Construction of some triple blocking sets in $\mathbf{P G}(2, q)^{1}$

Eun Ju Cheon cenju1000@hotmail.com
Department of Mathematics and RINS, Gyeongsang National University, Korea
Tatsuya Maruta
maruta@mi.s.osakafu-u.ac.jp
Department of Mathematics and Information Sciences, Osaka Prefecture University Tsukasa Okazaki
chicken15154649@yahoo.co.jp

Department of Mathematics and Information Sciences, Osaka Prefecture University

Abstract

A b-set B in $\operatorname{PG}(2, q)$, the projective plane over the field of q elements, is called a (b, m)-blocking set if every line meets B in at least m points and some line meets B in exactly m points. B is called a triple blocking set if $m=3$. When B contains a line for $m=3$, it is known that $b=|B| \geq 4 q$ if q is odd and that $b \geq 4 q-1$ if q is even. We show that there exist at least six ($4 q, 3$)-blocking sets for odd $q \geq 7$ and three ($4 q-1,3$)-blocking sets for even $q \geq 8$ which are projectively inequivalent.

1 Introduction

A b-set B in $\mathrm{PG}(2, q)$ is called a (b, m)-blocking set if every line meets B in at least m points and some line meets B in exactly m points. B is called a triple blocking set if $m=3$ [1]. When B contains a line for $m=3$, it is known that $b=|B| \geq 4 q$ if q is odd and that $b=|B| \geq 4 q-1$ if q is even [5].

Lemma 1 (Example 2.3 in [7]). Let B_{0} be the set of points on the lines [100], [010], [001], [111] together with the points $\mathbf{P}(-1,1,1), \mathbf{P}(1,-1,1)$. Then, B_{0} forms a $(4 q-1,3)$-blocking set if q is even and a $(4 q, 3)$-blocking set if q is odd, where $[a b c]$ denotes the line $\{\mathbf{P}(x, y, z) \in P G(2, q) \mid a x+b y+c z=0\}$.

In this paper, we construct new $(4 q, 3)$-blocking sets for odd q and $(4 q-1,3)$ blocking sets for even q in $\operatorname{PG}(2, q)$. A line l is called an i-line for B if $|B \cap l|=i$. We denote by b_{i} the number of i-lines for a given blocking set B.

Theorem 2. For odd $q \geq 5$, let C be a conic in $\Sigma=\operatorname{PG}(2, q)$. For any three points P_{1}, P_{2}, P_{3} in C, let l_{i} be the tangent of \mathcal{C} through P_{i} and $l_{i j}$ be

[^0]the secant of C through P_{i} and P_{j}, and let $P_{i j}=l_{i} \cap l_{j}$ for $1 \leq i \leq j \leq 3$. Take any two points P and Q from the three points P_{12}, P_{23}, P_{13}, and let $B=C \cup l_{12} \cup l_{23} \cup l_{13} \cup\{P, Q\}$. Then, B is a $(4 q, 3)$-blocking set with spectrum $\left(b_{3}, b_{4}, b_{5}, b_{6}\right)=(15,10,1,5)$ for $q=5$ and
$$
\left(b_{3}, b_{4}, b_{5}, b_{6}, b_{q+1}\right)=\left(\frac{(q+5)(q-2)}{2}, 2 q, \frac{(q-3)(q-4)}{2}, q-3,3\right) \text { for } q \geq 7
$$

Proof. Let $C=\left\{P_{1}, P_{2}, \ldots, P_{q+1}\right\}$ be a conic in Σ and let l be a line. If l contains none of P_{1}, P_{2}, P_{3}, then l meets $l_{12} \cup l_{23} \cup l_{13}$ at three points. Thus, $|l \cap B| \geq 3$. If l contains exactly one of P_{1}, P_{2}, P_{3}, say P^{\prime}, l meets $l_{12} \cup l_{23} \cup l_{13}$ at two points. Then, l is a secant or a tangent of C. If l is a secant of C, l meets C at P^{\prime} and another point. So, $|l \cap B| \geq 3$. If l is a tangent of C, l is l_{1}, l_{2} or l_{3}, and l contains at least one of the points P and Q. So, $|l \cap B| \geq 3$. If l contains two of P_{1}, P_{2} and P_{3}, then l is l_{12}, l_{23} or l_{13}. Thus, B is a $(4 q, 3)$-blocking set. Without loss of generality, we may take $P=P_{13}$ and $Q=P_{12}$. Assume $q \geq 7$. The $(q+1)$-lines for B are l_{12}, l_{23}, l_{13}. So, $b_{q+1}=3$. The 6 -lines are the secants through P or Q except $\left\langle P, P_{2}\right\rangle$ and $\left\langle Q, P_{3}\right\rangle$. Hence $b_{6}=2\left(\frac{q-1}{2}-1\right)=q-3$. For $q=5$, the above $(q+1)$-lines are also 6 -lines for B, and $b_{6}=5$. Now, assume $q \geq 5$. The 5 -lines are the secants of C passing through none of P_{1}, P_{2}, P_{3} except the 6 -lines. So, $b_{5}=\binom{q+1-3}{2}-b_{6}=(q-3)(q-4) / 2$. The 4 -lines are the external lines of C through P or Q, the secants $\left\langle P, P_{2}\right\rangle,\left\langle Q, P_{3}\right\rangle$, the tangents at $P_{4}, P_{5}, \ldots, P_{q+1}$ and $\langle P, Q\rangle$. Hence, $b_{4}=q-1+2+(q+1-3)+1=2 q$. Finally, $b_{3}=\theta_{2}-b_{4}-b_{5}-b_{6}-b_{q+1}=(q+5)(q-2) / 2$.

Theorem 3. Under the conditions of Theorem 2 with $q \geq 7$, take $P=P_{13}$, $Q=P_{12}$ and a point Q^{\prime} in l_{2} with $Q^{\prime} \notin\left\{Q, P_{2}, l_{13} \cap l_{2}\right\}$, and let $\ell=\left\langle P, Q^{\prime}\right\rangle$. Then $B^{\prime}=(B \backslash\{Q\}) \cup\left\{Q^{\prime}\right\}$ is a $(4 q, 3)$-blocking set with spectrum
(1) $\left(b_{3}, b_{4}, b_{5}, b_{6}, b_{q+1}\right)=\left(\frac{(q+5)(q-2)}{2}, 2 q, \frac{(q-3)(q-4)}{2}, q-3,3\right)$ if ℓ is a tangent,
(2) $\left(b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{q+1}\right)=\left(\frac{(q+5)(q-2)}{2}, 2 q-1, \frac{q^{2}-7 q+18}{2}, q-6,1,3\right)$ if ℓ is a secant,
(3) $\left(b_{3}, b_{4}, b_{5}, b_{6}, b_{q+1}\right)=\left(\frac{q^{2}+3 q-8}{2}, 2 q-3, \frac{q^{2}-7 q+18}{2}, q-4,3\right)$ if ℓ is an external line.

Proof. Since ℓ is a tangent of C if and only if $Q^{\prime}=P_{23}$, we get the spectrum (1) from Theorem 2 if ℓ is a tangent. As we have already seen in the proof of Theorem 2, the tanget $\langle Q, P\rangle$ and the secant $\left\langle Q, P_{3}\right\rangle$ are 4 -lines, the other $(q-3) / 2$ secants through Q are 6 -lines and the $(q-1) / 2$ external lines through Q are 4 -lines for B. We denote by b_{i} and b_{i}^{\prime} the number of i-lines for B and B^{\prime}, respectively. Note that $b_{q+1}^{\prime}=b_{q+1}$, for $Q^{\prime} \in l_{2} \backslash\left\{P_{2}, l_{13} \cap l_{2}\right\}$.

If ℓ is a secant, then for B, the tangent $\left(\neq l_{2}\right)$ through Q^{\prime} is a 4-line, the secant ℓ is a 6 -line, the secants $\left\langle Q^{\prime}, P_{1}\right\rangle,\left\langle Q^{\prime}, P_{3}\right\rangle$ are 3-lines, other $(q-7) / 2$
secants on Q^{\prime} are 5 -lines and the $(q-1) / 2$ external lines on Q^{\prime} are 3 -lines. Hence, $b_{3}^{\prime}=b_{3}+2+(q-1) / 2-2-(q-1) / 2=b_{3}, b_{4}^{\prime}=b_{4}-2-(q-1) / 2-$ $1+2+(q-1) / 2=b_{4}-1, b_{5}^{\prime}=b_{5}+(q-3) / 2+1-(q-7) / 2=b_{5}+3$, $b_{6}^{\prime}=b_{6}-(q-3) / 2-1+(q-7) / 2=b_{6}-3, b_{7}^{\prime}=1$.

If ℓ is an external line, then for B, the tangent $\left(\neq l_{2}\right)$ through Q^{\prime} is a 4line, the secants $\left\langle Q^{\prime}, P_{1}\right\rangle,\left\langle Q^{\prime}, P_{3}\right\rangle$ are 3-lines, other $(q-5) / 2$ secants on Q^{\prime} are 5 -lines, the external line ℓ is a 4-line and the $(q-3) / 2$ external lines on Q^{\prime} are 3-lines. Hence, $b_{3}^{\prime}=b_{3}+2+(q-1) / 2-2-(q-3) / 2=b_{3}+1, b_{4}^{\prime}=b_{4}-2-(q-$ 1) $/ 2-1+2-1+(q-3) / 2=b_{4}-3, b_{5}^{\prime}=b_{5}+(q-3) / 2+1-(q-5) / 2+1=b_{5}+3$, $b_{6}^{\prime}=b_{6}-(q-3) / 2+(q-5) / 2=b_{6}-1$.

We note that the construction of a $(4 q, 3)$-blocking set with spectrum (1) or (3) in Theorem 3 is also valid for $q=5$, but not for the spectrum (2) since ℓ is a secant if and only if $Q^{\prime}=l_{13} \cap l_{2}$ when $q=5$. See Corollary 7.5 in [8] for the next Lemma.

Lemma 4 ([8]). In $P G(2, q)$ with $q \geq 4$, there is a unique conic through a 5-arc.

We can get one more $(4 q, 3)$-blocking set in $\operatorname{PG}(2, q)$ from the set B in Theorem 2 by two points exchange.

Theorem 5. Let $q=p^{h} \geq 7$ with odd prime $p \neq 3$. Under the conditions of Theorem 2, let C be the conic $\left\{\mathbf{P}\left(1, a, a^{2}\right) \mid a \in \mathbb{F}_{q}\right\} \cup\{\mathbf{P}(0,0,1)\}$ and take $P_{1}=\mathbf{P}(1,1,1), P_{2}=\mathbf{P}(0,0,1), P_{3}=\mathbf{P}(1,0,0), P_{4}=\mathbf{P}\left(1,2^{-1}, 2^{-2}\right)$, $P_{5}=\mathbf{P}\left(1,2,2^{2}\right), S=\left\langle P_{1}, P_{4}\right\rangle \cap\left\langle P_{2}, P_{5}\right\rangle$ and $T=\left\langle P_{1}, P_{5}\right\rangle \cap\left\langle P_{3}, P_{4}\right\rangle$. Then, $B_{1}=\left(B \backslash\left\{P_{4}, P_{5}\right\}\right) \cup\{S, T\}$ is a $(4 q, 3)$-blocking set, which is not projectively equivalent to any blocking set in Theorems 2 and 3.

Proof. Note that $P_{4} \neq P_{5}$ if $p \neq 3$ and that $S=\mathbf{P}\left(1,2,2+2^{-1}\right), T=\mathbf{P}(2+$ $\left.2^{-1}, 2,1\right)$. Since $P=l_{1} \cap l_{3}=\mathbf{P}\left(1,2^{-1}, 0\right)$ and $Q=l_{1} \cap l_{2}=\mathbf{P}(0,1,2)$, the lines $\left\langle P, P_{2}\right\rangle$ and $\left\langle Q, P_{3}\right\rangle$ are passing through P_{4} and P_{5}, respectively. Let $B_{1}^{-}=B \backslash\left\{P_{4}, P_{5}\right\}$. Then, the 2-lines for B_{1}^{-}are $\left\langle P_{1}, P_{4}\right\rangle,\left\langle P_{1}, P_{5}\right\rangle,\left\langle P_{2}, P_{5}\right\rangle$ and $\left\langle P_{3}, P_{4}\right\rangle$. Hence, adding $S=\left\langle P_{1}, P_{4}\right\rangle \cap\left\langle P_{2}, P_{5}\right\rangle$ and $T=\left\langle P_{1}, P_{5}\right\rangle \cap\left\langle P_{3}, P_{4}\right\rangle$ to $B_{1}^{-}, B_{1}=B_{1}^{-} \cup\{S, T\}$ forms a $(4 q, 3)$-blocking set. It can be checked using a computer that B_{1} has spectrum $\left(b_{3}, b_{4}, b_{5}, b_{7}, b_{8}\right)=(28,18,6,2,3)$ for $q=7$, $\left(b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{12}\right)=(66,38,16,8,2,3)$ for $q=11$ and $\left(b_{3}, b_{4}, b_{5}, b_{6}, b_{14}\right)=$ $(93,44,27,16,3)$ for $q=13$. Hence, B_{1} is not projectively equivalent to any blocking set in Theorems 2 and 3 . Assume $q \geq 17$ and suppose B_{1} contains a conic C^{\prime}. Since $C \neq C^{\prime}$, it follows from Lemma 4 that C^{\prime} could contain at most 4 points from $C, 6$ points from $l_{12} \cup l_{13} \cup l_{23}$ and the other 4 points, totally at most 14 points from B_{1}, a contradiction. Thus, B_{1} contains no conic for $q \geq 17$. On the other hand, the blocking sets in Theorem 2 and 3 contain a conic. Hence, the blocking set B_{1} is not projectively equivalent to any blocking set in the previous theorems.

Remark 6. (1) Assume $q=5$ in Theorem 5. It is known that there exist two inequivalent (20,3)-blocking sets (equivalently, (11,3)-arcs) in $P G(2,5)$, see also Table 12.5 in [8]. The (20,3)-blocking sets have spectrum
(a) $\left(b_{3}, b_{4}, b_{5}, b_{6}\right)=(15,10,1,5)$ or
(b) $\left(b_{3}, b_{4}, b_{5}, b_{6}\right)=(16,7,4,4)$.

There are four 6 -lines l_{12}, l_{13}, l_{23} and $\langle S, T\rangle$ for the blocking set B_{1} in Theorem 5 when $q=5$. So, B_{1} has spectrum (b). Hence, B_{1} is projectively equivalent to the blocking set in Theorem 3 (3).
(2) When $q=7$, the line $\langle P, S\rangle$ in the proof of Theorem 5 is a secant of C. On the other hand, when q is $13,\langle P, S\rangle$ is an external line of C. Thus, the line $\langle P, S\rangle$ could form a tangent, a secant or an external line of C up to q. That is why we could not determine the spectrum of the $(4 q, 3)$-blocking set in Theorem 5.

Next, we determine the spectrum of the arc B_{0} in Lemma 1 for odd q to find one more inequivalent arc.

Theorem 7. For odd $q \geq 5$, let $B=l_{1} \cup l_{2} \cup l_{3} \cup l_{4} \cup\left\{P_{1}, P_{2}\right\}$, consisting of the lines $l_{1}=[100], l_{2}=[010], l_{3}=[001], l_{4}=[111]$ and the points $P_{1}=\mathbf{P}(-1,1,1), P_{2}=\mathbf{P}(1,-1,1)$. Then, B forms a (4q,3)-blocking set with $\operatorname{spectrum}\left(b_{3}, b_{4}, b_{5}, b_{q+1}\right)=\left(6 q-14, q^{2}-7 q+17,2 q-6,4\right)$.

Proof. Note that no three of the lines $l_{1}, l_{2}, l_{3}, l_{4}$ are concurrent. Let $\mathcal{Q}=$ $\left\{Q_{i j}=l_{i} \cap l_{j} \mid 1 \leq i<j \leq 4\right\}, r_{1}=\left\langle Q_{14}, Q_{23}\right\rangle, r_{2}=\left\langle Q_{13}, Q_{24}\right\rangle$ and $r_{3}=$ $\left\langle Q_{12}, Q_{34}\right\rangle$. Then, P_{1} and P_{2} are equal to $r_{2} \cap r_{3}$ and $r_{1} \cap r_{3}$, respectively. Hence, $r_{3}=\left\langle P_{1}, P_{2}\right\rangle$ is a 4-line. Let l be a line. l meets $\bigcup_{i=1}^{4} l_{i}$ at two, three or four points. When $\left|l \cap\left(\bigcup_{i=1}^{4} l_{i}\right)\right|=2, l$ is r_{1}, r_{2} or r_{3}. So, l contains P_{1} or P_{2}. Thus, B is a $(4 q, 3)$-blocking set. Now, the $(q+1)$-lines for B are l_{1}, \ldots, l_{4}, and $b_{q+1}=4$. The 5 -lines for B are the lines containing one of P_{1}, P_{2} but none of \mathcal{Q}. Hence, $a_{5}=2(q+1-4)$. The 3 -lines for B are the lines through one of two points Q_{12}, Q_{34} containing no other point of \mathcal{Q}, the lines through one point $\left(\neq Q_{12}, Q_{34}\right)$ of \mathcal{Q} containing none of $\left\{P_{1}, P_{2}\right\}$, and two more lines r_{1}, r_{2}. Thus, $b_{3}=2(q+1-3)+4(q+1-4)+2=6 q-14$. Finally, $b_{4}=\theta_{2}-b_{q+1}-b_{5}-b_{3}=q^{2}-7 q+17$.

Theorem 8. Under the conditions of Theorem 7, let $P_{3}=r_{1} \cap r_{2}$. Take $P_{2}^{\prime} \in r_{1} \backslash\left\{P_{2}, P_{3}, Q_{14}, Q_{23}\right\}$ and let $B^{\prime}=\left(B \backslash\left\{P_{2}\right\}\right) \cup\left\{P_{2}^{\prime}\right\}$. Then, B^{\prime} is a $(4 q, 3)$-blocking set with spectrum $\left(b_{3}, b_{4}, b_{5}, b_{6}\right)=(15,10,1,5)$ for $q=5$ and $\left(b_{3}, b_{4}, b_{5}, b_{6}, b_{q+1}\right)=\left(6 q-15, q^{2}-7 q+20,2 q-9,1,4\right)$ for $q \geq 7$.

Proof. Since the 3 -line for B through P_{2} is r_{1} only, B^{\prime} forms a $(4 q, 3)$-blocking set. The lines through P_{2} for K except $r_{1}=\left\langle P_{2}, P_{2}^{\prime}\right\rangle$ are three 4-lines $\left\langle P_{2}, Q_{13}\right\rangle$, $\left\langle P_{2}, Q_{24}\right\rangle,\left\langle P_{1}, P_{2}\right\rangle$ and $(q-3) 5$-lines. On the other hand, the lines through
P_{2}^{\prime} for K other than r_{1} are four 3-lines $\left\langle P_{2}^{\prime}, Q_{i j}\right\rangle$ with $Q_{i j} \in \mathcal{Q} \backslash r_{1}$, one 5-line $\left\langle P_{2}^{\prime}, P_{1}\right\rangle$ and $(q-5) 4$-lines. Hence, $b_{3}^{\prime}=b_{3}+3-4, b_{4}^{\prime}=b_{4}-3+(q-3)+4-(q-5)$, $b_{5}^{\prime}=b_{5}-(q-3)-1+(q-5), b_{6}^{\prime}=1\left(\right.$ or $b_{6}^{\prime}=1+4=5$ for $\left.q=5\right)$, where b_{i} and b_{i}^{\prime} are the number of i-lines for B and B^{\prime}, respectively. Now, our assertion follows from Theorem 7.

An n-set in $\operatorname{PG}(2, q)$ at most r points of which are collinear is called an (n, r) arc in $\mathrm{PG}(2, q)$, see [1], [2], [3]. For an n-set K and its complement $B=\Sigma \backslash K$ in $\Sigma=\mathrm{PG}(2, q), K$ is an (n, r)-arc if and only if B is a $\left(\theta_{2}-n, \theta_{1}-r\right)$-blocking set. From the above theorems, we get the following.
Corollary 9. There exist at least six projectively inequivalent $\left(q^{2}-3 q+1, q-2\right)$ arcs in $P G(2, q)$ for odd $q \geq 7$.

Finally, we consider the case q is even. Assume $q \geq 4$. Then, it is known that a $(b, 3)$-blocking set B containing a line satisfies $b \geq 4 q-1$ [6]. The set B_{0} for even q in Lemma 1 is such a $(4 q-1,3)$-blocking set with spectrum

$$
\left(b_{3}, b_{4}, b_{5}, b_{q+1}\right)=\left(6 q-9, q^{2}-6 q+8, q-2,4\right)
$$

When $q=4$, the complement of a $(4 q-1,3)$-blocking set is a 6 -arc (a hyperoval). So, assume $q \geq 8$. We can construct two more ($4 q-1,3$)-blocking sets as follows.

Theorem 10. For even $q \geq 8$, let C be a conic in $\Sigma=\operatorname{PG}(2, q)$ with nucleus N. For any three points P_{1}, P_{2}, P_{3} in $C \cup\{N\}$ with $P_{1}, P_{2} \in C$, let $l_{i j}=\left\langle P_{i}, P_{j}\right\rangle$ for $1 \leq i<j \leq 3$. Then,
(1) $B=C \cup l_{12} \cup l_{23} \cup l_{13}$ is a $(4 q-1,3)$-blocking set with spectrum $\left(b_{3}, b_{5}, b_{q+1}\right)=$ $\left(\frac{(q+6)(q-1)}{2}, \frac{(q-1)(q-2)}{2}, 3\right)$ with $|A u t(B)|=2(q-1)$ if $P_{3}=N$,
(2) $B=C \cup l_{12} \cup l_{23} \cup l_{13} \cup\{N\}$ is a $(4 q-1,3)$-blocking set with spectrum $\left(b_{3}, b_{5}, b_{q+1}\right)=\left(\frac{(q+6)(q-1)}{2}, \frac{(q-1)(q-2)}{2}, 3\right)$ with $|A u t(B)|=6$ if $P_{3} \neq N$.

The ($4 q-1,3$)-blocking sets in Theorem 10 were first found for $q=8$, see [4].

Corollary 11. There exist at least three projectively inequivalent $(4 q-1,3)$ blocking sets (equivalently, $\left(q^{2}-3 q+2, q-2\right)$-arcs) in $P G(2, q)$ for even $q \geq 8$.

References

[1] S. Ball, On the size of a triple blocking set in $P G(2, q)$, European J. Combin. 17 (1996) 427-435.
[2] S. Ball, Table of bounds on three dimensional linear codes or (n, r)-arcs in PG(2,q), http://www-ma4.upc.es/ \sim simeon/codebounds.html.
[3] S. Ball, J.W.P. Hirschfeld, Bounds on (n, r)-arcs and their application to linear codes, Finite Fields Appl. 3 (2005) 326-336.
[4] A. Betten, E.J. Cheon, S.J. Kim, T. Maruta, The classification of $(42,6)_{8^{-}}$ arcs, Adv. Math. Commun. 5 (2011) 209-223.
[5] A. Blokhuis, On multiple nuclei and a conjecture of Lunelli and Sce, Bull. Belg. Math. Soc. 3 (1994) 349-353.
[6] A.A. Bruen, Polynomial multiplicities over finite fields and intersection sets, J. Combin. Theory Ser. A 60 (1992) 19-33.
[7] R. Hill, J.R.M. Mason, On (k, n)-arcs and the falsity of the Lunelli-Sce conjecture, in: London Math. Soc. Lecture Note Series 49, CUP, (1981), 153-168.
[8] J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford, 1998.

[^0]: ${ }^{1}$ The research of the first author is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT \& Future Planning(NRF-2014R1A1A3053319). The research of the second author is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

