Construction of some triple blocking sets in $\mathbf{PG}(2,q)^{-1}$

EUN JU CHEONcenju1000@hotmail.comDepartment of Mathematics and RINS, Gyeongsang National University, KoreaTATSUYA MARUTADepartment of Mathematics and Information Sciences, Osaka Prefecture UniversityTSUKASA OKAZAKIchicken15154649@yahoo.co.jp

Department of Mathematics and Information Sciences, Osaka Prefecture University

Abstract. A b-set B in PG(2,q), the projective plane over the field of q elements, is called a (b,m)-blocking set if every line meets B in at least m points and some line meets B in exactly m points. B is called a *triple blocking set* if m = 3. When B contains a line for m = 3, it is known that $b = |B| \ge 4q$ if q is odd and that $b \ge 4q - 1$ if q is even. We show that there exist at least six (4q, 3)-blocking sets for odd $q \ge 7$ and three (4q - 1, 3)-blocking sets for even $q \ge 8$ which are projectively inequivalent.

1 Introduction

A b-set B in PG(2,q) is called a (b,m)-blocking set if every line meets B in at least m points and some line meets B in exactly m points. B is called a triple blocking set if m = 3 [1]. When B contains a line for m = 3, it is known that $b = |B| \ge 4q$ if q is odd and that $b = |B| \ge 4q - 1$ if q is even [5].

Lemma 1 (Example 2.3 in [7]). Let B_0 be the set of points on the lines [100], [010], [001], [111] together with the points $\mathbf{P}(-1,1,1)$, $\mathbf{P}(1,-1,1)$. Then, B_0 forms a (4q-1,3)-blocking set if q is even and a (4q,3)-blocking set if q is odd, where [abc] denotes the line { $\mathbf{P}(x,y,z) \in PG(2,q) \mid ax + by + cz = 0$ }.

In this paper, we construct new (4q, 3)-blocking sets for odd q and (4q-1, 3)blocking sets for even q in PG(2, q). A line l is called an *i*-line for B if $|B \cap l| = i$. We denote by b_i the number of *i*-lines for a given blocking set B.

Theorem 2. For odd $q \ge 5$, let C be a conic in $\Sigma = PG(2,q)$. For any three points P_1 , P_2 , P_3 in C, let l_i be the tangent of C through P_i and l_{ij} be

¹The research of the first author is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2014R1A1A3053319). The research of the second author is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

Cheon, Maruta, Okazaki

the secant of C through P_i and P_j , and let $P_{ij} = l_i \cap l_j$ for $1 \le i \le j \le 3$. Take any two points P and Q from the three points P_{12} , P_{23} , P_{13} , and let $B = C \cup l_{12} \cup l_{23} \cup l_{13} \cup \{P,Q\}$. Then, B is a (4q,3)-blocking set with spectrum $(b_3, b_4, b_5, b_6) = (15, 10, 1, 5)$ for q = 5 and

$$(b_3, b_4, b_5, b_6, b_{q+1}) = (\frac{(q+5)(q-2)}{2}, 2q, \frac{(q-3)(q-4)}{2}, q-3, 3) \text{ for } q \ge 7.$$

Proof. Let *C* = {*P*₁, *P*₂, ..., *P*_{q+1}} be a conic in Σ and let *l* be a line. If *l* contains none of *P*₁, *P*₂, *P*₃, then *l* meets *l*₁₂ ∪ *l*₂₃ ∪ *l*₁₃ at three points. Thus, |l ∩ B| ≥ 3. If *l* contains exactly one of *P*₁, *P*₂, *P*₃, say *P'*, *l* meets *l*₁₂ ∪ *l*₂₃ ∪ *l*₁₃ at two points. Then, *l* is a secant or a tangent of *C*. If *l* is a secant of *C*, *l* meets *C* at *P'* and another point. So, |l ∩ B| ≥ 3. If *l* is a tangent of *C*, *l* is *l*₁, *l*₂ or *l*₃, and *l* contains at least one of the points *P* and *Q*. So, |l ∩ B| ≥ 3. If *l* contains two of *P*₁, *P*₂ and *P*₃, then *l* is *l*₁₂, *l*₂₃ or *l*₁₃. Thus, *B* is a (4*q*, 3)-blocking set. Without loss of generality, we may take *P* = *P*₁₃ and *Q* = *P*₁₂. Assume *q* ≥ 7. The (*q*+1)-lines for *B* are *l*₁₂, *l*₂₃, *l*₁₃. So, *b*_{*q*+1} = 3. The 6-lines are the secants through *P* or *Q* except $\langle P, P_2 \rangle$ and $\langle Q, P_3 \rangle$. Hence $b_6 = 2(\frac{q-1}{2} - 1) = q - 3$. For *q* = 5, the above (*q* + 1)-lines are also 6-lines for *B*, and *b*₆ = 5. Now, assume *q* ≥ 5. The 5-lines are the secants of *C* passing through none of *P*₁, *P*₂, *P*₃ except the 6-lines. So, $b_5 = \binom{q+1-3}{2} - b_6 = (q-3)(q-4)/2$. The 4-lines are the external lines of *C* through *P* or *Q*, the secants $\langle P, P_2 \rangle$, $\langle Q, P_3 \rangle$, the tangents at *P*₄, *P*₅, ..., *P*_{*q*+1} and $\langle P, Q \rangle$. Hence, $b_4 = q - 1 + 2 + (q + 1 - 3) + 1 = 2q$. Finally, $b_3 = \theta_2 - b_4 - b_5 - b_6 - b_{q+1} = (q + 5)(q - 2)/2$.

Theorem 3. Under the conditions of Theorem 2 with $q \ge 7$, take $P = P_{13}$, $Q = P_{12}$ and a point Q' in l_2 with $Q' \notin \{Q, P_2, l_{13} \cap l_2\}$, and let $\ell = \langle P, Q' \rangle$. Then $B' = (B \setminus \{Q\}) \cup \{Q'\}$ is a (4q, 3)-blocking set with spectrum

- (1) $(b_3, b_4, b_5, b_6, b_{q+1}) = (\frac{(q+5)(q-2)}{2}, 2q, \frac{(q-3)(q-4)}{2}, q-3, 3)$ if ℓ is a tangent,
- (2) $(b_3, b_4, b_5, b_6, b_7, b_{q+1}) = (\frac{(q+5)(q-2)}{2}, 2q-1, \frac{q^2-7q+18}{2}, q-6, 1, 3)$ if ℓ is a secant,
- (3) $(b_3, b_4, b_5, b_6, b_{q+1}) = (\frac{q^2 + 3q 8}{2}, 2q 3, \frac{q^2 7q + 18}{2}, q 4, 3)$ if ℓ is an external line.

Proof. Since ℓ is a tangent of C if and only if $Q' = P_{23}$, we get the spectrum (1) from Theorem 2 if ℓ is a tangent. As we have already seen in the proof of Theorem 2, the tanget $\langle Q, P \rangle$ and the secant $\langle Q, P_3 \rangle$ are 4-lines, the other (q-3)/2 secants through Q are 6-lines and the (q-1)/2 external lines through Q are 4-lines for B. We denote by b_i and b'_i the number of *i*-lines for B and B', respectively. Note that $b'_{q+1} = b_{q+1}$, for $Q' \in l_2 \setminus \{P_2, l_{13} \cap l_2\}$.

If ℓ is a secant, then for B, the tangent $(\neq l_2)$ through Q' is a 4-line, the secant ℓ is a 6-line, the secants $\langle Q', P_1 \rangle$, $\langle Q', P_3 \rangle$ are 3-lines, other (q-7)/2

secants on Q' are 5-lines and the (q-1)/2 external lines on Q' are 3-lines. Hence, $b'_3 = b_3 + 2 + (q-1)/2 - 2 - (q-1)/2 = b_3$, $b'_4 = b_4 - 2 - (q-1)/2 - 1 + 2 + (q-1)/2 = b_4 - 1$, $b'_5 = b_5 + (q-3)/2 + 1 - (q-7)/2 = b_5 + 3$, $b'_6 = b_6 - (q-3)/2 - 1 + (q-7)/2 = b_6 - 3$, $b'_7 = 1$.

If ℓ is an external line, then for B, the tangent $(\neq l_2)$ through Q' is a 4-line, the secants $\langle Q', P_1 \rangle$, $\langle Q', P_3 \rangle$ are 3-lines, other (q-5)/2 secants on Q' are 5-lines, the external line ℓ is a 4-line and the (q-3)/2 external lines on Q' are 3-lines. Hence, $b'_3 = b_3 + 2 + (q-1)/2 - 2 - (q-3)/2 = b_3 + 1$, $b'_4 = b_4 - 2 - (q-1)/2 - 1 + 2 - 1 + (q-3)/2 = b_4 - 3$, $b'_5 = b_5 + (q-3)/2 + 1 - (q-5)/2 + 1 = b_5 + 3$, $b'_6 = b_6 - (q-3)/2 + (q-5)/2 = b_6 - 1$.

We note that the construction of a (4q, 3)-blocking set with spectrum (1) or (3) in Theorem 3 is also valid for q = 5, but not for the spectrum (2) since ℓ is a secant if and only if $Q' = l_{13} \cap l_2$ when q = 5. See Corollary 7.5 in [8] for the next Lemma.

Lemma 4 ([8]). In PG(2,q) with $q \ge 4$, there is a unique conic through a 5-arc.

We can get one more (4q, 3)-blocking set in PG(2, q) from the set B in Theorem 2 by two points exchange.

Theorem 5. Let $q = p^h \ge 7$ with odd prime $p \ne 3$. Under the conditions of Theorem 2, let C be the conic $\{\mathbf{P}(1, a, a^2) \mid a \in \mathbb{F}_q\} \cup \{\mathbf{P}(0, 0, 1)\}$ and take $P_1 = \mathbf{P}(1, 1, 1), P_2 = \mathbf{P}(0, 0, 1), P_3 = \mathbf{P}(1, 0, 0), P_4 = \mathbf{P}(1, 2^{-1}, 2^{-2}),$ $P_5 = \mathbf{P}(1, 2, 2^2), S = \langle P_1, P_4 \rangle \cap \langle P_2, P_5 \rangle$ and $T = \langle P_1, P_5 \rangle \cap \langle P_3, P_4 \rangle$. Then, $B_1 = (B \setminus \{P_4, P_5\}) \cup \{S, T\}$ is a (4q, 3)-blocking set, which is not projectively equivalent to any blocking set in Theorems 2 and 3.

Proof. Note that $P_4 \neq P_5$ if $p \neq 3$ and that $S = \mathbf{P}(1, 2, 2 + 2^{-1}), T = \mathbf{P}(2 + 2^{-1}, 2, 1)$. Since $P = l_1 \cap l_3 = \mathbf{P}(1, 2^{-1}, 0)$ and $Q = l_1 \cap l_2 = \mathbf{P}(0, 1, 2)$, the lines $\langle P, P_2 \rangle$ and $\langle Q, P_3 \rangle$ are passing through P_4 and P_5 , respectively. Let $B_1^- = B \setminus \{P_4, P_5\}$. Then, the 2-lines for B_1^- are $\langle P_1, P_4 \rangle, \langle P_1, P_5 \rangle, \langle P_2, P_5 \rangle$ and $\langle P_3, P_4 \rangle$. Hence, adding $S = \langle P_1, P_4 \rangle \cap \langle P_2, P_5 \rangle$ and $T = \langle P_1, P_5 \rangle \cap \langle P_3, P_4 \rangle$ to $B_1^-, B_1 = B_1^- \cup \{S, T\}$ forms a (4q, 3)-blocking set. It can be checked using a computer that B_1 has spectrum $(b_3, b_4, b_5, b_7, b_8) = (28, 18, 6, 2, 3)$ for q = 7, $(b_3, b_4, b_5, b_6, b_7, b_{12}) = (66, 38, 16, 8, 2, 3)$ for q = 11 and $(b_3, b_4, b_5, b_6, b_{14}) = (93, 44, 27, 16, 3)$ for q = 13. Hence, B_1 is not projectively equivalent to any blocking set in Theorems 2 and 3. Assume $q \geq 17$ and suppose B_1 contains a conic C'. Since $C \neq C'$, it follows from Lemma 4 that C' could contain at most 4 points from B_1 , a contradiction. Thus, B_1 contains no conic for $q \geq 17$. On the other hand, the blocking sets in Theorem 2 and 3 contain a conic. Hence, the blocking set B_1 is not projectively equivalent to any blocking set in the previous theorems. □

Remark 6. (1) Assume q = 5 in Theorem 5. It is known that there exist two inequivalent (20,3)-blocking sets (equivalently, (11,3)-arcs) in PG(2,5), see also Table 12.5 in [8]. The (20,3)-blocking sets have spectrum

- (a) $(b_3, b_4, b_5, b_6) = (15, 10, 1, 5)$ or
- (b) $(b_3, b_4, b_5, b_6) = (16, 7, 4, 4).$

There are four 6-lines l_{12} , l_{13} , l_{23} and $\langle S, T \rangle$ for the blocking set B_1 in Theorem 5 when q = 5. So, B_1 has spectrum (b). Hence, B_1 is projectively equivalent to the blocking set in Theorem 3 (3).

(2) When q = 7, the line $\langle P, S \rangle$ in the proof of Theorem 5 is a secant of C. On the other hand, when q is 13, $\langle P, S \rangle$ is an external line of C. Thus, the line $\langle P, S \rangle$ could form a tangent, a secant or an external line of C up to q. That is why we could not determine the spectrum of the (4q, 3)-blocking set in Theorem 5.

Next, we determine the spectrum of the arc B_0 in Lemma 1 for odd q to find one more inequivalent arc.

Theorem 7. For odd $q \ge 5$, let $B = l_1 \cup l_2 \cup l_3 \cup l_4 \cup \{P_1, P_2\}$, consisting of the lines $l_1 = [100]$, $l_2 = [010]$, $l_3 = [001]$, $l_4 = [111]$ and the points $P_1 = \mathbf{P}(-1, 1, 1)$, $P_2 = \mathbf{P}(1, -1, 1)$. Then, B forms a (4q, 3)-blocking set with spectrum $(b_3, b_4, b_5, b_{q+1}) = (6q - 14, q^2 - 7q + 17, 2q - 6, 4)$.

Proof. Note that no three of the lines l_1, l_2, l_3, l_4 are concurrent. Let $\mathcal{Q} = \{Q_{ij} = l_i \cap l_j \mid 1 \leq i < j \leq 4\}$, $r_1 = \langle Q_{14}, Q_{23} \rangle$, $r_2 = \langle Q_{13}, Q_{24} \rangle$ and $r_3 = \langle Q_{12}, Q_{34} \rangle$. Then, P_1 and P_2 are equal to $r_2 \cap r_3$ and $r_1 \cap r_3$, respectively. Hence, $r_3 = \langle P_1, P_2 \rangle$ is a 4-line. Let l be a line. l meets $\bigcup_{i=1}^4 l_i$ at two, three or four points. When $|l \cap (\bigcup_{i=1}^4 l_i)| = 2$, l is r_1, r_2 or r_3 . So, l contains P_1 or P_2 . Thus, B is a (4q, 3)-blocking set. Now, the (q + 1)-lines for B are l_1, \ldots, l_4 , and $b_{q+1} = 4$. The 5-lines for B are the lines containing one of P_1 , P_2 but none of \mathcal{Q} . Hence, $a_5 = 2(q + 1 - 4)$. The 3-lines for B are the lines through one point (≠ Q_{12}, Q_{34}) of \mathcal{Q} containing none of $\{P_1, P_2\}$, and two more lines r_1, r_2 . Thus, $b_3 = 2(q + 1 - 3) + 4(q + 1 - 4) + 2 = 6q - 14$. Finally, $b_4 = \theta_2 - b_{q+1} - b_5 - b_3 = q^2 - 7q + 17$. □

Theorem 8. Under the conditions of Theorem 7, let $P_3 = r_1 \cap r_2$. Take $P'_2 \in r_1 \setminus \{P_2, P_3, Q_{14}, Q_{23}\}$ and let $B' = (B \setminus \{P_2\}) \cup \{P'_2\}$. Then, B' is a (4q, 3)-blocking set with spectrum $(b_3, b_4, b_5, b_6) = (15, 10, 1, 5)$ for q = 5 and $(b_3, b_4, b_5, b_6, b_{q+1}) = (6q - 15, q^2 - 7q + 20, 2q - 9, 1, 4)$ for $q \ge 7$.

Proof. Since the 3-line for B through P_2 is r_1 only, B' forms a (4q, 3)-blocking set. The lines through P_2 for K except $r_1 = \langle P_2, P'_2 \rangle$ are three 4-lines $\langle P_2, Q_{13} \rangle$, $\langle P_2, Q_{24} \rangle$, $\langle P_1, P_2 \rangle$ and (q-3) 5-lines. On the other hand, the lines through

 P'_2 for K other than r_1 are four 3-lines $\langle P'_2, Q_{ij} \rangle$ with $Q_{ij} \in \mathcal{Q} \setminus r_1$, one 5-line $\langle P'_2, P_1 \rangle$ and (q-5) 4-lines. Hence, $b'_3 = b_3 + 3 - 4$, $b'_4 = b_4 - 3 + (q-3) + 4 - (q-5)$, $b'_5 = b_5 - (q-3) - 1 + (q-5)$, $b'_6 = 1$ (or $b'_6 = 1 + 4 = 5$ for q = 5), where b_i and b'_i are the number of *i*-lines for B and B', respectively. Now, our assertion follows from Theorem 7.

An *n*-set in PG(2, q) at most r points of which are collinear is called an (n, r)arc in PG(2, q), see [1], [2], [3]. For an *n*-set K and its complement $B = \Sigma \setminus K$ in $\Sigma = PG(2, q)$, K is an (n, r)-arc if and only if B is a $(\theta_2 - n, \theta_1 - r)$ -blocking set. From the above theorems, we get the following.

Corollary 9. There exist at least six projectively inequivalent $(q^2-3q+1, q-2)$ arcs in PG(2,q) for odd $q \ge 7$.

Finally, we consider the case q is even. Assume $q \ge 4$. Then, it is known that a (b,3)-blocking set B containing a line satisfies $b \ge 4q - 1$ [6]. The set B_0 for even q in Lemma 1 is such a (4q - 1, 3)-blocking set with spectrum

$$(b_3, b_4, b_5, b_{q+1}) = (6q - 9, q^2 - 6q + 8, q - 2, 4).$$

When q = 4, the complement of a (4q-1, 3)-blocking set is a 6-arc (a hyperoval). So, assume $q \ge 8$. We can construct two more (4q-1, 3)-blocking sets as follows.

Theorem 10. For even $q \ge 8$, let C be a conic in $\Sigma = PG(2, q)$ with nucleus N. For any three points P_1, P_2, P_3 in $C \cup \{N\}$ with $P_1, P_2 \in C$, let $l_{ij} = \langle P_i, P_j \rangle$ for $1 \le i < j \le 3$. Then,

- (1) $B = C \cup l_{12} \cup l_{23} \cup l_{13}$ is a (4q-1,3)-blocking set with spectrum $(b_3, b_5, b_{q+1}) = (\frac{(q+6)(q-1)}{2}, \frac{(q-1)(q-2)}{2}, 3)$ with |Aut(B)| = 2(q-1) if $P_3 = N$,
- (2) $B = C \cup l_{12} \cup l_{23} \cup l_{13} \cup \{N\}$ is a (4q 1, 3)-blocking set with spectrum $(b_3, b_5, b_{q+1}) = (\frac{(q+6)(q-1)}{2}, \frac{(q-1)(q-2)}{2}, 3)$ with |Aut(B)| = 6 if $P_3 \neq N$.

The (4q - 1, 3)-blocking sets in Theorem 10 were first found for q = 8, see [4].

Corollary 11. There exist at least three projectively inequivalent (4q - 1, 3)blocking sets (equivalently, $(q^2 - 3q + 2, q - 2)$ -arcs) in PG(2,q) for even $q \ge 8$.

References

- [1] S. Ball, On the size of a triple blocking set in PG(2,q), European J. Combin. 17 (1996) 427–435.
- [2] S. Ball, Table of bounds on three dimensional linear codes or (n, r)-arcs in PG(2,q), http://www-ma4.upc.es/~simeon/codebounds.html.

- [3] S. Ball, J.W.P. Hirschfeld, Bounds on (n, r)-arcs and their application to linear codes, *Finite Fields Appl.* 3 (2005) 326–336.
- [4] A. Betten, E.J. Cheon, S.J. Kim, T. Maruta, The classification of (42, 6)₈arcs, Adv. Math. Commun. 5 (2011) 209–223.
- [5] A. Blokhuis, On multiple nuclei and a conjecture of Lunelli and Sce, Bull. Belg. Math. Soc. 3 (1994) 349–353.
- [6] A.A. Bruen, Polynomial multiplicities over finite fields and intersection sets, J. Combin. Theory Ser. A 60 (1992) 19–33.
- [7] R. Hill, J.R.M. Mason, On (k, n)-arcs and the falsity of the Lunelli-Sce conjecture, in: London Math. Soc. Lecture Note Series 49, CUP, (1981), 153–168.
- [8] J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford, 1998.