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Abstract. Using linear programming techniques we derive bounds for antipodal
spherical codes. The possibilities for attaining our bounds are investigated and
Lloyd-type theorems are proved.

1 Introduction

We are interested in antipodal codes C' C S"~! (i.e. € = —(C) with a few possible
distances and maximum possible size provided the dimension and the inner products
are fixed. General bounds can be obtained from Levenshtein bound for codes in real
projective spaces [8, Section 6], while we consider here the special cases of small number
fixed inner products.

If f(t) € R]t] is a real polynomial of degree k, then f(t) can be uniquely expanded

in terms of the Gegenbauer polynomials as f(t) = Zf:o fiPi(n) (t). We use the identity
(see [5, 8])

k
ClEQ+ S0 fa)) = 1CPfo+ S fiMy (1)

z,yeC,x#y i=1

as a source of estimations by polynomial techniques. Here

v j=1 \zeC

is the i-th moment of C' (see [1], [4, Section 2]), the functions {Y; ;, j = 1,2,...,7;},
are the so-called spherical harmonics of degree i, and r; = ("Zﬁ;s) 2”17”*2

It is clear that C' is antipodal if and only if M; = 0 for every odd i. Further, a code
C is a spherical 7-design if and only if its moments satisfy M; = 0 for every positive

integer i < 7 [5, 8].
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This paper is organized as follows. In Section 2 we introduce distance distribution
of codes and their derived codes. We also describe the results from [2] in the case of
codes with inner products —1 and +s. Sections 3 and 4 are devoted to the next two
steps — we consider codes with inner products —1, 0 and +s, and —1, £s; and +ss,
respectively. Upper bounds on the maximal possible size of such codes are derived and
investigated as Lloyd type theorems are proved.

2 Some preliminaries

2.1 Distance distributions and derived codes
For fixed z € C, the system of positive integers (A:(z) : t € [-1,1),Ty € C, (x,y) = t),

where
A(z) = {y € C : (z,y) = t}],

is called distance distribution of C with respect to x. The antipodality implies A_1 (z)
1 and A;(z) = A_4(z) for every ¢ and z, and we obviously have 3, ;) A¢(z)

|C| — 2. Usually, if a code attains a linear programming bound, then further infor-
mation about its distance distributions follows. Indeed, the good codes are usually
spherical designs of good strength and this forces the distance distributions to satisfy
certain equations (see [5, 3]).

For a code C C S"7!, a point z € C and an inner product «, the derived code
of C (see [5, Theorem 8.2]) with respect to x and « is the set Cp(z) = {y € C :
(z,y) = a} re-scaled on S"72. The inner products of Cy(z) are in the set I, , =

B—a?
1—a?

then C,(z) is a spherical (7 — ¢ 4 1)-design, where £ = |1, ;|-

: 8 is an inner product of C} N [—1,1). Moreover, if C is a spherical 7-design

2.2 Antipodal codes with inner products —1 and +s

Assume that C C S"7! is antipodal, M = |C| and C has inner products —1 and =+s.
Such codes are also called (systems of) equiangular lines and are well studied (see,
for example [6] and the references therein). It is known (see Theorem 1.2 in [2]) that
if M > 2n then s = T}H, where £ is a positive integer. Denote by Mapi1(n) the
maximum possible size of such C.

Linear programming (and semi-definite programming) bounds for equiangular lines
were obtained by Barg and Yu [2] (in slightly different setting), who also give a huge
collection of bounds.

Theorem 2.1. [2] If Pé?(ﬁ) <0, then Mogi1(n) <2 — —5 2.
i Py (zryr)

Proof. Set f(t) = PQ(Z) (t) in (1). Then the RHS equals My, > 0. Since As(z) =
A_ (z) = 222 for every z € C, we obtain 2M + M (M — 2)P2(,?)(ﬁ) for the LHS.
Therefore (M — Q)Pézl)(ﬁ) > —2, whence we obtain the desired inequality. O

For k = 1 we have Pz(n) (t) = % and therefore Moyyiq1(n) < % (this is
usually called relative bound, see [9]) provided n < (2¢ + 1)2.
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For k = 2 we have Pi") (t) = ("+2)(n+42f::16("+2)t2+3 and therefore

2(n —2)((20+ 1)*(n+2) +6(20+ 1)> —n —4) @)
6(20+1)2(n+2)—320+1)*—(n+2)(n+4)
provided 6(2¢ + 1)%(n + 2) — 3(2¢ + 1)* — (n + 2)(n + 4) > 0. The bound (2) is better

than the relative bound for n > 96 and for every £. Of course, this model continues —
higher degrees in Theorem 2.1 give better bounds in higher dimensions.

Maet1(n) <

3 Antipodal codes with inner products —1, +s and 0

Assume now that C' C S"~! of cardinality M = |C] has inner products in —1, +s and
0, where 0 < s < 1. Since C' is a spherical 1-design, its distance distribution with
respect to any point x € C satisfies the equation 2A4,(x) + Ao(z) = M — 2.

The next assertion gives analog to the relative bound for equiangular lines.

Theorem 3.1. If s? < %H, then

2n(n +2)(1 — s?)
3—s2(n+2)

M < (3)

Proof. Using f(t) = t*(t* — s%) in (1) we get

2M(1 - 5°) = foM? + foMy + f4My, (4)

_s? — g2 n2_
where fy = %, fo = % and fy = m > 0. We have
fo>0 <= s2< %ﬁ, and the last inequality implies fo > 0 as well. Therefore the
RHS of (4) is at most foM? and we obtain M < 2(11;52) = Qnéf‘:f()é;;z). O

If the bound (3) is attained, then My = My = 0 which means that C is a spherical
5-design. The 2-design property gives in addition 2s%A(z) = % — 2 for every x € C,
whence we easily derive that the distance distributions do not depend on = and
M —2n M (ns? —1) +n(1 — 2s?)

Ins? s A()((E) = AO =M-2-— 2AS = ns? .

As(z) = Ag =
We consider a derived code of C' to obtain a Lloyd-type theorem.

Theorem 3.2. If C attains the bound (3) then s is rational.

Proof. For fixed z € C, the derived code Cs(x) is a spherical 3-design of cardinality

|Cs(2)| = As(z) = 22" inner products u; = Tisr U2 = —7o and uz = — ;. The
distance distribution of Cs(z) with respect to y € Cs(x) satisfies the system (see [5, 3])
M —2n
ulAul (y) + u2Au2 (y) + u3AU3 (y) = -1
M —2n

2n(n — 1)s?
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Simple algebraic manipulations show that the first and second equation imply

M
$(Au () = Auwa(v)) = 5~ —
If s is irrational then A, (y) = A, (y) and M = 4n. This and (3) imply s? = i“T’;
which is possible only for n = 3 and leads to the icosahedron which does not have inner
product 0. (]
When s is rational, the solutions of the above system
M—4n)(1+s n—1)M(M?—8nM+4n>(n+2
Auy) = ( 4n)s( L4 4 )4n((3M—2n(n+2))2( )
_ (n=1)(M—n(n+1))M?
Au,(y) = n(:s)M72n§n+2))2
Ay (y) = Aul(y) - %

do not depend on y and must be nonnegative integers.
Another consequence of the known distance distribution (i.e. from the 2-design
property) is the analog of Theorem 2.1.

Theorem 3.3. If C is a spherical 3-design, k > 2 and PZ(;L)(S) + (ns? — 1)P2(,Z)(0) <0,
then
n (2ns + (1= 25%) P (0) — PS(s))

M < (5)

P () + (ns? = ) (0)]

Proof. We set f(t) = PQ(Z) (t) in (1) and obtain 2M+M(2ASP2(Z)(3)+A0P2(,Z)(0)) =
Mo, > 0. Therefore

(M —n)PSM (s) + (M(ns® — 1) + n(1 — 26%)) PV (0) > —2ns?,

whence the desired inequality follows. O

4 Antipodal codes with inner products —1, +s; and
:l:SQ

Let C C S"~! of cardinality M = |C| be antipodal and have inner products in —1,
+s1 and +ss, where 0 < 57 < s < 1. Then C is a spherical 1-design and its distance
distribution with respect to any x € C satisfies the equation A, (z) 4+ A, (z) = 42
(recall that A_q(x) =1, A_g, (z) = As,(x) and A_g, (x) = A, (2)).

Again, we first derive the analog of the relative bound in this case.

2

Theorem 4.1. If s353 + %W >0 and 6 — (n+4)(s? + s3) > 0, then

n(n+2)(1 — s2)(1 — s3)
= n(n+2)sis3 — (n+2)(sf +53) +3
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Proof. Setting f(t) = (t* — s%)(t* — s3) in (1) we obtain.
2f(1)M = foM? + faMy + f4My,

—(n 82 82 n— —(n 52 52
B g f, - (DG g g g, =

% > (0. Therefore M < %’ whence we obtain (6). O

If the bound in Theorem 4.1 is attained, then C must be a spherical 5-design. Thus
its distance distributions do not depend on z (so we write A, (z) = Ay, As,(x) = As,)
and satisfy the equations

where fo = s%s2 +

M 3M
Q(S%Asl =+ S%ASQ) = Z — 27 2(81111491 =+ SéASZ) = m — 2
This implies
M —2n —ns?(M — 2)
2n(s} — 53) ’

M —2n —ns3(M — 2)
2n(sy — s3)

Ag, = A, =

Theorem 4.2. If C attains the bound (6) then si are simultaneously rational or si-
multaneously irrational.

Proof. By calculation of the distance distribution of the derived codes Cs, (x) and
Cs, (). O
We do not expect stronger Lloyd-type theorem here because of the situation with
spherical 2-designs which are 2-distance sets [10] where a 13-point spherical 2-design

on S? is constructed with inner products %2\/@
Furthermore, the known distance distribution of spherical designs allows analog of
Theorems 2.1 and 3.3 from My, > 0.

Theorem 4.3. If C is a spherical 5-design, k > 2 and (1 — ns%)Pz(Z)(sl) + (1 -
TLS%)P;IZ)(SQ) <0, then

20 (1= PR (s1) + (1= 3P (52) + 53 — 1))

M < (n) (n)
’(1 — ns%)P% (s1)+ (1 - ns%)P% (52)‘

(7)

Proof. Set f(t) = PV (t) in (1). O
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