the columns (starting from the bottom end) according to Corollaries 3, 5, 7, 9 and 11. The algorithm stops when no new rulings out are possible. An entry at the right end, showing that some of the sets $P(n, M, \tau), Q(n, M, \tau)$ and $W(n, M, \tau)$ is empty, means nonexistence of the corresponding BOA.

For a putative BOAs with parameters $(9,112,4)$ and $(10,224,5)$ we end with empty $W(9,112,4)$ and $W(10,224,5)$.

Theorem 12. There exist no binary orthogonal arrays of parameters $(9,112,4)$ and (10, 224, 5).

The second results follows also from the first one and the coexistence of $(n, N, 2 k)$ and $(n+1,2 N, 2 k+1)$ (see [5], [4, Theorem 2.24]).

The nonexistence results of Theorem 12 give exact values for the function $L(n, \tau)$ - the minimum possible index λ of an $\left(n, M=\lambda 2^{\tau}, \tau\right)$ binary orthogonal array. We have $L(n, \tau)=8$ instead of $7 \leq L(n, \tau) \leq 8$ for $(n, \tau)=(9,4)$ and $(10,5)$.

All calculations in this paper were performed by programs in Maple. All results can be seen at [6]. All programs are available upon request [6].

References

[1] P. Boyvalenkov, H. Kulina, Investigation of binary orthogonal arrays via their distance distributions, Problems of Information Transmission, 49(4), 320-330 (2013).
[2] P. Boyvalenkov, H. Kulina, T. Marinova, M. Stoyanova, Nonexistence of binary orthogonal arrays via their distance distributions, Problems of Information Transmission, 51(4), 326-334 (2015).
[3] P. Boyvalenkov, T. Marinova, M. Stoyanova, New nonexistence results for binary orthogonal arrays, Proc. Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory, Albena, Bulgaria, June 1824, 90-95, (2016).
[4] A. Hedayat, N. J. A. Sloane, J. Stufken, Orthogonal Arrays: Theory and Applications, Springer-Verlag, New York, (1999).
[5] E. Seiden, R. Zemach, On orthogonal arrays, Ann. Math. Statist., 37, 1355-1370 (1996).
[6] https://drive.google.com/folderview?id=0B0r6JtxqB_RmLXRVQTBnM ldmcGM\&usp=sharing

[^0]: ${ }^{1}$ This research was supported, in part, by the Science Foundation of Sofia University under contract 57/2016.

