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Abstract. We compute the exact value of error probability per symbol (SER) for
triangular quadrature amplitude modulation (TQAM) scheme in the case of AWGN
channel. Also, we derive an upper and a lower bounds for SER in this case. The
results , as well as the simulations, show that the difference between the exact value
of SER and the upper bound bound is constant. Hence the simple upper bound can
be used in practice for evaluating the SER.

1 Introduction

Nowadays, in modern digital communication systems, high-order modulation
is preferred for high-speed data transmission. One of the most popular mod-
ulation in commercial communication systems is square quadrature amplitude
modulation (SQAM). SQAM scheme with its simple detection procedure is easy
for implementation and demonstrates a good performance.

Recently, the triangular quadrature amplitude modulation (TQAM) was
proposed. In TQAM constellation the signal points are vertexes of a lattice
of equilateral triangles and the constellation is symmetric with respect to the
origin. The comparison of TQAM with SQAM given in [3] shows that the
former is more power efficient while preserves the low detection complexity of
the latter. In [4] a general formula for calculating the average energy per symbol
of the TQAM is derived and symbol error rate (SER) and bit error rate (BER)
of the TQAM in the presence of additive white Gaussian noise (AWGN) is
analyzed.

In the next section we give a brief description of TQAM. In Section 3 we
derived the exact value of SER for 22m-TQAM constellations, uncoded case.
In the last section we compare the obtained results with the lower and upper
bounds given in [2].

1The research of the second author is supported by the National Science Fund of Bulgaria
under Grant DFNI-I02/8.
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2 TQAM constellation

In this paper we consider TQAM constellation of M = 22m signal points placed
in L = 2m rows parallel to real axis with L signal point in each row. The points
form a lattice of equilateral triangles and the constellation is symmetric with
respect to the origin. An example of 64-ary TQAM is given in Fig. 1.

The power gain of M-ary TQAM over M-ary SQAM in decibels [4] is

10 log10

(

8M − 8

7M − 4

)

−−−−→
M→∞

0.5799 dB

For M = 16, 64, 256 the power gain is 0.458, 0.5505 and 0.5726, respectively.

3 The SER in uncoded case

The L2−TQAM constellation can be separated into seven types of detection re-
gions D1,D2, . . . ,D7. In this section we will calculate the probability of correct
detection qi for each of the regions Di, i = 1, . . . , 7. The number of detection
regions of each type for L2-TQAM is given in the next table.

D1 D2 D3 D4 D5 D6 D7

(L− 2)2 2(L− 2) L− 2 2 2 2 L− 4

Note that in the case of 16-TQAM (L = 4) the region D7 does not exist.

D4

• • • •
D2

• • • •D5

D3

• • • • • • • •D7

• • • • • • • •D7

• • • • • • • •
D6

D6 • • •
D1

• • • • •

D7 • • • • • • • •

D7 • • • • • • • •

D5

• • • • • • • •D4

Figure 1. 64-TQAM constellation.
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The lines that are boundaries of any region Di have the following equations
according to the coordinate system with the signal point in the region Di as
origin:

• y =
2d+ x√

3
the line left-above; y =

2d− x√
3

the line right-above;

• y =
−x− 2d√

3
the line left-down; y =

x− 2d√
3

the line right-down;

• x = const vertical line; y = const horizontal line.

3.1 Region D1 (hexagonal)

It consists of 4 congruent subregions. The right-above one is defined by

D1 :

{

0 ≤ x ≤ d; 0 ≤ y ≤ 2d− x√
3

}

Recalling that Pr
{

0 ≤ y ≤ 2d−x√
3

}

= 1

2
erf
(

2d−x√
3

)

we conclude that the one forth

of the probability of correct detection for D1 is

1

4
q1 =

∫ d

0

1√
πN0

e−x2/N0erf

(

2d− x√
3n0

)

dx,

Hence

q1 =
2√
πN0

∫ d

0

e−x2/N0erf

(

2d− x√
3N0

)

dx (1)

3.2 Region D2

These regions are symmetrically placed at the top and bottom of the constel-
lation. Each of them is one side unbounded in y. Let us consider the region
with negative values of y. It consists of two congruent parts and the right part

is defined by
{

0 ≤ x ≤ d; −∞ ≤ y ≤ 2d−x√
3

}

. Obviously, it can be separated

into two parts: rectangular {0 ≤ x ≤ d; −∞ ≤ y ≤ 0} and one forth of D1.
Thus q2/2 = q1/4 + (1/2)erf(d/

√
N0).(1/2) or

q2 =
1

2
q1 +

1

2
erf

(

d√
N0

)

(2)
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3.3 Region D3 (pentagonal)

The probability of correct detection is

q3 =
1

2
q1 + 2Pr

{

−2d ≤ x ≤ 0; 0 ≤ y ≤ 2d+ x√
3

}

Changing x → −x we get

q3 =
1

2
q1 +

1√
πN0

∫

2d

0

e
− x

2

N0 erf

(

2d− x√
3N0

)

dx (3)

3.4 Region D4

This is infinite region that is union of D2 and infinite triangle bounded by the
lines x = −d and y

√
3 = 2d+ x. Hence

q4 = q2 + Pr

{

−∞ ≤ x ≤ −d; −∞ ≤ y ≤ 2d+ x√
3

}

= q2 +
1√
πN0

∫ −d

−∞
e
− x

2

N0

1

2

(

1 + erf

(

2d+ x√
3N0

))

dx

Hence changing x → −x and using the definition of error function we have

q4 = q2 +
1

4

(

1− erf

(

d√
N0

))

+
1

2
√
πN0

∫ ∞

d
e
− x

2

N0 erf

(

2d− x√
3N0

)

dx (4)

3.5 Region D5

D5 is infinite rectangular {−∞ ≤ x ≤ d, −d
√
3 ≤ y ≤ ∞} with cut angle, the

triangle ∆ : {−d ≤ x ≤ d, −d
√
3 ≤ y ≤ (x− 2d)/

√
3}. Therefore

q5 =
1

2

(

1 + erf

(

d√
N0

))

· 1
2

(

1 + erf

(

d
√
3√

N0

))

− q∆, where

q∆ =
1√
πN0

∫ d

−d
e
− x

2

N0

1

2

(

erf

(

d
√
3√

N0

)

− erf

(

−x− 2d√
3N0

)

)

dx

=
1

2
erf

(

d
√
3√

N0

)

erf

(

d√
N0

)

− 1

2
√
πN0

∫ d

−d
e
− x

2

N0 erf

(

2d− x√
3N0

)

dx
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Therefore

q5 =
1

4

(

1 + erf

(

d√
N0

)

+ erf

(

d
√
3√

N0

))

− 1

4
erf

(

d
√
3√

N0

)

erf

(

d√
N0

)

+
1

2
√
πN0

∫ d

−d
e
− x

2

N0 erf

(

2d− x√
3N0

)

dx (5)

3.6 Region D6

D6 can be obtained from D5 by substraction of the infinite triangle δ : {−∞ ≤
x ≤ d, −∞ ≤ y ≤ x−2d√

3
}, i.e., q6 = q5 − qδ, where

qδ =
1

2
√
πN0

∫ d

−∞
e
− x

2

N0 (1− erf

(

−x− 2d√
3N0

)

) dx

=
1

4

(

1 + erf

(

d√
N0

))

− 1

2
√
πN0

∫ d

−∞
e
− x

2

N0 erf

(

2d− x√
3N0

)

dx

Therefore

q6 = q5 −
1

4

(

1 + erf

(

d√
N0

))

+
1

2
√
πN0

∫ d

−∞
e
− x

2

N0 erf

(

2d− x√
3N0

)

dx (6)

3.7 Region D7

This region exists only for L ≥ 6. It is an infinite rectangular with cut two
angles: the symmetrically placed triangles τ and τ ′, i.e.,

D7 : {−∞ ≤ x ≤ d, −d
√
3 ≤ y ≤ d

√
3} \ {τ ∪ τ ′}, where

τ : {−d ≤ x ≤ d,
x− 2d√

3
≤ y ≤ d

√
3}; τ ′ : {−d ≤ x ≤ d, −d

√
3 ≤ y ≤ x− 2d√

3
}

Since τ and τ ′ have the same contribution to the probability and τ ′ coincides
with ∆ from Subsection E we can write

q7 =
1

2

(

1 + erf

(

d√
N0

))

erf

(

d
√
3√

N0

)

− 2q∆, thus

q7 =
1

2

(

1− erf

(

d√
N0

))

erf

(

d
√
3√

N0

)

+
1√
πN0

∫ d

−d
e
− x

2

N0 erf

(

2d− x√
3N0

)

dx (7)
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Hence the probability q for a correct detection of the received signal point is

q =
1

L2
[(L− 2)2q1 + 2(L− 2)q2 + (L− 2)q3 + 2(q4 + q5 + q6) + (L− 4)q7]

and thus
SER = 1− q. (8)

The values qi and SER in the case L2 = 16 are given in Table 1.

Table 1: SER for regions of 16-TQAM
D1 D2 D3 D4 D5 D6 SER mult.

10dB 2.9535 2.1569 2.6473 1.6646 1.1739 1.6662 2.1716 ×10−1

11dB 2.1576 1.5508 1.9099 1.1912 0.8320 1.1916 1.5676 ×10−1

12dB 1.4544 1.030 1.2723 0.7876 0.5452 0.7876 1.0452 ×10−1

13dB 8.8660 6.1946 7.6721 4.7169 3.2394 4.7170 6.308 ×10−2

14dB 4.7653 3.2899 4.0841 2.4957 1.7015 2.4957 3.3609 ×10−2

15dB 2.1883 1.4955 1.8602 1.1308 7.6611 1.1308 1.5319 ×10−2

16dB 8.2558 5.5959 6.9720 4.2197 2.8441 4.2202 5.7449 ×10−3

17dB 2.4387 1.6423 2.0486 1.2360 0.8292 1.2356 1.6890 ×10−3

18dB 5.3007 3.5541 4.4376 2.6706 1.7871 2.6679 3.6591 ×10−4

19dB 7.8686 5.2607 6.5719 3.9492 2.6358 3.9458 5.4202 ×10−5

20dB 7.2504 4.8394 6.0508 3.3603 2.4213 3.6999 4.9640 ×10−6

4 Conclusion

In [2] we derived the following lower and upper bounds for the uncoded case:

e
− 16

7L2
−4

SNRs < SER < e
− 12

7L2
−4

SNRs . (9)

The upper bound has a behavior very similar to one of the exact value of
SER versus signal/noise ratio in dB. This was the start point for us to find the
following approximations.

16TQAM: SER ≈ e−
12.75

108
SNR

( |SNRdB − 16|
100

+ 0.645

)

(10)

64TQAM: SER ≈ e−
12.70

444
SNR

( |SNRdB − 20|
100

+ 0.79

)

(11)

256TQAM: SER ≈ e−
12.65

1788
SNR

( |SNRdB − 28|
100

+ 0.83

)

(12)

where SNRdB is the signal/noise ratio in decibels and SNR = 10
SNRdB

10 .
Figure 2 demonstrates how good is the approximation for 256-TQAM.
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Figure 2. SER and approximation for 256-TQAM.
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