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Abstract. In [3] it is proposed an efficient error-control procedure for use in Net-
work Coding called subspace codes constructed from projective space of order m
over a finite field Fq, denoted by P(Fm

q ), that is, the set of all subspaces in the
vector space Fm

q , [1]. The projective space endowed with the subspace metric is
a metric space. Such subspace codes are devised for the one use of the channel.
An alternative to improve the rate and the error-correcting capabilities, without
increasing the order of the finite field or the vector length is to make use of the
channel n times, this new code is known as the n-shot subspace code, [6]. In this
paper we present the concept of geometrically uniform subspace codes and the new
n-shot geometrically uniform subspace codes.

1 Introduction

The concept of geometrically uniform (GU) codes was introduced by Forney
in [2]. This class of codes generalizes the Slepian type of codes and the lattice
codes by allowing the elements of the group be arbitrary isometries. From the
introduction of this class of codes several studies were realized, for instance in
[4] the authors extended the concepts of GU codes to the hyperbolic context.
Regarding the context of GU subspace codes, we mention the work of Akemi
and Palazzo, [5], where an algorithm to construct GU subspace codes in a
Grassmannian was proposed. In this paper we establish the conditions under
which GU subspace codes for n-shot channels may be constructed.

2 Preliminaries

2.1 Geometrically uniform codes

In this subsection, the definitions and results related to GU codes are bor-
rowed from [2]. For further details we refer the reader to [2].

Definition 2.1. Let M be a metric space with metric d, and T be a trans-
formation in M . T is an isometry if T preserves distance, that is, for every
x, y ∈ M we have that d(x, y) = d(T (x), T (y)).

Definition 2.2. A geometric figure S is a set of points in Rn. Two figures
S1 and S2 are geometrically congruents if there exists an isometry U in Rn

such that U(S1) = S2.
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Definition 2.3. An S-invariant isometry U ∈ Rn, that is, U(S) = S is called
a symmetry of S.

Observation 2.1. The symmetries of S form a group under the operation of
composition of functions, called symmetry group of S, and denoted by Γ(S).

Definition 2.4. A signal set S is geometrically uniform (GU) if given
any two points s, s′ ∈ S there exists an isometry U such that: U(s) = s′ and
U(S) = S.

A finite geometrically uniform signal set S is called a uniform constellation,
and an infinite signal set S is called a regular array.

Definition 2.5. The generator group U(S) of S is the least subgroup of Γ(S)
which generates S.

Theorem 2.1. The Cartesian product of geometrically uniform signal sets is
a geometrically uniform signal set.

2.2 Projective Spaces and Subspace Codes

Since the vector space of dimension m over a finite field Fq, denoted by Fm
q ,

is isomorphic to Fqm , we present next some important definitions. For further
details, we refer the reader to [1].

Definition 2.6. The projective space consists of the set of all the vector
subspaces of Fm

q and it is denoted by P(Fm
q ). Furthermore, the set of all the

subspaces with a given fixed dimension k is called Grassmannian and it is
denoted by G(Fm

q , k).

Observation 2.2. Note that:

P(Fm
q ) =

m⋃

k=0

G(Fm
q , k).

Definition 2.7. A subspace code C is a nonempty set of P(Fm
q ). In the case

the subspace code belongs to a Grassmannian of order k, G(Fm
q , k) = {V ∈

P(Fm
q ) : dimV = k}, that is, all of its codewords have the same dimension, this

code is called subspace code of constant dimension. We denote by d the
minimum distance of C.
Definition 2.8. The subspace distance between U and V is defined as:

d(U, V ) = dim(U) + dim(V )− 2dim(U ∩ V ), (1)

where + and ∩ denote, respectively, the sum and the intersection of subspaces.

Definition 2.9. The cardinality of C is given by | C |= M and the rate of

the code is defined as R(C) = log|C|
m or R(C) = logM

m measured as unity of
information per subspace channel use.
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Definition 2.10. The minimum distance of C is defined as d = d(C) =
min{d(U, V ), U, V ∈ C, U 6= V }.
Definition 2.11. The parameters of the subspace code C ⊂ P(Fm

q ), are de-
noted by (m,M, d), where m is the dimension of the projective space, M is the
cardinality, and d is the minimum distance. If C belongs to a Grassmannian of
dimension k, the corresponding parameters are (m,M, d, k).

Example 2.1. Let F3
2 be a vector space. An interesting example of a code

in a Grassmannian is the simplex code C2 = {S1, S2, S3} with parameters
(n,M, d, k) = (3, 3, 2, 2), whose codewords, or the vector subspaces, are S1 =
{000, 011, 100, 111}, S2 = {000, 010, 101, 111}, S3 = {000, 001, 110, 111}.
2.3 Extended projective subspaces and n-shot subspace codes

Next, we present the main definitions and concepts of n-shot subspace codes,
where the objective is to make use of the subspace channel several times, by
encoding the information to be transmitted not only in a unique subspace, as
in the 1-shot case, but as a sequence of subspaces.

Definition 2.12. The n-th extension of the projective space P(Fm
q ) is denoted

by P(Fm
q )n, that is, the n-th Cartesian product of the projective space. In this

way, the elements of P(Fm
q )n are t-tuples having as components subspaces of the

original projective space P(Fm
q ).

Definition 2.13. The extended subspace distance between two elements
U = (U1, U2, ..., Un) and V = (V1, V2, ..., Vn) of the extended projective space
P(Fm

q )n is defined as:
d(U , V ) =

n∑

i=1

d(Ui, Vi), (2)

where d(Ui, Vi) = dim(Ui)+dim(Vi)−2dim(Ui∩Vi) for i ∈ {1, 2, ..., n}. Hence,
1 ≤ d(U ,V ) ≤ m.n.

Theorem 2.2. (P(Fm
q )n, d) is a metric space.

Definition 2.14. A subspace block code is a nonempty subset C ⊂ P(Fm
q )n

which is also called an n-shot subspace code.

Observation 2.3. The cardinality, the rate, and the minimum distance of C
are defined as usual.

Definition 2.15. The parameters of a code C ⊂ P(Fm
q )n are denoted by

(m.n,Mn, d), where m.n is the dimension of the projective subspace, Mn is the
cardinality of the code, and d is the minimum distance. If C belongs to a Grass-
mannian of dimension k.n the parameters of the code are (m.n,Mn, d, k.n).
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Example 2.2. Consider the projective space P(F2
2) = {O, S1, S2, S3,W}. A

2-shot subspace code over P(F2
2)× P(F2

2) is:
C = {S1S1, S1S2, S1S3, S2S1, S2S2, S2S3, S3S1, S3S2, S3S3},

where S1 = {00, 01}, S2 = {00, 10}, S3 = {00, 11}. Observe that the minimum
distance of the code is d = 2. Thus, C is a 2-shot subspace code.

3 Geometrically Uniform Subspace Codes

In this section we present the definition of GU subspace codes and GU n-
shot subspace codes, as well as a construction of the later code, that is, given
a symmetry group the elements of this group act transitively on C.

Definition 3.1. An isometry T of the metric space (P(Fm
q ), d) is a trans-

formation T : P(Fm
q ) → P(Fm

q ) preserving the subspace distance d, that is,
d(T (U), T (V )) = d(U, V ), for every U, V ∈ P(Fm

q ).

Definition 3.2. A subspace code C is geometrically uniform if given any
two subspaces U, V ∈ C there exists an isometry I such that: I(U) = V and
I(C) = C.
Lemma 3.1. [5] The transformation Tij : C ⊆ P(Fm

q ) → C ⊆ P(Fm
q ) defined as:

Tij(Ui) = Uj; Tji(Uj) = Ui; and Tij(Uk) = Uk, where k 6= i, j, is an isometry
for any i, j ∈ {1, ..., n}.
Lemma 3.2. [5] Code C is a geometrically uniform subspace code under the
isometry defined previously.

Definition 3.3. An n-shot subspace code C is geometrically uniform if
given any two vector subspaces U , V ∈ C there exists an isometry I such that:
I(U) = V , and I(C) = C.

Lemma 3.3. The transformation Tij : C = C × C × ... × C ⊆ P(Fm
q )n →

C = C × C × ... × C ⊆ P(Fm
q )n defined as: Tij(U i) = U j; Tji(U j) = U i; and

Tij(Uk) = Uk, where k 6= i, j, is an isometry for every i, j ∈ {1, ..., n}.
Lemma 3.4. Code C is an n-shot geometrically uniform subspace code under
the isometry defined previously.

Definition 3.4. If G is an Abelian p-group for some prime p, then G is also
called a p-primary group.

Theorem 3.1. [Primary Decomposition][7] Every finite Abelian group G
is a direct sum of p-primary groups.

Theorem 3.2. [Basis Theorem][7] Every finite Abelian group G is a direct
sum of cyclic groups.
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Example 3.1. Consider the projective subspace P(F3
2). Code C(1)

2 = {S1, S2, S3},
where S1 = {000, 100, 010, 110}, S2 = {000, 010, 001, 011} and S3 = {000, 001,
100, 101} is geometrically uniform. In fact:

Consider the matrix P0 =
[

1 0 0
0 1 0

]
generating S1, the matrix P1 =

[
0 1 0
0 0 1

]
generating S2 and the matrix P2 =

[
0 0 1
1 0 0

]
generating S3.

There exists an Abelian subgroup Q1 = {σ0 = (123);σ1 = (312);σ2 =

(231)}, where σ0 = Q
(1)
1 =




1 0 0
0 1 0
0 0 1


 , σ1 = Q

(1)
2 =




0 1 0
0 0 1
1 0 0


 , σ2 =

Q
(1)
3 =




0 0 1
1 0 0
0 1 0


, which in this case is a cyclic subgroup of the permutation

group of order 3, such that: Pi + Q
(1)
1 = Pi; P(i+1)mod 3Q

(1)
2 = P(i+1)mod 3; and

P(i+2)mod 3Q
(1)
3 = P(i+2)mod 3, for any i ∈ {0, 1, 2}. Therefore, C(1)

2 is a 1-shot
geometrically uniform subspace code with parameters (m,M, d, k) = (3, 3, 2, 2).

Extending code C(1)
2 for the 2-shot case, we have:

C(2)
2 = C(1)

2 × C(1)
2 = {S1S1, S1S2, S1S3, S2S1, S2S2, S2S3, S3S1, S3S2, S3S3}

where:
S1S1 = 〈000100, 000010, 100000, 010000〉, S1S2 = 〈000010, 000001, 100000, 010000〉
S1S3 = 〈000001, 000100, 100000, 010000〉, S2S1 = 〈000100, 000010, 010000, 001000〉
S2S2 = 〈000010, 000001, 010000, 001000〉, S2S3 = 〈000001, 000100, 010000, 001000〉
S3S1 = 〈000100, 000010, 001000, 100000〉, S3S2 = 〈000010, 000001, 001000, 100000〉
S3S3 = 〈000001, 000100, 001000, 100000〉.

Let 〈e1, e2, ..., ek〉 denote the canonical generators of the subspace. The ma-
trices P0, P1, ...., P8 consist of the generators of the row spaces of the correspond-
ing subspaces. Hence, the Abelian subgroup Q2 = {Q(2)

1 , Q
(2)
2 , Q

(2)
3 , Q

(2)
4 , Q

(2)
5 , Q

(2)
6 ,

Q
(2)
7 , Q

(2)
8 , Q

(2)
9 }, where each element is a 6× 6 matrix, is such that:

Q
(2)
1 = Q

(1)
1 ×Q

(1)
1 ≡ Q

(1)
1 ⊕Q

(1)
1 ; Q(2)

2 = Q
(1)
1 ×Q

(1)
2 ≡ Q

(1)
1 ⊕Q

(1)
2 ,

Q
(2)
3 = Q

(1)
1 ×Q

(1)
3 ≡ Q

(1)
1 ⊕Q

(1)
3 ; Q(2)

4 = Q
(1)
2 ×Q

(1)
1 ≡ Q

(1)
2 ⊕Q

(1)
1 ,

Q
(2)
5 = Q

(1)
2 ×Q

(1)
2 ≡ Q

(1)
2 ⊕Q

(1)
2 ; Q(2)

6 = Q
(1)
2 ×Q

(1)
3 ≡ Q

(1)
2 ⊕Q

(1)
3 ,

Q
(2)
7 = Q

(1)
3 ×Q

(1)
1 ≡ Q

(1)
3 ⊕Q

(1)
1 ; Q(2)

8 = Q
(1)
3 ×Q

(1)
2 ≡ Q

(1)
3 ⊕Q

(1)
2 ,

Q
(2)
9 = Q

(1)
3 × Q

(1)
3 ≡ Q

(1)
3 ⊕ Q

(1)
3 . Whose group elements of Q2 act transi-

tively on the elements of the code C(2)
2 , in the following way: PiQ

(2)
1 = Pi;

P(i+1)mod 9Q
(2)
2 = P(i+1)mod 9; P(i+2)mod 9Q

(2)
3 = P(i+2)mod 9; P(i+3)mod 9Q

(2)
4 =

P(i+3)mod 9; P(i+4)mod 9Q
(2)
5 = P(i+4)mod 9; P(i+5)mod 9Q

(2)
6 = P(i+5)mod 9;
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P(i+6)mod 9Q
(2)
7 = P(i+6)mod 9; P(i+7)mod 9Q

(2)
8 = P(i+7)mod 9; P(i+8)mod 9Q

(2)
9 =

P(i+1)mod 9, for any i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}. Therefore, C(2)
2 is a 2-shot geo-

metrically uniform subspace code with parameters (m.n,Mn, d, k.n) = (6, 9, 2, 4).
Result: Let C = {S1, S2, ..., SM} be a 1-shot geometrically uniform sub-

space code with parameters (m,M, d, k) for a convenient projective space P(Fm
2 ).

There exists an Abelian subgroup Q1 =
{

Q
(1)
1 , Q

(1)
2 , ..., Q

(1)
M

}
such that the el-

ements of Q1 act transitively on the subspaces of C. The n-th extension of
C is the code C = C × C × .... × C for the n-th extension of the projective
space, that is, C is a subspace code in P(Fm

q )n which is geometrically uniform
with parameters (m.n, Mn, d, k.n), equivalently, there exists an Abelian sub-
group Qn =

{
Q

(n)
1 , Q

(n)
2 , ..., Q

(n)
Mn

}
, where each Q

(n)
i for i ∈ {1, 2, ..., Mn} is

the direct sum of the combination of the elements of Q1. Thus, C is an n-shot
geometrically uniform subspace code.

4 Conclusion
We have established in this paper the main concepts of geometrically uni-

form subspace codes and a new class of n-shot geometrically uniform subspace
codes which have interesting algebraic and geometric properties from both the
mathematical and communication theory points of view. Furthermore, the im-
portance of these codes is related to the existing efficient decoding algorithms.
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