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Abstract. Using linear programming techniques we derive bounds for antipodal
spherical codes. The possibilities for attaining our bounds are investigated and
Lloyd-type theorems are proved.

1 Introduction

We are interested in antipodal codes C ⊂ Sn−1 (i.e. C = −C) with a few possible
distances and maximum possible size provided the dimension and the inner products
are fixed. General bounds can be obtained from Levenshtein bound for codes in real
projective spaces [8, Section 6], while we consider here the special cases of small number
fixed inner products.

If f(t) ∈ R[t] is a real polynomial of degree k, then f(t) can be uniquely expanded

in terms of the Gegenbauer polynomials as f(t) =
∑k

i=0 fiP
(n)
i (t). We use the identity

(see [5, 8])

|C|f(1) +
∑

x,y∈C,x̸=y

f(⟨x, y⟩) = |C|2f0 +
k∑

i=1

fiMi (1)

as a source of estimations by polynomial techniques. Here

Mi :=
1

ri

ri∑
j=1

(∑
x∈C

Yij(x)

)2

is the i-th moment of C (see [1], [4, Section 2]), the functions {Yi,j , j = 1, 2, . . . , ri},
are the so-called spherical harmonics of degree i, and ri =

(
n+i−3
n−2

)
2i+n−2

i .
It is clear that C is antipodal if and only if Mi = 0 for every odd i. Further, a code

C is a spherical τ -design if and only if its moments satisfy Mi = 0 for every positive
integer i ≤ τ [5, 8].
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This paper is organized as follows. In Section 2 we introduce distance distribution
of codes and their derived codes. We also describe the results from [2] in the case of
codes with inner products −1 and ±s. Sections 3 and 4 are devoted to the next two
steps – we consider codes with inner products −1, 0 and ±s, and −1, ±s1 and ±s2,
respectively. Upper bounds on the maximal possible size of such codes are derived and
investigated as Lloyd type theorems are proved.

2 Some preliminaries

2.1 Distance distributions and derived codes

For fixed x ∈ C, the system of positive integers (At(x) : t ∈ [−1, 1), ∃y ∈ C, ⟨x, y⟩ = t),
where

At(x) = |{y ∈ C : ⟨x, y⟩ = t}|,
is called distance distribution of C with respect to x. The antipodality impliesA−1(x) =
1 and At(x) = A−t(x) for every t and x, and we obviously have

∑
t∈(−1,1) At(x) =

|C| − 2. Usually, if a code attains a linear programming bound, then further infor-
mation about its distance distributions follows. Indeed, the good codes are usually
spherical designs of good strength and this forces the distance distributions to satisfy
certain equations (see [5, 3]).

For a code C ⊂ Sn−1, a point x ∈ C and an inner product α, the derived code
of C (see [5, Theorem 8.2]) with respect to x and α is the set Cα(x) = {y ∈ C :
⟨x, y⟩ = α} re-scaled on Sn−2. The inner products of Cα(x) are in the set Iα,x ={

β−α2

1−α2 : β is an inner product of C
}
∩ [−1, 1). Moreover, if C is a spherical τ -design

then Cα(x) is a spherical (τ − ℓ+ 1)-design, where ℓ = |Iα,x|.

2.2 Antipodal codes with inner products −1 and ±s

Assume that C ⊂ Sn−1 is antipodal, M = |C| and C has inner products −1 and ±s.
Such codes are also called (systems of) equiangular lines and are well studied (see,
for example [6] and the references therein). It is known (see Theorem 1.2 in [2]) that
if M > 2n then s = 1

2ℓ+1 , where ℓ is a positive integer. Denote by M2ℓ+1(n) the
maximum possible size of such C.

Linear programming (and semi-definite programming) bounds for equiangular lines
were obtained by Barg and Yu [2] (in slightly different setting), who also give a huge
collection of bounds.

Theorem 2.1. [2] If P
(n)
2k ( 1

2ℓ+1 ) < 0, then M2ℓ+1(n) ≤ 2− 2

P
(n)
2k ( 1

2ℓ+1 )
.

Proof. Set f(t) = P
(n)
2k (t) in (1). Then the RHS equals M2k ≥ 0. Since As(x) =

A−s(x) =
M−2

2 for every x ∈ C, we obtain 2M +M(M − 2)P
(n)
2k ( 1

2ℓ+1 ) for the LHS.

Therefore (M − 2)P
(n)
2k ( 1

2ℓ+1 ) ≥ −2, whence we obtain the desired inequality. �

For k = 1 we have P
(n)
2 (t) = nt2−1

n−1 and therefore M2ℓ+1(n) ≤ 8nℓ(ℓ+1)
(2ℓ+1)2−n (this is

usually called relative bound, see [9]) provided n < (2ℓ+ 1)2.



80 ACCT2016

For k = 2 we have P
(n)
4 (t) = (n+2)(n+4)t4−6(n+2)t2+3

n2−1 and therefore

M2ℓ+1(n) ≤
2(n− 2)((2ℓ+ 1)4(n+ 2) + 6(2ℓ+ 1)2 − n− 4)

6(2ℓ+ 1)2(n+ 2)− 3(2ℓ+ 1)4 − (n+ 2)(n+ 4)
(2)

provided 6(2ℓ+ 1)2(n+ 2)− 3(2ℓ+ 1)4 − (n+ 2)(n+ 4) > 0. The bound (2) is better
than the relative bound for n ≥ 96 and for every ℓ. Of course, this model continues –
higher degrees in Theorem 2.1 give better bounds in higher dimensions.

3 Antipodal codes with inner products −1, ±s and 0

Assume now that C ⊂ Sn−1 of cardinality M = |C| has inner products in −1, ±s and
0, where 0 < s < 1. Since C is a spherical 1-design, its distance distribution with
respect to any point x ∈ C satisfies the equation 2As(x) +A0(x) = M − 2.

The next assertion gives analog to the relative bound for equiangular lines.

Theorem 3.1. If s2 < 3
n+2 , then

M ≤ 2n(n+ 2)(1− s2)

3− s2(n+ 2)
. (3)

Proof. Using f(t) = t2(t2 − s2) in (1) we get

2M(1− s2) = f0M
2 + f2M2 + f4M4, (4)

where f0 = 3−s2(n+2)
n(n+2) , f2 = (n−1)(6−s2(n+4))

n(n+4) and f4 = n2−1
(n+2)(n+4) > 0. We have

f0 > 0 ⇐⇒ s2 < 3
n+2 , and the last inequality implies f2 > 0 as well. Therefore the

RHS of (4) is at most f0M
2 and we obtain M ≤ 2(1−s2)

f0
= 2n(n+2)(1−s2)

3−s2(n+2) . �
If the bound (3) is attained, then M2 = M4 = 0 which means that C is a spherical

5-design. The 2-design property gives in addition 2s2As(x) =
M
n − 2 for every x ∈ C,

whence we easily derive that the distance distributions do not depend on x and

As(x) = As =
M − 2n

2ns2
, A0(x) = A0 = M − 2− 2As =

M(ns2 − 1) + n(1− 2s2)

ns2
.

We consider a derived code of C to obtain a Lloyd-type theorem.

Theorem 3.2. If C attains the bound (3) then s is rational.

Proof. For fixed x ∈ C, the derived code Cs(x) is a spherical 3-design of cardinality

|Cs(x)| = As(x) =
M−2n
2ns2 , inner products u1 = s

1+s , u2 = − s2

1−s2 and u3 = − s
1−s . The

distance distribution of Cs(x) with respect to y ∈ Cs(x) satisfies the system (see [5, 3])

Au1
(y) +Au2

(y) +Au3
(y) =

M − 2n

2ns2
− 1

u1Au1(y) + u2Au2(y) + u3Au3(y) = −1

u2
1Au1(y) + u2

2Au2(y) + u2
3Au3(y) =

M − 2n

2n(n− 1)s2
− 1
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Simple algebraic manipulations show that the first and second equation imply

s(Au1(y)−Au3(y)) =
M

2n
− 2.

If s is irrational then Au1(y) = Au3(y) and M = 4n. This and (3) imply s2 = 4−n
n+2

which is possible only for n = 3 and leads to the icosahedron which does not have inner
product 0. �

When s is rational, the solutions of the above system∣∣∣∣∣∣∣∣
Au1(y) = (M−4n)(1+s)

4ns + (n−1)M(M2−8nM+4n2(n+2))
4n(3M−2n(n+2))2

Au2(y) = (n−1)(M−n(n+1))M2

n(3M−2n(n+2))2

Au3(y) = Au1(y)− M−4n
2ns

do not depend on y and must be nonnegative integers.
Another consequence of the known distance distribution (i.e. from the 2-design

property) is the analog of Theorem 2.1.

Theorem 3.3. If C is a spherical 3-design, k ≥ 2 and P
(n)
2k (s)+ (ns2−1)P

(n)
2k (0) < 0,

then

M ≤
n
(
2ns+ (1− 2s2)P

(n)
2k (0)− P

(n)
2k (s)

)
∣∣∣P (n)

2k (s) + (ns2 − 1)P
(n)
2k (0)

∣∣∣ . (5)

Proof. We set f(t) = P
(n)
2k (t) in (1) and obtain 2M+M(2AsP

(n)
2k (s)+A0P

(n)
2k (0)) =

M2k ≥ 0. Therefore

(M − n)P
(n)
2k (s) + (M(ns2 − 1) + n(1− 2s2))P

(n)
2k (0) ≥ −2ns2,

whence the desired inequality follows. �

4 Antipodal codes with inner products −1, ±s1 and
±s2

Let C ⊂ Sn−1 of cardinality M = |C| be antipodal and have inner products in −1,
±s1 and ±s2, where 0 < s1 < s2 < 1. Then C is a spherical 1-design and its distance
distribution with respect to any x ∈ C satisfies the equation As1(x) + As2(x) =

M−2
2

(recall that A−1(x) = 1, A−s1(x) = As1(x) and A−s2(x) = As2(x)).
Again, we first derive the analog of the relative bound in this case.

Theorem 4.1. If s21s
2
2 +

3−(n+2)(s21+s22)
n(n+2) > 0 and 6− (n+ 4)(s21 + s22) > 0, then

M ≤ n(n+ 2)(1− s21)(1− s22)

n(n+ 2)s21s
2
2 − (n+ 2)(s21 + s22) + 3

. (6)
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Proof. Setting f(t) = (t2 − s21)(t
2 − s22) in (1) we obtain.

2f(1)M = f0M
2 + f2M2 + f4M4,

where f0 = s21s
2
2 +

3−(n+2)(s21+s22)
n(n+2) > 0, f2 =

(n−1)(6−(n+4)(s21+s22))
n(n+4) > 0 and f4 =

n2−1
(n+2)(n+4) > 0. Therefore M ≤ 2(1−s21)(1−s22)

f0
, whence we obtain (6). �

If the bound in Theorem 4.1 is attained, then C must be a spherical 5-design. Thus
its distance distributions do not depend on x (so we write As1(x) = As1 , As2(x) = As2)
and satisfy the equations

2(s21As1 + s22As2) =
M

n
− 2, 2(s41As1 + s42As2) =

3M

n(n+ 2)
− 2.

This implies

As1 =
M − 2n− ns21(M − 2)

2n(s21 − s22)
, As2 =

M − 2n− ns22(M − 2)

2n(s21 − s22)
.

Theorem 4.2. If C attains the bound (6) then s1 are simultaneously rational or si-
multaneously irrational.

Proof. By calculation of the distance distribution of the derived codes Cs1(x) and
Cs2(x). �

We do not expect stronger Lloyd-type theorem here because of the situation with
spherical 2-designs which are 2-distance sets [10] where a 13-point spherical 2-design

on S5 is constructed with inner products −1±
√
13

12 .
Furthermore, the known distance distribution of spherical designs allows analog of

Theorems 2.1 and 3.3 from M2k ≥ 0.

Theorem 4.3. If C is a spherical 5-design, k ≥ 2 and (1 − ns21)P
(n)
2k (s1) + (1 −

ns22)P
(n)
2k (s2) < 0, then

M ≤
2n
(
(1− s21)P

(n)
2k (s1) + (1− s22)P

(n)
2k (s2) + s22 − s21)

)
∣∣∣(1− ns21)P

(n)
2k (s1) + (1− ns22)P

(n)
2k (s2)

∣∣∣ . (7)

Proof. Set f(t) = P
(n)
2k (t) in (1). �
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