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Some new quasi-cyclic self dual codes
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Abstract. In this paper, we study the construction of quasi-cyclic self-dual codes,
especially of binary cubic ones. We consider binary quasi-cyclic codes of length 3¢
with the algebraic approach of [7]. In particular, we improve the previous results, by
constructing 7 new binary cubic self-dual codes. We also complete the classification
of [54,27,10] binary cubic self-dual codes up to a conjecture.

1 Introduction

A g-ary linear code C is a linear subspace of Fy. If C has dimension k, then
C is called an [n, k] linear code. The minimum (Hamming) distance d(C) is the
minimum number of distinct coordinates between any pair of distinct codewords
in C. The (Hamming) weight w(c) of a codeword ¢ in C is defined to be the
number of non-zero entries of ¢. For a linear code, we have that d(C) = w(C).
Two codes are said to be equivalent up to permutation if they differ only in the
order of their coordinates. The (Hamming) weight enumerator of the code C
is defined to be We(y) = 30 y*1® = I, Ay, where A; is the number of
vectors of the code C having Hamming weight 4.

We can define the dual of a code C to be C*+ = {u € F} : (u,v) = 0 for all v € C}.
Here the inner product is the standard (Euclidean) inner product. C is self-
dual if C = C*. If a code C of length n is self-dual, then n must be even; and
C is a subspace of dimension n/2.

If C C F is a binary self-dual code, then the weight of all codewords must be
even. The binary self-dual codes in which there is at least one codeword with
weight not divisible by 4 are called Type I or singly-even self-dual binary
codes. Otherwise, the binary self-dual codes are called Type II or doubly-
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even self-dual binary codes.

In this paper, we consider the algebraic approach of [7] for constructing cubic
self-dual binary codes. In the literature, there are only seven cubic binary self-
dual [54,27,10] inequivalent codes up to permutation (see [5]). The method
they used was their building-up construction [5, Theorem 2.2]. We construct
seven new cubic binary self-dual [54,27, 10] inequivalent codes up to permuta-
tion. In Remark 4.2, we conjecture that these 14 codes are all cubic binary
self-dual [54, 27, 10] inequivalent codes up to permutation.

The rest of this paper is organized as follows: In Sections 2 and 3 we give some
background. We present our results in Section 4.

2  Quasi-Cyclic Codes

Let F; be a finite field and m be a positive integer coprime with the character-
istic of Fy. A linear code C of length ¢m over F, is called quasi-cyclic code
if the codeword (co0,...,C00—1,C1,05--,Cle—1r-+>Cm—1,0---3Cm-1,4-1) € C,
then (cp—1,05-++5Cm—1,6-1,C0,05+++,C0,t—15+++5Cm—2,0;-+,Cm—2¢-1) € C.

This code is invariant under ¢-shift and such codes are called as /-quasi-cyclic
codes or quasi-cyclic codes of index ¢. The quasi-cyclic codes are the
generalization of cyclic codes. Cyclic codes correspond to the case £ = 1.

2.1 1-1 correspondence:

Let F,[Y] denote the polynomial ring over F,. Consider the ring R := R(F,, m) =
F,[Y]/(Y™ —1). Let C be a {-quasi-cyclic code over F, of length ¢m and let
c=1(€0,0y--1C00—1,C1,0-+>Cle—Ts-+>Cm—1,0,-- -+ Cm—1,—1) denote a codeword
in C. Define a map ¢ : Fflm — R by

olc) = (co(Y),c1(Y),...,c1(Y)) € R

where ¢;(Y) =7 ey Y eR, j=0,...,0—1.

A linear code C of length n over R is defined to be a R-submodule of R™.

Lemma 2.1. (see [7]) The map ¢ gives a one-to-one correspondence between
l-quasi-cyclic codes over Iy of length fm and linear codes over R of length €.

2.2 Existence of Self-Dual Codes

In [5], it is proved that there exist self-dual binary codes of length ¢ over R =
R(Fg,m) = Fo[Y]/(Y™ — 1) if and only if 2 | £. For binary ¢-quasi-cyclic self-
dual codes of length ¢m, if m is a prime not dividing ¢, then m must divide
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A;, the number of codeword with Hamming weight i. This gives the possible
weight enumerators of self-dual codes of a given length.

3 Ring Decomposition

Let R = R(Fq,m) = F,[Y]/(Y™ — 1). If ged(m,q) = 1, then the ring can be
decomposed into a direct sum of fields by Chinese remainder theorem (CRT) or
discrete Fourier transform (DFT) [7]. By this approach, the quasi-cyclic codes
can be decomposed into codes of lower lengths. The polynomial Y — 1 factors
completely into distinct irreducible factors in F,[Y] as

Y™ —1=46g;...gshiht ... hh! (1)

where 0 is nonzero in Fy, g; ... gs are the polynomials which are self-reciprocal,
and h’s are reciprocals of h;’s, for all 1 < 4 < t. Then the ring R can be
written by CRT [7] as

_ R ANFY) n( FlY] . FilY]
Rewn-p = <EB (9) )@ <@< h) © ) )) )

i=1 =1

Let Fy[Y]/(g;) be denoted by G;, and in the same way Fy[Y]/(h;) by H;
and Fp[Y]/ (k) by Hj for simplicity of notation. Every R-linear code C of
length ¢ can be decomposed as the direct sum

s t
C= <€Bc¢> ® (@ (c;- EBC}’))

i=1 j=1
where C;, C;- and C;’ are linear codes over G;, H ; and H ]’-’ , respectively, all of
length £ for each 1 <7 < s, and for each 1 < j <.
Let x = (zo,x1,--- ,x¢—1) and y = (Yo, Y1,...,ye—1). Here, for 1 <i <'s, the
Hermitian inner product of z and y with x;’s, y;’s € G; is defined in the sense
used in [7, Section IV], which corresponds to the classical meaning of Hermitian
product for m = 3 and ¢ = 2, as (z,y) = xoyghl 4+ 4 xg_lyzn_*ll. Moreover,
for 1 < i < t, the Euclidean inner product of z and y with z;’s, y;’s € H]' is
defined as x -y = xoyo + -+ + To_1Yr—1-

Theorem 3.1. (see [7]) An (-quasi-cyclic code C of length ¢m over Fy is self-

dual if and only if
s t
C= (GBCZ) ® <@ (C; ® (c;-)L>>
i=1

j=1

where, for 1 < i <'s, C; is a self-dual code over G; of length ¢ with respect to
the Hermitian inner product and for 1 < j < t, C; is a linear code of length
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¢ over HJ’ and (C')* is its dual with respect to the Euclidean inner product as
defined above.

4 Cubic Self-Dual Binary Codes

There are some construction methods for combining codes to get new codes
with greater length for different values of ¢, m and ¢ (see for example [1]).

In this work, we focus on the case ¢ = 2 and m = 3, so called binary cubic
codes. We use a cubic construction in [1] and [7] to find new codes.

Since Y2+Y +1 is irreducible in Fo[Y], we can write Y3—1 = (Y —1)(Y2+Y +1)
as a product of irreducible factors. By (2), R can be decomposed as

FolY]

R=ma_7)

- FQ @F22.

This gives a correspondence between the ¢/-quasi-cyclic codes C of length 3¢ over
Fy and a pair (C1,C2), where C; is a linear code over Fy of length ¢ and Cy is
a linear code over Fy of length ¢. Using the discrete Fourier transform [7], we
have

C={(z+blz+alxz+a+b)|xel, a+wbels} (3)

where w? 4w +1 = 0. Moreover, C is self-dual if and only if C; is self-dual with
respect to the Euclidean inner product and Cs is self-dual with respect to the
Hermitian inner product.

In [7], it is shown that all such codes can be obtained by this method,
from a binary code over Fy; and a quaternary code over F4; both of
length ¢. Cubic binary codes of length 3¢ are viewed as codes of length ¢ over
the ring Fo x Foo [1].

The authors of [3] and [5] completed the classification of binary cubic self-dual
codes of lengths up to 48 (up to permutation equivalence) by their building-up
construction (see [5, Theorem 2.2]). The numbers of cubic self-dual codes are
given in [5] as follows:

i) for £ = 2, unique binary cubic self-dual code of length 6,
ii) for £ =4, 2 binary cubic self-dual codes of length 12,

(iii) for ¢ =6, 3 binary cubic self-dual codes of length 18,
(iv) for ¢ = 8, 16 binary cubic self-dual codes of length 24,
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(v) for £ =10, 8 binary cubic self-dual codes of length 30,
(vi) for ¢ =12, 13 binary cubic self-dual codes of length 36,
(vii) for £ =14, 1569 binary cubic self-dual codes of length 42,
(viii) for £ = 16, 264 binary cubic self-dual codes of length 48.

The shortest length of binary cubic self-dual codes for which the clas-
sification is not completed, and the focus of this study, is ¢ = 18. The
number of inequivalent codes that were found in [5] is 7. In this
paper, we find 7 more such codes by the cubic construction (3).

For self-dual [54,27,10] codes, there are two weight enumerators [4]:

Wi = 1+ (351—88)y'" + (5031 + 248)y'% + (48492 + 328)y™ +... 0< 3 <43
Wy = 1+ (351 —8B)y"0 + (5543 + 240)y'? + (43884 + 328)y** 4+ ... 12 < B <43,

In [5], by building-up construction, four inequivalent codes with W; for § =
0,3,6,9 and three inequivalent codes with W5 for g = 12,15, 18 are found.

By the construction (3), binary codes C of length 54 are formed from a binary
code C; of length 18 and a quaternary code Cy of length 18. Let A, B and X be
binary vectors of length 18 and write Fy = Fa(w), where w? + w +1 = 0. We
can define a Gray map from Fi8 x F1® — F3! as

O(X, A+wB)=(X+A|X+B|X+A+B)=C=06(C1, Ca). (4)

For ¢ = 18, by this construction, we found four [54,27,10] codes with weight
enumerator Wy for f = 12,15,18,21 and three [54,27,10] codes with weight
enumerator Wy for g = 21,24,27 by taking C; = Hig, I1g (the only [18,9,4]
self-dual binary codes listed in [8]) and Co = Ayg, Big (18" and 38" [18,9, 6]
self-dual quaternary codes taken from [6]).

Throughout this work, we extensively used the Computational Algebra System
MAGMA [2].

Remark 4.1. These [54,27,10] codes are of Type II 18 quasi-cyclic self-dual
codes of length 54 since their binary components Hig and Iig are of Type II
and self-dual with respect to the Euclidean inner product.

Remark 4.2. It is known that there are 9 binary [18, 9] self-dual (with d = 2,4)
and 245 quaternary codes (with d = 6,8) listed in [6]. We tried all possible
binary and quaternary self-dual codes with a huge number of permutation in
our construction method to find more codes. Based on computational evidence,
we conjecture that there is no other [54,27, 10] self-dual cubic code over Fa.
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Our

Wi
Wo

computational results, with 8 a multiple of 3, are listed above:

Possible values Known values [5] New values, Thm.3 Conjecture, Rk.4.2

12<pB<43 | Be{12,15,18} B e {21,24,27} B¢{30,---,42}
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