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Abstract. Two isometry groups of combinatorial codes are described: the group of
automorphisms and the monomial group, which is the group of those automorphisms
that extend to monomial maps. Unlike the case of linear codes, where these groups
are the same, it is shown that for nonlinear codes the groups can be arbitrary
different. Particularly, there exist codes with the full automorphism group and the
trivial monomial group. In the paper the two isometry groups are characterized and
codes with predefined isometry groups are constructed.

1 Introduction

MacWilliams proved in her Ph.D. thesis [6] that each linear isometry of a classi-
cal linear code extends to a monomial map. Consequently, the isometry groups
of a classical linear code coincide. As it was shown in numerous papers, see
[2, 4, 9], for linear codes over module alphabets the extension property does
not hold in general. This means that there could exist codes with different
automorphism and monomial groups.

In [8] Wood investigated the question of how different can be the two groups
of a linear code over a module alphabet. He showed that for any two subgroups
of a general linear group, which satisfy some necessary properties, there exists
a linear code over a module alphabet with the predefined automorphism and
monomial groups.

In this paper we adapt the original proof of [8] to obtain a similar statement
for combinatorial codes, i.e., for codes without any algebraic structure. Fortu-
nately, with minor remarks, an analogue of the result of Wood remains correct
for combinatorial codes.

Let A be a finite set and let n be a positive integer. Consider the set An

of all n-tuples of elements from A. Consider the Hamming metrics ρH on An,
defined as, for x, y ∈ An, ρH(x, y) = |{i | xi 6= yi}|.

Let C ⊆ An be a code. A Hamming isometry of C is a map f : C → An

that preserves the Hamming metrics, i.e., for all x, y ∈ C,

ρH(x, y) = ρH(f(x), f(y)).

An automorphism of C is a Hamming isometry f : C → An such that
f(C) = C.
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For a set X let Sym(X) denote the group of all permutations of elements
of X. Let m denotes the cardinality of C, then, enumerating the codewords of
C by numbers in {1, . . . ,m}, Sym(C) ∼= Sm.

A permutation g : C → C can be seen as a map C → An: for every g ∈ Sm

consider the map fg : C → An, defined as fg(c) = g(c), for all c ∈ C. Define
the group of automorphisms of C,

Aut(C) = {g ∈ Sm | fg is an automorphism}.

A map h : An → An is called monomial if there exist a permutation π ∈ Sn

and permutations g1, . . . , gn ∈ Sym(A) such that for each a = (a1, . . . , an) ∈ An,

h(a) =
(
g1(aπ(1)), . . . , gn(aπ(n))

)
.

It is an easy task to show that every monomial map is an automorphism of
An. Define the group of monomial automorphisms of C,

MAut(C) = {g ∈ Aut(C) | fg extends to a monomial map}.

In [1, Theorem 1] it was proven that the groups Aut(An) and MAut(An)
are equal. However, for a code C ⊂ An, which is a proper subset, it is not true
in general.

According to [7], if C is a q-ary (q, 2) or (q + 1, 2) MDS code, q 6= 2, then
|Aut(C)| > |MAut(C)|, and thus Aut(C) 6= MAut(C). The same holds, for
example, for (q, (q − 1)2, q − 1)q equidistant codes, where q ≥ 5, where both q
and q − 1 are prime powers, see [5]. There the author observed several other
families of codes with different Aut(C) and MAut(C) groups.

Remark 1. In coding theory it is often used the group Monom(C) of those
monomial maps that preserves C. Note that MAut(C) and Monom(C) are
different objects: MAut(C) is a subgroup of Sym(C) ∼= Sm and Monom(C)
is a subgroup of the full group of monomial maps1. However, there exists a
connection. Since every monomial map is a Hamming isometry, for each h ∈
Monom(C) there exists a unique element gh ∈ Aut(C) such that h(c) = gh(c),
for all c ∈ C. In other words, the action of the map h on C can be seen as a
permutation of codewords. By defining the map

restr : Monom(C) → Aut(C), h 7→ gh,

we have the equality of groups MAut(C) = restr(Monom(C)).

The main result is formulated in the next section.
1The set of all monomial maps of An form a group, which is isomorphic to the wreath

product Sn o Sym(A), see [3, Section 2.6].
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2 Main result

Let G be a group acting on a set X. We say that a subgroup H ≤ G is closed
under the action2 on X if H consists of all those elements in G that preserve
the orbits of H. To be precise, we say that H is closed under the action on X,
if the equality holds,

H = {g ∈ G | ∀i ∈ {1, . . . , k}, ∀x ∈ Oi, g(x) ∈ Oi},

where {O1, . . . , Ok} is the set of orbits of H acting on X and k is a positive
integer.

Denote ` = |A| ≥ 2. Consider the set P` of all the partitions of the set
{1, . . . ,m} that have the number of classes not greater than ` = |A|. Let
α = (s1) . . . (sk) ∈ P`, where ∅ 6= si ⊆ {1, . . . , m}, for i ∈ {1, . . . , k}, and k ≤ `.
The group Sm acts on the set P` as follows, for g ∈ Sm,

g(α) = (g(s1)) . . . (g(sk)),

where g(si) = {g(x) | x ∈ si} ⊆ {1, . . . , m}, for i ∈ {1, . . . , k}.
In P` we distinguish a subset

Pτ = {(i, j)({1, . . . , m} \ {i, j}) | 1 ≤ i < j ≤ m}.

The group Sm naturally acts on Pτ and P` \ Pτ .

Theorem 1. Let A be a finite set alphabet of cardinality ` ≥ 2 and let C be a
code of cardinality m ≥ 5 over the alphabet A. The following statements hold.

(a) The group Aut(C) is closed under the action on Pτ .

(b) The group MAut(C) is an intersection of Aut(C) with a group closed
under the action on P` \ Pτ .

(c) For each closed under the action on Pτ subgroup H2 ≤ Sm, for each closed
under the action on P` \ Pτ subgroup H1 ≤ Sm, there exists a code C of
cardinality m such that

MAut(C) = H1 ∩H2 and Aut(C) = H2.

Note that the trivial subgroup {e} < Sm is closed under the action on
P` \ Pτ , and the full group Sm is closed under the action on P` \ Pτ and Pτ .

From Theorem 1Main resulttheorem.1 it follows that there exists a code
with equal automorphism and monomial groups: putting H1 = Sm, for each

2A similar definition of closures and closed groups were introduced in [3, Section 2.4].
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closed under the action on Pτ subgroup H2 ≤ Sm there exists a code C of
cardinality m such that

MAut(C) = Aut(C) = H2.

Also, the two groups can be arbitrary different: putting H1 = {e} and
H2 = Sm, there exists a code C of cardinality m such that

MAut(C) = {e} and Aut(C) = Sm.

Example 1. For m = 5 and ` = 2, consider the code of the following form.

0 1 2 3 4 6 5 4 3 4 3 2 2 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

It is a (40, 5, 22) equidistant binary code with Aut(C) = S5 and MAut(C) =
{e}. The numbers over the horizontal line represent the number of occurrences
of the column under the line in the code. For instance, in this example, the
second column appear once in the code and the first column does not appear
anywhere in the code.

Remark 2. The behavior of closed subgroup under the action on Pτ and P` \Pτ

can be different. There exists a subgroup that is closed under the action on
P`\Pτ but not closed under the action on Pτ . For example, if m = 5, ` = 3 and
the group is G = 〈(1, 2)(3, 4), (1, 2)(3, 5)〉 < S5. There also exists a subgroup
that is closed under the action on Pτ but not closed under the action on P`\Pτ .
Consider m = 5, ` = 2 and G = 〈(1, 2)(3, 4)〉 < S5.

For small codes with the number of codewords not greater than four the
statement of the theorem needs to be refined. There exists a full description of
isometry groups in a similar way, though one needs to consider various cases.
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