One more way for counting monotone Boolean functions

Valentin Bakoev

"St. Cyril and St. Methodius" University,
Veliko Turnovo, Bulgaria

1. Introduction

The Dedekind's problem (1897) - a problem of counting the elements of free distributive lattices of n generators, or equivalently, the number $\psi(n)$ of monotone Boolean functions (MBFs) of n variables.

The investigations of this problem are focused in two main directions:

- to compute this number for a given n (by deriving appropriate formulas for it, or by algorithms for counting, etc.);
- to estimate this number (many formulas for evaluating $\psi(n)$ are obtained by Kleithman, Korshunov, Kisielewicz, Shmulevich etc.).

1. Introduction

Till now, the values of $\psi(n)$ are known only for $n \leq 8$:

n	$\psi(n)$	Computed by
0	2	R. Dedekind, 1897
1	3	R. Dedekind, 1897
2	6	R. Dedekind, 1897
3	20	R. Dedekind, 1897
4	168	R. Dedekind, 1897
5	7581	R. Church, 1940
6	7828354	M. Ward, 1946
7	2414682040998	R. Church, 1965
8	56130437228687557907788	D. Wiedemann, 1991

1. Introduction

To feel the complexity of the problem we note that:

- in 1991 Wiedemann used a Cray-2 processor for about 200 hours to compute $\psi(8)$;
- it took more than a century to compute the last 4 values ot $\psi(n)$.

The algorithms for computing $\psi(n)$ are not too numerous and various. Most of them follow the principle "generating and counting". Other algorithms use propositional calculus and \#SAT-algorithms. The most powerful algorithms compute $\psi(8)$ by appropriate decomposition of functions and/or sets.

1. Introduction

This work continues our previous investigations of the Dedekind's problem. They are based on the properties of a matrix structure, defined by us. We developed a new algorithm for generating (and counting) all MBFs up to 6 variables. In spite of its numerous improvements, it is not powerful enough for computing the next values in acceptable running-time.

Here we represent some new ideas about applying the dynamic-programing strategy in solving the Dedekind's problem.

2. Basic notions

Let $\{0,1\}^{n}$ be the n-dimensional Boolean cube and $\alpha=\left(a_{1}, \ldots, a_{n}\right), \beta=\left(b_{1}, \ldots, b_{n}\right)$ be binary vectors in it.

- Ordinal number of α is the integer $\#(\alpha)=a_{1} \cdot 2^{n-1}+a_{2} \cdot 2^{n-2}+\ldots+a_{n} \cdot 2^{0}$;
\square Vector α precedes lexicographically vector β, if \exists an integer $k, 1 \leq k \leq n$, such that $a_{i}=b_{i}$, for $i=1,2, \ldots, k-1$, and $a_{k}<b_{k}$, or if $\alpha=\beta$.
The vectors of $\{0,1\}^{n}$ are in lexicographic order iff their ordinal numbers form the sequence $0,1, \ldots, 2^{n}-1$.

2. Basic notions

- The relation " \preceq " (precedes) is defined over $\{0,1\}^{n} \times\{0,1\}^{n}$ as follows: $\alpha \preceq \beta$ if $a_{i} \leq b_{i}$, for $i=1,2, \ldots, n$;
$■$ When $\alpha \preceq \beta$ or $\beta \preceq \alpha$ we call α and β comparable, otherwise they are incomparable;

A Boolean function f of n variables is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}$. The function f is called monotone if for any $\alpha, \beta \in\{0,1\}^{n}, \alpha \preceq \beta$ implies $f(\alpha) \leq f(\beta)$. If f is a MBF, it has an unique minimal disjunctive normal form (MDNF), where all literals in the prime implicants of f are uncomplemented.

3. Preliminary results

We define a matrix of precedences of the vectors in $\{0,1\}^{n}: M_{n}=\left\|m_{i, j}\right\|$ has dimension $2^{n} \times 2^{n}$, and for each $\alpha, \beta \in\{0,1\}^{n}$, such that $\#(\alpha)=i$ and $\#(\beta)=j$, we set $m_{i, j}=1$ if $\alpha \preceq \beta$, or $m_{i, j}=0$ otherwise.
Theorem 1 The matrix M_{n} is a block matrix, defined recursively:

$$
M_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad M_{n}=\binom{M_{n-1} M_{n-1}}{O_{n-1} M_{n-1}},
$$

where M_{n-1} denotes the same matrix of dimension $2^{n-1} \times 2^{n-1}$, and O_{n-1} is the $2^{n-1} \times 2^{n-1}$ zero matrix.

3. Preliminary results

Theorem 2 Let $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in\{0,1\}^{n}$,
$\#(\alpha)=i, 1 \leq i \leq 2^{n}-1$, and α has ones in positions
$\left(i_{1}, i_{2}, \ldots, i_{r}\right), 1 \leq r \leq n$. Then the i-th row r_{i} of the matrix M_{n} is the vector of functional values of the prime implicant $c_{i}=x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}}$, i.e. α is a characteristic vector of the literals in c_{i}, which is a monotone function. When $\#(\alpha)=0$, the zero row of M_{n} corresponds to the constant $\tilde{1}$.

3. Preliminary results

Illustration of the assertion of Theorem 2, for $n=3$.

$\alpha=\left(x_{1}, x_{2}, x_{3}\right)$	$i=\#(\alpha)$	M_{3}	c_{i}
(000)	0	11111111	I
(0 01)	1	01010101	x_{3}
(010)	2	00110011	x_{2}
$\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$	3	00010001	$x_{2} x_{3}$
$\left(\begin{array}{ll}1 & 0\end{array}\right)$	4	00001111	x_{1}
(101)	5	00000101	$x_{1} x_{3}$
$\left(\begin{array}{lll}1 & 0\end{array}\right)$	6	00000011	$x_{1} x_{2}$
(111)	7	00000001	$x_{1} x_{2} x_{3}$

3. Preliminary results

So the vector of any monotone function f is a linear combination
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{0} r_{0} \vee a_{1} r_{1} \vee \ldots \vee a_{2^{n}-1} r_{2^{n}-1}$,
where r_{i} is the i-th row of the matrix M_{n}, and
$a_{i} \in\{0,1\}$, for $i=0,1, \ldots, 2^{n}-1$.
In other words, M_{n} plays the role of a generator matrix for the set of all MBFs of n variables.
When $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=r_{i_{1}} \vee r_{i_{2}} \vee \ldots \vee r_{i_{k}}$ corresponds to a MDNF of f, then any two rows $r_{i_{j}}$ and $r_{i_{l}}, 1 \leq j<l \leq k$, are pairwise incomparable.

3. Preliminary results

Our algorithm, called GEN, generates all MBFs of n variables (input) as vectors in lexicographic order (output). Algorithm GEN.

1) Generate the matrix M_{n}.
2) Set $f=(0,0, \ldots, 0)$ - the zero constant. Output f.
3) For each row r_{i} of $M_{n}, i=2^{n}-1, \ldots, 0$, set $f=r_{i}$ and:
a) output f;
b) for each position $j, j=2^{n}-2,2^{n}-3, \ldots, i+1$, check whether $f[j]=0$ (i.e. the i-th and the j-th rows are incomparable). If "Yes" then set (recursively)
$f=f \vee r_{j}$ and go to step 3.a.
4) End.

3. Preliminary results

The essential part of the code of GEN (steps 3.a and 3.b) written in C is:

```
void Gen_I ( bool G[], int i ) {
    bool H [Max_Dim];
    for ( int k=i; k<N; k++ ) // N= 2^n
    H[k]= G[k] || M[i][k]; // M is M_n
    Print ( H );
    for ( int j= N-1; j>i; j-- ) // step 3.b
    if ( !H[j] ) Gen_I ( H, j );
}
```


4. Outline of the new algorithm

Trying to improve and speed-up the algorithm GEN, we observe that:

- the same subfunctions are generated many times;
- their number grows extremely fast when n grows.

So we shall concentrate on counting that avoids generating.
We set the problem "Let the value of the cell $m_{i, j}$ in matrix M_{n} be 0 , for a given n. How many MBFs can be obtained by disjunction of row r_{i} and all possible rows (one or more than one), having indices $\geq j$?".

4. Outline of the new algorithm

So we modify the algorithm GEN (its new version we call GEN_Cell):

- we add to the function Gen_I a parameter for the depth of the recursion;
- we add a counter for the generated functions;
- we store the integers, computed by this counter, in a $2^{n} \times 2^{n}$ matrix Res $_{n} ;$
So we have to fill only these cells of Res_{n}, which correspond (i.e. have the same indices) to zero elements above the main diagonal in M_{n}.
Example. The results for $n=4$ are:

4. Outline of the new algorithm

M_{4}	row	Res $_{4}$		s_{i}
1111111111111111	0	00000000	00000000	1
0101010101010101	1	00503050	10201010	19
0011001100110011	2	00003500	12001100	14
0001000100010001	3	0000520110	15301210	50
00001111000001111	4	00000000	12110000	6
0000010100000101	5	000000110	15231010	25
0000001100000011	6	00000000	14331100	14
0000000100000001	7	00000000	15351210	19
0000000011111111	8	00000000	00000000	1
0000000001010101	9	00000000	00201010	5
0000000000110011	10	00000000	00001100	3
0000000000010001	11	00000000	00001210	5
0000000000001111	12	00000000	00000000	1
0000000000000101	13	00000000	00000010	2
0000000000000011	14	00000000	00000000	1
0000000000000001	15	00000000	00000000	1

4. Outline of the new algorithm

Important observation: the same submatrices in M_{4} (more precisely, certain shapes of zeros in them), correspond to the same shapes of non-zero values in the matrix Res ${ }_{4}$.
Obviously, this is due to the recursively defined block structure of the matrix M_{n} and the nature of the algorithm GEN.
This fact demonstrates the property overlapping subproblems - the first key ingredients for applying the dynamic programing strategy.

4. Outline of the new algorithm

The same is valid for the second key property - optimal substructure. Indeed, if (for a given n) the subproblems are solved, i.e. the necessary values are computed and stored in the matrix $R e s_{n}$, we can obtain the solution of the problem (i.e. to find $\psi(n)$) as follows:
(1) sum the numbers in the i-th row of the matrix $R e s_{n}$ and add 1 (because every row of M_{n} is in itself a monotone function). Denote this sum by s_{i}, for $i=0,1, \ldots, 2^{n}-1$;
(2) compute the sum $S=\sum_{i=0}^{2^{n}-1} s_{i}$;
(3) set $\psi(n)=S+1$ (since the constant 0 is yet not counted) and return it.

4. Outline of the new algorithm

Next improvement of algorithm GEN_Cell: after computing the value of $\operatorname{Res}_{n}(i, j)$, we copy it in the corresponding cells of the same shapes above - so we prevent from solving the same subproblems more than once.
Even so, executing GEN_Cell for one cell only can cause generating many subfunctions, which have been already generated. Their memoization can take a large amount of memory, and our goal is to restrict the generating as possible.

4. Outline of the new algorithm

The next our idea: let $i<j, M_{n}(i, j)=0$ and $\operatorname{Res}_{n}(i, j)=0$. We need to compute the value of $\operatorname{Res}_{n}(i, j)$, i.e. to count all MBFs, which are disjunction of i-th row of M_{n} with all rows of M_{n}, having indices $\geq j$.
All cells of the i-th row from the j-th cell to the last one we consider as a vector and denote it by (0α).
Analogously for the j-th row, all cells from the j-th to the last cell we consider as a vector and denote it by (1β). For α and β we have 3 cases: (1) $\alpha \preceq \beta$; (2) $\beta \prec \alpha$, and (3) α and β are incomparable. Using the properties of the matrix M_{n} and the above arguments we can prove:

4. Outline of the new algorithm

Proposition 1 Case (1): if $\alpha \preceq \beta$ then

$$
\operatorname{Res}_{n}(i, j)=1+\sum_{k=j+1}^{2^{n}-1} \operatorname{Res}_{n}(j, k)=s_{j}+1 .
$$

Proposition 2 Case (2): if $\beta \prec \alpha$ then

$$
\operatorname{Res}_{n}(i, j)=1+\sum_{k=j+1}^{2^{n}-1} \operatorname{Res}_{n}(i, k) .
$$

Suppose we want to compute $\operatorname{Res}_{n}(i, j)$ and we have already computed $\operatorname{Res}_{n}(i, k)$ and $\operatorname{Res}_{n}(j, k)$, for $k=j+1, \ldots, 2^{n}-1$.
If $\alpha \preceq \beta$ or $\beta \prec \alpha$, we apply Proposition 1$]$ or 2, respectively.
For the third case we use GEN_Cell, since we have not found a better algorithm (or a formula) till now.

4. Outline of the new algorithm

Proposition 3 For a given n, the matrix M_{n} contains 4^{n} elements and:

1) 3^{n} of them are equal to 1 and they are placed on the main diagonal or above it;
2) all $\left(4^{n}-2^{n}\right) / 2$ elements under the main diagonal are zeros, and also $\left(4^{n}-2.3^{n}+2^{n}\right) / 2$ zeros are placed above the main diagonal.
So our algorithm has to compute and fill in $\left(4^{n}-2.3^{n}+2^{n}\right) / 2$ numbers in the cells of Res_{n}. Some of them are obtained in accordance with the considered 3 cases.
The rest of them are simply copies of numbers already computed.

4. Outline of the new algorithm

Experimental results for the number of the cells of Res_{n} in each case, for $n=6,7,8$:

n	$\left(4^{n}-2.3^{n}+2^{n}\right) / 2$	In case 1	In case 2	In case 3	Copies
6	1351	211	26	544	570
7	6069	665	57	2645	2702
8	26335	2059	120	12018	12138

5. Conclusions

The results in last table seem to be optimistic, especially if we compare them with the values of $\psi(n)$, given in the first table.
The main and still open problem is to develop an efficient way for computing in Case 3.
Some secondary problems also have to be solved: representation and summation of long integers, efficient usage of the memory (especially for M_{n} and $R e s_{n}$), etc. Efficient solutions of these problems will decrease essentially the running-time for computing $\psi(7)$ and $\psi(8)$ and may allow us to compute $\psi(9)$ in a reasonable time.

THANK YOU

FOR YOUR ATTENTION!

