
Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 102–107

Some new quasi-cyclic self dual codes
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Abstract. In this paper, we study the construction of quasi-cyclic self-dual codes,
especially of binary cubic ones. We consider binary quasi-cyclic codes of length 3ℓ
with the algebraic approach of [7]. In particular, we improve the previous results, by
constructing 7 new binary cubic self-dual codes. We also complete the classification
of [54, 27, 10] binary cubic self-dual codes up to a conjecture.

1 Introduction

A q-ary linear code C is a linear subspace of Fn
q . If C has dimension k, then

C is called an [n, k] linear code. The minimum (Hamming) distance d(C) is the
minimum number of distinct coordinates between any pair of distinct codewords
in C. The (Hamming) weight w(c) of a codeword c in C is defined to be the
number of non-zero entries of c. For a linear code, we have that d(C) = w(C).
Two codes are said to be equivalent up to permutation if they differ only in the
order of their coordinates. The (Hamming) weight enumerator of the code C
is defined to be WC(y) =

∑
c∈C y

wt(c) =
∑n

i=0Aiy
i, where Ai is the number of

vectors of the code C having Hamming weight i.

We can define the dual of a code C to be C⊥ = {u ∈ Fn
q : (u, v) = 0 for all v ∈ C}.

Here the inner product is the standard (Euclidean) inner product. C is self-
dual if C = C⊥. If a code C of length n is self-dual, then n must be even; and
C is a subspace of dimension n/2.

If C ⊂ Fn
2 is a binary self-dual code, then the weight of all codewords must be

even. The binary self-dual codes in which there is at least one codeword with
weight not divisible by 4 are called Type I or singly-even self-dual binary
codes. Otherwise, the binary self-dual codes are called Type II or doubly-
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even self-dual binary codes.

In this paper, we consider the algebraic approach of [7] for constructing cubic
self-dual binary codes. In the literature, there are only seven cubic binary self-
dual [54, 27, 10] inequivalent codes up to permutation (see [5]). The method
they used was their building-up construction [5, Theorem 2.2]. We construct
seven new cubic binary self-dual [54, 27, 10] inequivalent codes up to permuta-
tion. In Remark 4.2, we conjecture that these 14 codes are all cubic binary
self-dual [54, 27, 10] inequivalent codes up to permutation.

The rest of this paper is organized as follows: In Sections 2 and 3 we give some
background. We present our results in Section 4.

2 Quasi-Cyclic Codes

Let Fq be a finite field and m be a positive integer coprime with the character-
istic of Fq. A linear code C of length ℓm over Fq is called quasi-cyclic code
if the codeword (c0,0, . . . , c0,ℓ−1, c1,0, . . . , c1,ℓ−1, . . . , cm−1,0, . . . , cm−1,ℓ−1) ∈ C,
then (cm−1,0, . . . , cm−1,ℓ−1, c0,0, . . . , c0,ℓ−1, . . . , cm−2,0, . . . , cm−2,ℓ−1) ∈ C.

This code is invariant under ℓ-shift and such codes are called as ℓ-quasi-cyclic
codes or quasi-cyclic codes of index ℓ. The quasi-cyclic codes are the
generalization of cyclic codes. Cyclic codes correspond to the case ℓ = 1.

2.1 1-1 correspondence:

Let Fq[Y ] denote the polynomial ring over Fq. Consider the ringR := R(Fq,m) =
Fq[Y ]/(Y m − 1). Let C be a ℓ-quasi-cyclic code over Fq of length ℓm and let
c = (c0,0, . . . , c0,ℓ−1, c1,0, . . . , c1,ℓ−1, . . . , cm−1,0, . . . , cm−1,ℓ−1) denote a codeword

in C. Define a map ϕ : Fℓm
q → Rℓ by

ϕ(c) = (c0(Y ), c1(Y ), . . . , cℓ−1(Y )) ∈ Rℓ

where cj(Y ) =
∑m−1

i=0 cijY
i ∈ R, j = 0, . . . , ℓ− 1.

A linear code C of length n over R is defined to be a R-submodule of Rn.

Lemma 2.1. (see [7]) The map ϕ gives a one-to-one correspondence between
ℓ-quasi-cyclic codes over Fq of length ℓm and linear codes over R of length ℓ.

2.2 Existence of Self-Dual Codes

In [5], it is proved that there exist self-dual binary codes of length ℓ over R =
R(F2,m) = F2[Y ]/(Y m − 1) if and only if 2 | ℓ. For binary ℓ-quasi-cyclic self-
dual codes of length ℓm, if m is a prime not dividing i, then m must divide
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Ai, the number of codeword with Hamming weight i. This gives the possible
weight enumerators of self-dual codes of a given length.

3 Ring Decomposition

Let R = R(Fq,m) = Fq[Y ]/(Y m − 1). If gcd(m, q) = 1, then the ring can be
decomposed into a direct sum of fields by Chinese remainder theorem (CRT) or
discrete Fourier transform (DFT) [7]. By this approach, the quasi-cyclic codes
can be decomposed into codes of lower lengths. The polynomial Y m−1 factors
completely into distinct irreducible factors in Fq[Y ] as

Y m − 1 = δg1 . . . gsh1h
∗
1 . . . hth

∗
t (1)

where δ is nonzero in Fq, g1 . . . gs are the polynomials which are self-reciprocal,
and h∗i ’s are reciprocals of hi’s, for all 1 ≤ i ≤ t. Then the ring R can be
written by CRT [7] as

R =
Fq[Y ]

(Y m − 1)
=

(
s⊕

i=1

Fq[Y ]

(gi)

)
⊕

(
t⊕

j=1

(
Fq[Y ]

(hj)
⊕ Fq[Y ]

(h∗
j )

))
. (2)

Let Fq[Y ]
/
(gi) be denoted by Gi, and in the same way Fq[Y ]

/
(hj) by H ′

j

and Fq[Y ]
/
(h∗j ) by H ′′

j for simplicity of notation. Every R-linear code C of
length ℓ can be decomposed as the direct sum

C =

(
s⊕

i=1

Ci

)
⊕

(
t⊕

j=1

(
C′
j ⊕ C′′

j

))

where Ci, C′
j and C′′

j are linear codes over Gi, H
′
j and H ′′

j , respectively, all of
length ℓ for each 1 ≤ i ≤ s, and for each 1 ≤ j ≤ t.

Let x = (x0, x1, · · · , xℓ−1) and y = (y0, y1, . . . , yℓ−1). Here, for 1 ≤ i ≤ s, the
Hermitian inner product of x and y with xi’s, yi’s ∈ Gi is defined in the sense
used in [7, Section IV], which corresponds to the classical meaning of Hermitian
product for m = 3 and q = 2, as ⟨x, y⟩ = x0y

m−1
0 + · · ·+ xℓ−1y

m−1
ℓ−1 . Moreover,

for 1 ≤ i ≤ t, the Euclidean inner product of x and y with xi’s, yi’s ∈ H ′
j is

defined as x · y = x0y0 + · · ·+ xℓ−1yℓ−1.

Theorem 3.1. (see [7]) An ℓ-quasi-cyclic code C of length ℓm over Fq is self-
dual if and only if

C =

(
s⊕

i=1

Ci

)
⊕

(
t⊕

j=1

(
C′
j ⊕ (C′

j)
⊥
))

where, for 1 ≤ i ≤ s, Ci is a self-dual code over Gi of length ℓ with respect to
the Hermitian inner product and for 1 ≤ j ≤ t, C′

j is a linear code of length
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ℓ over H ′
j and (C′)⊥ is its dual with respect to the Euclidean inner product as

defined above.

4 Cubic Self-Dual Binary Codes

There are some construction methods for combining codes to get new codes
with greater length for different values of q, m and ℓ (see for example [1]).

In this work, we focus on the case q = 2 and m = 3, so called binary cubic
codes. We use a cubic construction in [1] and [7] to find new codes.

Since Y 2+Y +1 is irreducible in F2[Y ], we can write Y 3−1 = (Y −1)(Y 2+Y +1)
as a product of irreducible factors. By (2), R can be decomposed as

R =
F2[Y ]

(Y 3 − 1)
= F2 ⊕ F22 .

This gives a correspondence between the ℓ-quasi-cyclic codes C of length 3ℓ over
F2 and a pair (C1, C2), where C1 is a linear code over F2 of length ℓ and C2 is
a linear code over F4 of length ℓ. Using the discrete Fourier transform [7], we
have

C = { ( x+ b | x+ a | x+ a+ b ) | x ∈ C1, a+ ωb ∈ C2} (3)

where ω2+ω+1 = 0. Moreover, C is self-dual if and only if C1 is self-dual with
respect to the Euclidean inner product and C2 is self-dual with respect to the
Hermitian inner product.

In [7], it is shown that all such codes can be obtained by this method,
from a binary code over F2 and a quaternary code over F4 both of
length ℓ. Cubic binary codes of length 3ℓ are viewed as codes of length ℓ over
the ring F2 × F22 [1].

The authors of [3] and [5] completed the classification of binary cubic self-dual
codes of lengths up to 48 (up to permutation equivalence) by their building-up
construction (see [5, Theorem 2.2]). The numbers of cubic self-dual codes are
given in [5] as follows:

(i) for ℓ = 2, unique binary cubic self-dual code of length 6,
(ii) for ℓ = 4, 2 binary cubic self-dual codes of length 12,
(iii) for ℓ = 6, 3 binary cubic self-dual codes of length 18,
(iv) for ℓ = 8, 16 binary cubic self-dual codes of length 24,
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(v) for ℓ = 10, 8 binary cubic self-dual codes of length 30,
(vi) for ℓ = 12, 13 binary cubic self-dual codes of length 36,
(vii) for ℓ = 14, 1569 binary cubic self-dual codes of length 42,
(viii) for ℓ = 16, 264 binary cubic self-dual codes of length 48.

The shortest length of binary cubic self-dual codes for which the clas-
sification is not completed, and the focus of this study, is ℓ = 18. The
number of inequivalent codes that were found in [5] is 7. In this
paper, we find 7 more such codes by the cubic construction (3).

For self-dual [54, 27, 10] codes, there are two weight enumerators [4]:

W1 = 1 + (351− 8β)y10 + (5031 + 24β)y12 + (48492 + 32β)y14 + . . . 0 ≤ β ≤ 43

W2 = 1 + (351− 8β)y10 + (5543 + 24β)y12 + (43884 + 32β)y14 + . . . 12 ≤ β ≤ 43.

In [5], by building-up construction, four inequivalent codes with W1 for β =
0, 3, 6, 9 and three inequivalent codes with W2 for β = 12, 15, 18 are found.

By the construction (3), binary codes C of length 54 are formed from a binary
code C1 of length 18 and a quaternary code C2 of length 18. Let A,B and X be
binary vectors of length 18 and write F4 = F2(ω), where ω2 + ω + 1 = 0. We
can define a Gray map from F18

2 × F18
4 → F54

2 as

ϕ(X, A+ ωB) = (X +A | X +B | X +A+B) = C = ϕ(C1, C2). (4)

For ℓ = 18, by this construction, we found four [54, 27, 10] codes with weight
enumerator W1 for β = 12, 15, 18, 21 and three [54, 27, 10] codes with weight
enumerator W2 for β = 21, 24, 27 by taking C1 = H18, I18 (the only [18, 9, 4]
self-dual binary codes listed in [8]) and C2 = A18, B18 (18th and 38th [18, 9, 6]
self-dual quaternary codes taken from [6]).

Throughout this work, we extensively used the Computational Algebra System
MAGMA [2].

Remark 4.1. These [54, 27, 10] codes are of Type II 18 quasi-cyclic self-dual
codes of length 54 since their binary components H18 and I18 are of Type II
and self-dual with respect to the Euclidean inner product.

Remark 4.2. It is known that there are 9 binary [18, 9] self-dual (with d = 2, 4)
and 245 quaternary codes (with d = 6, 8) listed in [6]. We tried all possible
binary and quaternary self-dual codes with a huge number of permutation in
our construction method to find more codes. Based on computational evidence,
we conjecture that there is no other [54, 27, 10] self-dual cubic code over F2.



Çomak, Kim, Özbudak 107

Our computational results, with β a multiple of 3, are listed above:

Possible values Known values [5] New values, Thm.3 Conjecture, Rk.4.2

W1 0 ≤ β ≤ 43 β ∈ {0, 3, 6, 9} β ∈ {12, 15, 18, 21} β /∈ {24, · · · , 42}

W2 12 ≤ β ≤ 43 β ∈ {12, 15, 18} β ∈ {21, 24, 27} β /∈ {30, · · · , 42}
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