One more way for counting monotone Boolean functions

Valentin Bakoev

"St. Cyril and St. Methodius" University, Veliko Turnovo, Bulgaria **The Dedekind's problem** (1897) – *a problem of counting* the elements of free distributive lattices of *n* generators, or equivalently, *the number* $\psi(n)$ *of monotone Boolean functions* (*MBFs*) *of n variables*.

The investigations of this problem are focused in two main directions:

- to compute this number for a given n (by deriving appropriate formulas for it, or by algorithms for counting, etc.);
- to estimate this number (many formulas for evaluating $\psi(n)$ are obtained by Kleithman, Korshunov, Kisielewicz, Shmulevich etc.).

Till now, the values of $\psi(n)$ are known only for $n \leq 8$:

n	$\psi(n)$	Computed by	
0	2	R. Dedekind, 1897	
1	3	R. Dedekind, 1897	
2	6	R. Dedekind, 1897	
3	20	R. Dedekind, 1897	
4	168	R. Dedekind, 1897	
5	7 581	R. Church, 1940	
6	7 828 354	M. Ward, 1946	
7	2 414 682 040 998	R. Church, 1965	
8	56 130 437 228 687 557 907 788	D. Wiedemann, 1991	

To feel the complexity of the problem we note that:

- in 1991 Wiedemann used a Cray-2 processor for about 200 hours to compute $\psi(8)$;
- it took more than a century to compute the last 4 values of $\psi(n)$.

The algorithms for computing $\psi(n)$ are not too numerous and various. Most of them follow the principle "generating and counting". Other algorithms use propositional calculus and #SAT-algorithms. The most powerful algorithms compute $\psi(8)$ by appropriate decomposition of functions and/or sets.

1. Introduction

This work continues our previous investigations of the Dedekind's problem. They are based on the properties of a matrix structure, defined by us. We developed a new algorithm for generating (and counting) all MBFs up to 6 variables. In spite of its numerous improvements, it is not powerful enough for computing the next values in acceptable running-time.

Here we represent some new ideas about applying the dynamic-programing strategy in solving the Dedekind's problem.

2. Basic notions

Let $\{0, 1\}^n$ be the *n*-dimensional Boolean cube and $\alpha = (a_1, \dots, a_n), \beta = (b_1, \dots, b_n)$ be binary vectors in it. • Ordinal number of α is the integer $\#(\alpha) = a_1 \cdot 2^{n-1} + a_2 \cdot 2^{n-2} + \dots + a_n \cdot 2^0;$

Vector α precedes lexicographically vector β, if ∃ an integer k, 1 ≤ k ≤ n, such that a_i = b_i, for i = 1, 2, ..., k - 1, and a_k < b_k, or if α = β. The vectors of {0, 1}ⁿ are in lexicographic order iff their ordinal numbers form the sequence 0, 1, ..., 2ⁿ - 1.

2. Basic notions

The relation " \leq " (*precedes*) is defined over {0,1}ⁿ × {0,1}ⁿ as follows: $\alpha \leq \beta$ if $a_i \leq b_i$, for i = 1, 2, ..., n;

When $\alpha \leq \beta$ or $\beta \leq \alpha$ we call α and β *comparable*, otherwise they are *incomparable*;

A Boolean function f of n variables is a mapping $f: \{0,1\}^n \to \{0,1\}$. The function f is called *monotone* if for any $\alpha, \beta \in \{0,1\}^n, \alpha \preceq \beta$ implies $f(\alpha) \leq f(\beta)$. If f is a MBF, it has an unique *minimal disjunctive normal form* (MDNF), where all literals in the prime implicants of f are uncomplemented.

We define a matrix of precedences of the vectors in $\{0,1\}^n$: $M_n = ||m_{i,j}||$ has dimension $2^n \times 2^n$, and for each $\alpha, \beta \in \{0,1\}^n$, such that $\#(\alpha) = i$ and $\#(\beta) = j$, we set $m_{i,j} = 1$ if $\alpha \preceq \beta$, or $m_{i,j} = 0$ otherwise. **Theorem 1** The matrix M_n is a block matrix, defined recursively:

$$M_{1} = \begin{pmatrix} 1 \ 1 \\ 0 \ 1 \end{pmatrix}, \quad M_{n} = \begin{pmatrix} M_{n-1} \ M_{n-1} \\ O_{n-1} \ M_{n-1} \end{pmatrix},$$

where M_{n-1} denotes the same matrix of dimension $2^{n-1} \times 2^{n-1}$, and O_{n-1} is the $2^{n-1} \times 2^{n-1}$ zero matrix.

Theorem 2 Let $\alpha = (a_1, a_2, ..., a_n) \in \{0, 1\}^n$, $\#(\alpha) = i, 1 \le i \le 2^n - 1$, and α has ones in positions $(i_1, i_2, ..., i_r), 1 \le r \le n$. Then the *i*-th row r_i of the matrix M_n is the vector of functional values of the prime implicant $c_i = x_{i_1}x_{i_2}...x_{i_r}$, i.e. α is a characteristic vector of the literals in c_i , which is a monotone function. When $\#(\alpha) = 0$, the zero row of M_n corresponds to the constant $\tilde{1}$.

Illustration of the assertion of Theorem 2, for n = 3.

$\alpha = (x_1, x_2, x_3)$	$i = \#(\alpha)$	M_3	c_i
(0 0 0)	0	111111111	ĩ
(0 0 1)	1	01010101	x_3
(0 1 0)	2	00110011	x_2
(0 1 1)	3	0001 0001	$x_{2}x_{3}$
$(1\ 0\ 0)$	4	00001111	x_1
(101)	5	00000101	$x_{1}x_{3}$
$(1\ 1\ 0)$	6	00000011	$x_{1}x_{2}$
(1 1 1)	7	0000 0001	$x_1 x_2 x_3$

So the vector of any monotone function *f* is *a linear combination*

 $f(x_1, x_2, ..., x_n) = a_0 r_0 \lor a_1 r_1 \lor ... \lor a_{2^n - 1} r_{2^n - 1},$ where r_i is the *i*-th row of the matrix M_n , and $a_i \in \{0, 1\}$, for $i = 0, 1, ..., 2^n - 1$.

In other words, M_n plays the role of a generator matrix for the set of all MBFs of n variables.

When $f(x_1, x_2, ..., x_n) = r_{i_1} \vee r_{i_2} \vee ... \vee r_{i_k}$ corresponds to a MDNF of f, then any two rows r_{i_j} and $r_{i_l}, 1 \le j < l \le k$, are pairwise incomparable.

Our algorithm, called *GEN*, *generates all MBFs* of *n variables* (input) as *vectors in lexicographic order* (output). Algorithm GEN.

1) Generate the matrix M_n .

2) Set f = (0, 0, ..., 0) – the zero constant. Output f. 3) For each row r_i of M_n , $i = 2^n - 1, ..., 0$, set $f = r_i$ and:

a) output f;

b) for each position $j, j = 2^n - 2, 2^n - 3, \dots, i + 1$, check whether f[j] = 0 (i.e. the *i*-th and the *j*-th rows are incomparable). If "Yes" then set (recursively) $f = f \lor r_j$ and go to step 3.a. 4) End.

}

The essential part of the code of GEN (steps 3.a and 3.b) written in C is:

```
void Gen_I ( bool G[], int i ) {
bool H [Max_Dim];
for ( int k=i; k<N; k++ ) // N= 2^n
     H[k]= G[k] || M[i][k]; // M is M_n
Print ( H );
for ( int j= N-1; j>i; j-- ) // step 3.b
     if ( !H[j] ) Gen_I ( H, j );
```

Trying to improve and speed-up the algorithm GEN, we observe that:

the same subfunctions are generated many times;

• their number grows extremely fast when n grows.

So we shall concentrate on counting that avoids generating.

We set the problem "Let the value of the cell $m_{i,j}$ in matrix M_n be 0, for a given n. How many MBFs can be obtained by disjunction of row r_i and all possible rows (one or more than one), having indices $\geq j$?".

So we modify the algorithm GEN (its new version we call GEN_Cell):

- we add to the function Gen_I a parameter for the depth of the recursion;
- we add a counter for the generated functions;
- we store the integers, computed by this counter, in a $2^n \times 2^n$ matrix Res_n ;

So we have to fill only these cells of Res_n , which correspond (i.e. have the same indices) to zero elements above the main diagonal in M_n .

Example. The results for n = 4 are:

M_4	row	Res_4	S_i
11111111111111111	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
01010101 0101010101	1	00503 050 10201010	19
00110011 00110011	2	00003 500 12001100	14
00010001 00010001	3	0000520110 15301210	50
000011111 000011111	4	00000 000 12110000	6
00000101 00000101	5	00000 0110 15231010	25
$00000011 \ 00000011$	6	00000 000 14331100	14
0000001 0000001	7	00000 000 15351210	19
00000000 11111111	8	00000 000 00000000	1
00000000 01010101	9	00000 000 00201010	5
00000000 00110011	10	00000 000 00001100	3
00000000 00010001	11	00000 000 00001210	5
00000000 00001111	12	00000 000 00000000	1
00000000 00000101	13	00000 000 00000010	2
00000000000000011	14	00000 000 00000000	1
000000000000000000000000000000000000000	15		1
	1		Total: S-167

Total: S=167

Important observation: the same submatrices in M_4 (more precisely, certain shapes of zeros in them), correspond to the same shapes of non-zero values in the matrix Res_4 .

Obviously, this is due to the recursively defined block structure of the matrix M_n and the nature of the algorithm GEN.

This fact demonstrates the property *overlapping subproblems* – the first key ingredients for applying the dynamic programing strategy.

The same is valid for the second key property – *optimal* substructure. Indeed, if (for a given n) the subproblems are solved, i.e. the necessary values are computed and stored in the matrix Res_n , we can obtain the solution of the problem (i.e. to find $\psi(n)$) as follows:

(1) sum the numbers in the *i*-th row of the matrix Res_n and add 1 (because every row of M_n is in itself a monotone function). Denote this sum by s_i , for $i = 0, 1, ..., 2^n - 1$;

(2) compute the sum $S = \sum_{i=0}^{2^{n}-1} s_i$;

(3) set $\psi(n) = S + 1$ (since the constant 0 is yet not counted) and return it.

Next improvement of algorithm GEN_Cell: after computing the value of $Res_n(i, j)$, we copy it in the corresponding cells of the same shapes above – so we prevent from solving the same subproblems more than once.

Even so, executing GEN_Cell for one cell only can cause generating many subfunctions, which have been already generated. Their memoization can take a large amount of memory, and our goal is to restrict the generating as possible.

The next our idea: let i < j, $M_n(i, j) = 0$ and $Res_n(i, j) = 0$. We need to compute the value of $Res_n(i, j)$, i.e. to count all MBFs, which are disjunction of *i*-th row of M_n with all rows of M_n , having indices $\geq j$.

All cells of the *i*-th row from the *j*-th cell to the last one we consider as a vector and denote it by (0α) . Analogously for the *j*-th row, all cells from the *j*-th to the last cell we consider as a vector and denote it by (1β) . For α and β we have 3 cases: (1) $\alpha \leq \beta$; (2) $\beta \prec \alpha$, and (3) α and β are incomparable. Using the properties of the matrix M_n and the above arguments we can prove:

Proposition 1 Case (1): if $\alpha \leq \beta$ then $Res_n(i,j) = 1 + \sum_{k=j+1}^{2^n-1} Res_n(j,k) = s_j + 1.$ **Proposition 2** Case (2): if $\beta \prec \alpha$ then $Res_n(i,j) = 1 + \sum_{k=j+1}^{2^n-1} Res_n(i,k).$

Suppose we want to compute $Res_n(i, j)$ and we have already computed $Res_n(i, k)$ and $Res_n(j, k)$, for $k = j + 1, \ldots, 2^n - 1$. If $\alpha \leq \beta$ or $\beta \prec \alpha$, we apply Proposition 1 or 2, respectively.

For the third case we use GEN_Cell, since we have not found a better algorithm (or a formula) till now.

Proposition 3 For a given n, the matrix M_n contains 4^n elements and:

1) 3^n of them are equal to 1 and they are placed on the main diagonal or above it;

2) all $(4^n - 2^n)/2$ elements under the main diagonal are zeros, and also $(4^n - 2.3^n + 2^n)/2$ zeros are placed above the main diagonal.

So our algorithm has to compute and fill in $(4^n - 2.3^n + 2^n)/2$ numbers in the cells of Res_n . Some of them are obtained in accordance with the considered 3 cases.

The rest of them are simply copies of numbers already computed.

Experimental results for the number of the cells of Res_n in each case, for n = 6, 7, 8:

n	$(4^n - 2.3^n + 2^n)/2$	In case 1	In case 2	In case 3	Copies
6	1351	211	26	544	570
7	6069	665	57	2645	2702
8	26335	2059	120	12018	12138

The results in last table seem to be optimistic, especially if we compare them with the values of $\psi(n)$, given in the first table.

The main and still open problem is to develop an efficient way for computing in Case 3.

Some secondary problems also have to be solved:

representation and summation of long integers, efficient usage of the memory (especially for M_n and Res_n), etc. Efficient solutions of these problems will decrease essentially the running-time for computing $\psi(7)$ and $\psi(8)$ and may allow us to compute $\psi(9)$ in a reasonable time.

THANK YOU FOR YOUR ATTENTION!