Threshold Decoding for Disjunctive Group Testing 1

A.G. D'YACHKOV agd-msu@yandex.ru I.V. VOROBYEV vorobyev.i.v@yandex.ru N.A. POLYANSKII nikitapolyansky@gmail.com V.YU. SHCHUKIN vpike@mail.ru

Lomonosov Moscow State University, Moscow, Russia

Abstract. Let $1 \leq s < t, N \geq 1$ be integers and a complex electronic circuit of size t is said to be an s-active, $s \ll t$, and can work as a system block if not more than s elements of the circuit are defective. Otherwise, the circuit is said to be an s-defective and should be replaced by a similar s-active circuit. Suppose that there exists a possibility to run N non-adaptive group tests to check the sactivity of the circuit. As usual, we say that a (disjunctive) group test yields the positive response if the group contains at least one defective element. Along with the conventional decoding algorithm based on disjunctive s-codes, we consider a threshold decision rule with the minimal possible decoding complexity, which is based on the simple comparison of a fixed threshold $T, 1 \leq T \leq N - 1$, with the number of positive responses $p, 0 \leq p \leq N$. For the both of decoding algorithms we discuss upper bounds on the α -level of significance of the statistical test for the null hypothesis $\{H_0 :$ the circuit is s-active} verse the alternative hypothesis $\{H_1 :$ the circuit is s-defective}.

1 Statement of Problem

Let $N \ge 2$, $t \ge 2$, s and T be integers, where $1 \le s < t$ and $1 \le T < N$. The symbol \triangleq denote the equality by definition, |A| – the size of the set A and $[N] \triangleq \{1, 2, \ldots, N\}$ – the set of integers from 1 to N. A binary $(N \times t)$ -matrix

$$X = ||x_i(j)||, \quad x_i(j) = 0, 1, \quad i \in [N], \ j \in [t],$$
(1)

with t columns (codewords) $\mathbf{x}(j) \triangleq (x_1(j), x_2(j), \dots, x_N(j), j \in [t])$, and N rows $\mathbf{x}_i \triangleq (x_i(1), x_i(2), \dots, x_i(t)), i \in [N]$, is called a binary code of length N and size $t = \lfloor 2^{RN} \rfloor$, where a fixed parameter R > 0 is called a rate of the code X. The number of 1's in a binary column $\mathbf{x} = (x_1, \dots, x_N) \in \{0, 1\}^N$, i.e., $|\mathbf{x}| \triangleq \sum_{i=1}^N x_i$, is called a weight of \mathbf{x} . A code X is called a constant weight binary code of weight $w, 1 \leq w < N$, if for any $j \in [t]$, the weight $|\mathbf{x}(j)| = w$. The conventional symbol $\mathbf{u} \lor \mathbf{v}$ will be used to denote the disjunctive (Boolean)

¹The research is supported in part by the Russian Foundation for Basic Research under Grant No. 16-01-00440.

sum of binary columns $\boldsymbol{u}, \boldsymbol{v} \in \{0, 1\}^N$. We say that a column \boldsymbol{u} covers a column \boldsymbol{v} ($\boldsymbol{u} \succeq \boldsymbol{v}$) if $\boldsymbol{u} \bigvee \boldsymbol{v} = \boldsymbol{u}$.

1.1 Disjunctive and Threshold Disjunctive Codes

Definition 1. [1]. A code X (1) is called a *disjunctive s-code*, $s \in [t-1]$, if the disjunctive sum of any *s*-subset of codewords of X covers those and only those codewords of X which are the terms of the given disjunctive sum.

Let $S, S \subset [t]$, be an arbitrary fixed collection of defective elements of size |S|. For a binary code X and collection S, define the binary response vector of length N, namely:

$$\boldsymbol{x}(\mathcal{S}) \triangleq \bigvee_{j \in \mathcal{S}} \boldsymbol{x}(j), \quad \text{if } \quad \mathcal{S} \neq \emptyset \quad \text{and} \quad \boldsymbol{x}(\mathcal{S}) \triangleq (0, 0, \dots, 0) \quad \text{if } \quad \mathcal{S} = \emptyset.$$
 (2)

In the classical problem of non-adaptive group testing, we describe N tests as a binary $(N \times t)$ -matrix $X = ||x_i(j)||$, where a column $\boldsymbol{x}(j)$ corresponds to the *j*-th element, a row \boldsymbol{x}_i corresponds to the *i*-th test and $x_i(j) \triangleq 1$ if and only if the *j*-th element is included into the *i*-th testing group. The result of each test equals 1 if at least one defective element is included into the testing group and 0 otherwise, so the column of results is exactly equal to the response vector $\boldsymbol{x}(S)$. Definition 1 of disjunctive *s*-code X gives the important sufficient condition for the evident identification of any unknown collection of defective elements S if the number of defective elements $|S| \leq s$. In this case, the identification of the unknown S is equivalent to discovery of all codewords of code X covered by $\boldsymbol{x}(S)$, and its complexity is equal to the code size t. Note that this algorithm also allows us to check s-activity of the circuit defined in the abstract. Moreover, it is easy to prove by contradiction that every code X which allows to check s-activity of the circuit without error is a disjunctive s-code.

Definition 2. Let $s, s \in [t-1]$, and $T, T \in [N-1]$, be arbitrary fixed integers. A disjunctive s-code X of length N and size t is said to be a a disjunctive s-code with threshold T (or, briefly, s^T -code) if the disjunctive sum of any $\leq s$ codewords of X has weight $\leq T$ and the disjunctive sum of any $\geq s + 1$ codewords of X has weight $\geq T + 1$.

Obviously, for any s and T, the definition of s^T -code gives a sufficient condition for code X applied to the group testing problem described in the abstract of our paper. In this case, only on the base of the known *number of positive responses* $|\boldsymbol{x}(S)|$, we decide that the controllable circuit identified by an unknown collection S, $S \subset [t]$, is s-active, i.e., the unknown size $|S| \leq s$ (s-defective, i.e., the unknown size $|S| \geq s + 1$) if $|\boldsymbol{x}(S)| \leq T (|\boldsymbol{x}(S)| \geq T + 1)$.

Remark 1. The concept of s^T -codes was motivated by troubleshooting in complex electronic circuits using a non-adaptive identification scheme which was considered in [2].

1.2 Hypothesis Test

Let a circuit of size t is identified by an unknown collection S_{un} , $S_{un} \subset [t]$, of defective elements of an unknown size $|S_{un}|$ and X be a code (1) of size t and length N. Introduce the null hypothesis $\{H_0 : |S_{un}| \leq s\}$ (the circuit is s-active) verse the alternative $\{H_1 : |S_{un}| \geq s + 1\}$ (the circuit is s-defective). In this paper we focus on the testing of statistical hypotheses H_0 and H_1 . The similar problem related to constructing of a confidence interval for $|S_{un}|$ was considered in [3], where the authors construct the interval $[\hat{s}/c; \hat{s}]$, such that given a random code X, the statistic \hat{s} , i.e., a function of the random response vector $\boldsymbol{x}(S_{un})$, satisfies the following properties: $\Pr\{\hat{s} < |S_{un}|\}$ is upper bounded by a small parameter $\epsilon \ll 1$ and the expected value of $\hat{s}/|S_{un}|$ is upper bounded by a number c > 1.

For fixed parameters $s, 1 \le s < t$, and $T, 1 \le T < N$, consider the following threshold decision rule motivated by Definition 2, namely:

accept {
$$H_0$$
 : $|\mathcal{S}_{un}| \le s$ } if $|\boldsymbol{x}(\mathcal{S}_{un})| \le T$,
accept { H_1 : $|\mathcal{S}_{un}| \ge s+1$ } if $|\boldsymbol{x}(\mathcal{S}_{un})| \ge T+1$. (3)

For the conventional *statistical* interpretation of the decision rule (3), it is reasonable to assume that the different collections of defective elements of the same size are *equiprobable*. That is why, we set that the *probability distribution* of the random collection $S_{un}, S_{un} \subset [t]$, is identified by an unknown probability vector $\mathbf{p} \triangleq (p_0, p_1, \ldots, p_t), p_k \ge 0, k = 0, 1, \ldots, t, \sum_{k=0}^t p_k = 1$, as follows:

$$\Pr\{\mathcal{S}_{un} = \mathcal{S}\} \triangleq \frac{p_{|\mathcal{S}|}}{\binom{t}{|\mathcal{S}|}} \quad \text{for any subset} \qquad \mathcal{S} \subseteq [t].$$
(4)

Introduce a maximal error probability of the decision rule (3):

$$\varepsilon_s(T, \boldsymbol{p}, X) \triangleq \max \left\{ \Pr\{\text{accept } H_1 | H_0\}, \Pr\{\text{accept } H_0 | H_1\} \right\}$$
 (5)

where the conditional probabilities in the right-hand side of (5) are identified by (3)-(4). Note that the number $\varepsilon_s(T, \boldsymbol{p}, X) = 0$ if and only if the code X is an s^T -code. Denote by $t_s(N, T)$ the maximal size of s^T -codes of length N. For a parameter τ , $0 < \tau < 1$, introduce the rate of $s^{\lfloor \tau N \rfloor}$ -codes:

$$R_s(\tau) \triangleq \lim_{N \to \infty} \frac{\log_2 t_s(N, \lfloor \tau N \rfloor)}{N} \ge 0, \quad 0 < \tau < 1.$$
(6)

Definition 3. Let τ , $0 < \tau < 1$, and a parameter R, $R > R_s(\tau)$, be fixed. For the maximal error probability $\varepsilon_s(T, \boldsymbol{p}, X)$, defined by (3)-(5), consider the function

$$\varepsilon_s^N(\tau, R) \triangleq \max_{\boldsymbol{p}} \left\{ \min_{\boldsymbol{X}} \varepsilon_s(\lfloor \tau N \rfloor, \boldsymbol{p}, \boldsymbol{X}) \right\}, \quad R > R_s(\tau),$$
(7)

where the minimum is taken over all codes X of length N and size $t = \lfloor 2^{RN} \rfloor$ with parameter $R > R_s(\tau)$. The number $\varepsilon_s^N(\tau, R) > 0$ does not depend on the unknown probability vector \boldsymbol{p} and can be called the *universal* error probability of the decision rule (3). The corresponding *error exponent*

$$E_s(\tau, R) \triangleq \lim_{N \to \infty} \frac{-\log_2 \varepsilon_s^N(\tau, R)}{N}, \quad s \ge 1, \quad 0 < \tau < 1, \quad R > R_s(\tau)$$
(8)

identifies the asymptotic behavior of α -level of significance for the decision rule (3), i.e.,

$$\alpha \triangleq \exp_2\{-N\left[E_s(\tau, R) + o(1)\right]\}, \quad \text{if} \quad E_s(\tau, R) > 0, \quad N \to \infty.$$
(9)

Along with (3) we introduce the *disjunctive decision rule* based on the conventional algorithm:

$$\begin{cases} \text{ accept } H_0 & \text{if } \boldsymbol{x}(\mathcal{S}_{un}) \text{ covers } \leq s \text{ codewords of } X, \\ \text{ accept } H_1 & \text{if } \boldsymbol{x}(\mathcal{S}_{un}) \text{ covers } \geq s+1 \text{ codewords of } X. \end{cases}$$
(10)

For a fixed code rate R, R > 0, the error exponent for disjunctive decision rule (10) $E_s(R)$ is defined similarly to (5)-(8). The function $E_s(R)$ was firstly introduced in our paper [1], where we proved

Theorem 1. [1]. The function $E_s(R) = 0$ if $R \ge 1/s$.

2 Lower Bounds on Error Exponents

In this Section, we formulate and compare the random coding lower bounds for the both of error exponents $E_s(R)$ and $E_s(\tau, R)$. These bounds were proved applying the random coding method based on the ensemble of constant-weight codes. A parameter Q in formulations of theorems 2-3 means the relative weight of codewords of constant-weight codes. Introduce the standard notations

$$h(Q) \triangleq -Q \log_2 Q - (1 - Q) \log_2 [1 - Q], \quad [x]^+ \triangleq \max\{x, 0\}.$$

In [1], we established

Theorem 2. [1]. The error exponent $E_s(R) \ge \underline{E}_s(R)$ where the random coding lower bound

$$\underline{E}_s(R) \triangleq \max_{0 < Q < 1} \min_{Q \le q < \min\{1, sQ\}} \left\{ \mathcal{A}(s, Q, q) + \left[h(Q) - qh(Q/q) - R\right]^+ \right\},$$

$$\mathcal{A}(s,Q,q) \triangleq (1-q)\log_2(1-q) + q\log_2\left[\frac{Qy^s}{1-y}\right] + sQ\log_2\frac{1-y}{y} + sh(Q),$$

D'yachkov, Vorobyev, Polyanskii, Shchukin

and y is the unique root of the equation

$$q = Q \frac{1 - y^s}{1 - y}, \quad 0 < y < 1.$$

In addition, as $s \to \infty$ and $R \leq \frac{\ln 2}{s}(1+o(1))$, the lower bound $\underline{E}_s(R) > 0$. **Theorem 3.** 1. The error exponent $E_s(\tau, R) \geq \underline{E}_s(\tau, R)$ where the random coding bound $\underline{E}_s(\tau, R)$ does not depend on R > 0 and has the form:

$$\underline{\underline{E}}_{s}(\tau, R) \triangleq \max_{\substack{1-(1-\tau)^{1/(s+1)} < Q < 1-(1-\tau)^{1/s}}} \min\left\{\mathcal{A}'(s, Q, \tau), \mathcal{A}(s+1, Q, \tau)\right\},$$
$$\mathcal{A}'(s, Q, q) \triangleq \begin{cases} \mathcal{A}(s, Q, q), & \text{if } Q \le q \le sQ, \\ \infty, & \text{otherwise.} \end{cases}$$

2. As $s \to \infty$ the optimal value of $\underline{E}_s(\tau, R)$ satisfies the inequality:

$$\underline{E}_{Thr}(s) \triangleq \max_{0 < \tau < 1} \underline{E}_s(\tau, R) \ge \frac{\log_2 e}{4s^2} (1 + o(1)), \quad s \to \infty.$$

It is possible to use decision rule (3) with any value of parameter T. The numerical values of the optimal error exponent $\underline{E}_{Thr}(s)$ along with the corresponding optimal values of threshold parameter τ and the constant-weight code ensemble parameter Q are presented in Table 1. Besides in Table 1 the values of $\underline{E}_s(0)$ and $R_{\rm cr} \triangleq \sup\{R : \underline{E}_s(R) > \underline{E}_{\rm Thr}(s)\}$ are shown. Theorems 1-3 show that, for large values of R, the threshold decision rule (3) has an advantage over the disjunctive decision rule (10) as $N \to \infty$.

Table 1: The numerical values of $\underline{E}_{Thr}(s)$

s	2	3	4	5	6	7	8
$\underline{E}_{\mathrm{Thr}}(s)$	0.1380	0.0570	0.0311	0.0196	0.0135	0.0098	0.0075
au	0.2065	0.1365	0.1021	0.0816	0.0679	0.0582	0.0509
Q	0.1033	0.0455	0.0255	0.0163	0.0113	0.0083	0.0064
$\underline{E}_s(0)$	0.3651	0.2362	0.1754	0.1397	0.1161	0.0994	0.0869
$R_{\rm cr}$	0.2271	0.1792	0.1443	0.1201	0.1027	0.0896	0.0794

3 Simulation for finite code parameters

For finite N and t, we carried out a simulation as follows. The probability distribution vector \boldsymbol{p} (4) is defined by

$$p_k \triangleq \binom{t}{k} p^k (1-p)^{t-k}, \quad p \triangleq \frac{s+1/2}{t}, \quad 0 \le k \le t,$$

i.e. the number of defective elements $|S_{un}|$ is binomially distributed and has the expected value s + 1/2. A code X is generated randomly from the ensemble of constant-weight codes, i.e. for some weight parameter w, every codeword of X is chosen independently and equalprobably from the set of all $\binom{t}{w}$ codewords. For every weight w and every decision rule, we repeat generation 1000 times and choose the code with minimal error probability. Note that for disjunctive decision rule $\Pr{accept H_0|H_1} = 0$. In Table 2 the best values of maximal error probability for fixed parameters s, t and N are shown in bold.

	Thresh	old decision rule	Disjunctive decision rule									
N	$\Pr\{\text{acc. } H_1 H_0\}$	$\Pr\{\text{acc. } H_0 H_1\}$	w	T	$\Pr\{\text{acc. } H_1 H_0\}$	w						
s = 2, t = 15												
5	0.1366	0.1355	2	3	0.4780	2						
8	0.0732	0.0824	3	5	0.3610	2						
10	0	0.0744	1	2	0.2390	3						
12	0	0.0440	1	2	0.1220	3						
14	0	0.0349	2	4	0.0537	3						
15	0	0.0258	2	4	0.0195	3						
s = 2, t = 20												
5	0.1398	0.1365	2	3	0.5356	2						
8	0.0897	0.0890	3	5	0.4169	2						
10	0.0897	0.0858	3	5	0.3008	3						
12	0.0580	0.0576	4	7	0.1979	3						
15	0	0.0324	2	4	0.0792	4						

Table 2: Results of simulation

References

- D'yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu., Almost Disjunctive List-Decoding Codes, Problems of Information Transmission, vol. 51, no. 2, pp. 110-131, 2015.
- [2] Zubashich V.F., Lysyansky A.V., Malyutov M.B., Blockrandomized distributed troubleshooting construction in large circuits with redundancy. Izvestia of the USSR Acad. of Sci., Technical Cybernetics, vol. 6, 1976.
- [3] Damaschke P., Muhammad A.S., Competitive group testing and learning hidden vertex covers with minimum adaptivity, Discrete Math. Algorithm. Appl., vol. 2, no. 3, pp. 291-311, 2010.