D.V. Zinoviev, V.A. Zinoviev

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

ACCT2012 Pomorie, Bulgaria, June 15-21, 2012

Outline

1 Introduction

2 Preliminary Results

3 New Construction4 New Construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

A Steiner system S(v, k, t) is a pair (X, B), X is a v-set (i.e. |X| = v) and B – the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

イロト 不得 トイヨト イヨト ヨー ろくで

- Introduction

A Steiner system S(v, k, t) is a pair (X, B), X is a v-set (i.e. |X| = v) and B – the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

イロト 不得 トイヨト イヨト ヨー ろくで

A Steiner system S(v, 3, 2) is a Steiner triple system STS(v).

Introduction

A Steiner system S(v, k, t) is a pair (X, B), X is a v-set (i.e. |X| = v) and B – the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system S(v, 3, 2) is a Steiner triple system STS(v).

A Steiner system S(v, 4, 3) is a Steiner quadruple system SQS(v).

(日) (日) (日) (日) (日) (日) (日) (日)

- Introduction

A Steiner system S(v, k, t) is a pair (X, B), X is a v-set (i.e. |X| = v) and B – the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system S(v, 3, 2) is a Steiner triple system STS(v).

A Steiner system S(v, 4, 3) is a Steiner quadruple system SQS(v).

Present a Steiner system S(v, 3, 2) (S(v, 4, 3)) by the binary incidence matrix (rather a set of rows). It is a binary constant weight code C of length v, blocks of B are codewords.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

• Introduced by **Woolhouse** in 1844, who asked: for which v, k, t does exist ? (still unsolved);



- Introduced by **Woolhouse** in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple S(v, 3, 2) system exists iff $v \equiv 1, 3 \pmod{6}$;

- Introduced by **Woolhouse** in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple S(v, 3, 2) system exists iff $v \equiv 1, 3 \pmod{6}$;

• STS(7), STS(9) - unique up to isomorphism;

- Introduced by **Woolhouse** in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple S(v,3,2) system exists iff $v \equiv 1,3 \pmod{6}$;
- STS(7), STS(9) unique up to isomorphism;
- STS(13) two non-equivalent (mentioned by M.Hall (1967));

- Introduced by **Woolhouse** in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple S(v,3,2) system exists iff $v \equiv 1,3 \pmod{6}$;
- STS(7), STS(9) unique up to isomorphism;
- STS(13) two non-equivalent (mentioned by M.Hall (1967));

• Cole, Cummings, White(1917,1919): there exist 80 non-equivalent STS(15);

- Introduced by **Woolhouse** in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple S(v,3,2) system exists iff $v \equiv 1,3 \pmod{6}$;
- STS(7), STS(9) unique up to isomorphism;
- STS(13) two non-equivalent (mentioned by M.Hall (1967));
- Cole, Cummings, White(1917,1919): there exist 80 non-equivalent STS(15);
- Östergård (2004): there exist 11,084,874,829 non-equivalent STS(19);

- Introduced by **Woolhouse** in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple S(v,3,2) system exists iff $v \equiv 1,3 \pmod{6}$;
- STS(7), STS(9) unique up to isomorphism;
- STS(13) two non-equivalent (mentioned by M.Hall (1967));
- Cole, Cummings, White(1917,1919): there exist 80 non-equivalent STS(15);
- Östergård (2004): there exist 11,084,874,829 non-equivalent STS(19);

Suppose a Steiner system S(v,3,2), (S(v,4,3)) is presented by a binary code C.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Suppose a Steiner system $S(v,3,2)\text{, }\left(S(v,4,3)\right)$ is presented by a binary code C.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Then $\operatorname{rk}(C) = \operatorname{dimension}$ of linear envelope of C over \mathbb{F}_2 .

Suppose a Steiner system S(v,3,2), (S(v,4,3)) is presented by a binary code C.

Then $\operatorname{rk}(C) = \operatorname{dimension}$ of linear envelope of C over \mathbb{F}_2 .

The rank of S(v, 3, 2), (S(v, 4, 3)) is the rank of code C over \mathbb{F}_2 .

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

- Introduction

Suppose a Steiner system S(v,3,2), (S(v,4,3)) is presented by a binary code C.

Then $\operatorname{rk}(C) = \operatorname{dimension}$ of linear envelope of C over \mathbb{F}_2 .

The rank of S(v,3,2), (S(v,4,3)) is the rank of code C over \mathbb{F}_2 . Note that, for the case $v = 2^m - 1$ the minimal rank of S(v,3,2) is $v - m = 2^m - m - 1$.

- Introduction

Suppose a Steiner system S(v, 3, 2), (S(v, 4, 3)) is presented by a binary code C.

Then $\operatorname{rk}(C) = \operatorname{dimension}$ of linear envelope of C over \mathbb{F}_2 .

The rank of S(v,3,2), (S(v,4,3)) is the rank of code C over \mathbb{F}_2 .

Note that, for the case $v = 2^m - 1$ the minimal rank of S(v, 3, 2) is $v - m = 2^m - m - 1$.

The minimal rank of $S(2^m, 4, 3)$ is $2^m - m - 1$.

Tonchev (2001,2003) enumerated all different Steiner triple systems STS(v) and quadruple systems SQS(v+1) or order $v = 2^m - 1$ and $v + 1 = 2^m$, respectively, both with rank equal to $2^m - m$ (i.e min + 1).

Tonchev (2001,2003) enumerated all different Steiner triple systems STS(v) and quadruple systems SQS(v+1) or order $v = 2^m - 1$ and $v + 1 = 2^m$, respectively, both with rank equal to $2^m - m$ (i.e min + 1).

Osuna (2006): there are 1239 non-isomorphic Steiner Triple systems STS(31) of rank 27 (i.e min + 1).

- Introduction

Tonchev (2001,2003) enumerated all different Steiner triple systems STS(v) and quadruple systems SQS(v + 1) or order $v = 2^m - 1$ and $v + 1 = 2^m$, respectively, both with rank equal to $2^m - m$ (i.e min + 1).

6/14

Osuna (2006): there are 1239 non-isomorphic Steiner Triple systems STS(31) of rank 27 (i.e min + 1).

In the previous paper (2007), the authors enumerated all different Steiner quadruple systems SQS(v) of order $v = 2^m$ and rank $\leq 2^m - m + 1$ (i.e. min + 2).

Introduction

Tonchev (2001,2003) enumerated all different Steiner triple systems STS(v) and quadruple systems SQS(v + 1) or order $v = 2^m - 1$ and $v + 1 = 2^m$, respectively, both with rank equal to $2^m - m$ (i.e min + 1).

6/14

Osuna (2006): there are 1239 non-isomorphic Steiner Triple systems STS(31) of rank 27 (i.e min + 1).

In the previous paper (2007), the authors enumerated all different Steiner quadruple systems SQS(v) of order $v = 2^m$ and rank $\leq 2^m - m + 1$ (i.e. min + 2).

Now, we enumerate S(v, 3, 2), where $v = 2^m - 1$, of rank $2^m - m + 1$ (min + 2).

Preliminary Results

Suppose $S_v = S(v, 3, 2)$ is a Steiner triple system of order $v = 2^m - 1$ and of rank $\leq 2^m - m + 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Preliminary Results

Suppose $S_v = S(v, 3, 2)$ is a Steiner triple system of order $v = 2^m - 1$ and of rank $\leq 2^m - m + 1$.

Then, can assume, its dual $G(\mathcal{A}_m)$ (m-2 by v matrix):

7/14

Preliminary Results

Suppose $S_v = S(v, 3, 2)$ is a Steiner triple system of order $v = 2^m - 1$ and of rank $\leq 2^m - m + 1$. Then, can assume, its dual $G(\mathcal{A}_m)$ (m-2 by v matrix):

ſ	1111	1111	1111	1111		0000	0000	0000	000
		•••	•••	•••	• • •			• • •	
	1111	1111	0000	0000		1111	1111	0000	000
	1111	0000	1111	0000		1111	0000	1111	000

7/14

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

Preliminary Results

Suppose $S_v = S(v, 3, 2)$ is a Steiner triple system of order $v = 2^m - 1$ and of rank $\leq 2^m - m + 1$. Then, can assume, its dual $G(\mathcal{A}_m)$ (m-2 by v matrix):

Γ	1111	1111	1111	1111	 0000	0000	0000	000]
	1111	1111	0000	0000	 1111	1111	0000	000
	1111	0000	1111	0000	 1111	0000	1111	000

7/14

イロト 不得 トイヨト イヨト ヨー ろくで

Let $J(v) = \{1, ..., v\}$ be the coordinate set of S_v . Set u = (v - 3)/4. Define the subsets J_i of J(v):

$$J_i = \{4i - 3, 4i - 2, 4i - 1, 4i\}, \ i = 1, \dots, u,$$

Preliminary Results

Suppose $S_v = S(v, 3, 2)$ is a Steiner triple system of order $v = 2^m - 1$ and of rank $\leq 2^m - m + 1$. Then, can assume, its dual $G(\mathcal{A}_m)$ (m-2 by v matrix):

Γ	1111	1111	1111	1111	 0000	0000	0000	000]
	1111	1111	0000	0000	 1111	1111	0000	000
	1111	0000	1111	0000	 1111	0000	1111	000

7/14

(日) (日) (日) (日) (日) (日) (日) (日)

Let $J(v) = \{1, ..., v\}$ be the coordinate set of S_v . Set u = (v - 3)/4. Define the subsets J_i of J(v):

$$J_i = \{4i - 3, 4i - 2, 4i - 1, 4i\}, \ i = 1, \dots, u,$$

and $J_{u+1} = \{v - 2, v - 1, v\}$. We have

Preliminary Results

Suppose $S_v = S(v, 3, 2)$ is a Steiner triple system of order $v = 2^m - 1$ and of rank $\leq 2^m - m + 1$. Then, can assume, its dual $G(\mathcal{A}_m)$ (m-2 by v matrix):

ſ	1111	1111	1111	1111	 0000	0000	0000	000
I			• • •	• • •	 • • •	• • •	• • •	
	1111	1111	0000	0000	 1111	1111	0000	000
	1111	0000	1111	0000	 1111	0000	1111	000

7/14

(日) (日) (日) (日) (日) (日) (日) (日)

Let $J(v) = \{1, ..., v\}$ be the coordinate set of S_v . Set u = (v - 3)/4. Define the subsets J_i of J(v):

$$J_i = \{4i - 3, 4i - 2, 4i - 1, 4i\}, \ i = 1, \dots, u,$$

and $J_{u+1} = \{v - 2, v - 1, v\}$. We have

$$J(v) = J_1 \cup \cdots \cup J_u \cup J_{u+1}.$$

We need a class of the quaternary MDS codes:

• $(3, 2, 16)_4$ -code, denoted by L, different $\Gamma_L = (24)^2$;

We need a class of the quaternary MDS codes:

• $(3,2,16)_4$ -code, denoted by L, different $\Gamma_L = (24)^2$;

Define the mapping φ of E_4^n into E^{4n} setting for $\mathbf{c} = (c_1, \ldots, c_n)$: $\varphi(\mathbf{c}) = (\varphi(c_1), \ldots, \varphi(c_n))$, where $0 \mapsto (1000)$, $1 \mapsto (0100)$, $2 \mapsto (0010)$, $3 \mapsto (0001)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We need a class of the quaternary MDS codes:

• $(3,2,16)_4$ -code, denoted by L, different $\Gamma_L = (24)^2$;

Define the mapping φ of E_4^n into E^{4n} setting for $\mathbf{c} = (c_1, \ldots, c_n)$: $\varphi(\mathbf{c}) = (\varphi(c_1), \ldots, \varphi(c_n))$, where $0 \mapsto (1000)$, $1 \mapsto (0100)$, $2 \mapsto (0010)$, $3 \mapsto (0001)$.

For a given code $(3, 2, 16)_4$ -code L, define the constant weight (12, 3, 4, 16)-code C(L):

$$C(L) = \{\varphi(\mathbf{c}) : \mathbf{c} \in L\}.$$

8/14

Preliminary Results

We need a class of the quaternary MDS codes:

• $(3, 2, 16)_4$ -code, denoted by L, different $\Gamma_L = (24)^2$;

Define the mapping φ of E_4^n into E^{4n} setting for $\mathbf{c} = (c_1, \ldots, c_n)$: $\varphi(\mathbf{c}) = (\varphi(c_1), \ldots, \varphi(c_n))$, where $0 \mapsto (1000)$, $1 \mapsto (0100)$, $2 \mapsto (0010)$, $3 \mapsto (0001)$.

For a given code $(3,2,16)_4$ -code L, define the constant weight (12,3,4,16)-code C(L):

$$C(L) = \{\varphi(\mathbf{c}) : \mathbf{c} \in L\}.$$

For $x \in E^u$ with $\mathrm{supp}(\mathbf{x}) = \{j_1, j_2, j_3\}$, we define a (4u, 3, 4, 16)-code

 $C(L;\mathbf{x}) = C(L;j_1,j_2,j_3) = \{ (\mathbf{c}_1,\ldots,\mathbf{c}_u) : (\mathbf{c}_{j_1},\mathbf{c}_{j_2},\mathbf{c}_{j_3}) \in C(L) \},\$

and $\mathbf{c}_i = (0000)$ if $i \neq j_1, j_2, j_3$ (i.e. insert 3 blocks into u blocks).

-New Construction

As usual $u = (v - 3)/4 = 2^{m-2} - 1$. Define the following three sets:

・ロト・日本・モト・モー・ しょうくの

-New Construction

As usual $u = (v - 3)/4 = 2^{m-2} - 1$. Define the following three sets:

■ $S^{(1,1,1)}$ is a set of (4u, 3, 4, 16)-codes $C(j_1, j_2, j_3)$, where the triples $\{(j_1, j_2, j_3)\}$, $j_1, j_2, j_3 \in J(u)$, is a Steiner triple system S(u, 3, 2) on coordinate set J(u) of order u (and u(u-1)/6 elements).

9/14

-New Construction

As usual $u = (v - 3)/4 = 2^{m-2} - 1$. Define the following three sets:

・ロト・日本・モト・モー・ しょうくの

-New Construction

As usual $u = (v - 3)/4 = 2^{m-2} - 1$. Define the following three sets:

9/14

■
$$S^{(1,1,1)}$$
 is a set of $(4u, 3, 4, 16)$ -codes $C(j_1, j_2, j_3)$, where the triples $\{(j_1, j_2, j_3)\}, j_1, j_2, j_3 \in J(u)$, is a Steiner triple system $S(u, 3, 2)$ on coordinate set $J(u)$ of order u (and $u(u-1)/6$ elements).
■ $S^{(2,1)} = S^{(2,1)}_{v-2} \cup S^{(2,1)}_{v-1} \cup S^{(2,1)}_{v}$ is the set of words $\{c\}$, $\supp(c) = \{j_1, j_2, j_3\}, j_1, j_2 \in J_i$, and $j_3 \in J_{u+1}\}$. The set $S^{(2,1)}_{v-2}$:

1100	0000	 0000	100 -			
0011	0000	 0000	100			
0000	1010	 0000	100			
0000	0101	 0000	100			
0000	0000	 0110	100			
0000					_	
		•		▶ ★ 臣 ▶ ★ 臣	▶ 王:	4) Q (?*

Steiner triple systems $S(2^m - 1, 3, 2)$ of 2-rank $r \leq 2^m - m + 1$: construction and properties

-New Construction

As usual $u = (v - 3)/4 = 2^{m-2} - 1$. Define the following three sets:

9/14

■
$$S^{(1,1,1)}$$
 is a set of $(4u, 3, 4, 16)$ -codes $C(j_1, j_2, j_3)$, where the triples $\{(j_1, j_2, j_3)\}, j_1, j_2, j_3 \in J(u)$, is a Steiner triple system $S(u, 3, 2)$ on coordinate set $J(u)$ of order u (and $u(u-1)/6$ elements).
■ $S^{(2,1)} = S^{(2,1)}_{v-2} \cup S^{(2,1)}_{v-1} \cup S^{(2,1)}_{v}$ is the set of words $\{c\}$, $\supp(c) = \{j_1, j_2, j_3\}, j_1, j_2 \in J_i$, and $j_3 \in J_{u+1}\}$. The set $S^{(2,1)}_{v-2}$:

1100	0000	 0000	100 -			
0011	0000	 0000	100			
0000	1010	 0000	100			
0000	0101	 0000	100			
0000	0000	 0110	100			
0000					_	
		•		▶ ★ 臣 ▶ ★ 臣	▶ 王:	4) Q (?*

10/14

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

-New Construction

Define (split 6 words of weight 2 into 3 pairs): $V(1) = \{(1100), (0011)\}, V(2) = \{(1010), (0101)\}, V(3) = \{(1001), (0110)\}.$

10/14

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

-New Construction

Define (split 6 words of weight 2 into 3 pairs): $V(1) = \{(1100), (0011)\}, V(2) = \{(1010), (0101)\},$ $V(3) = \{(1001), (0110)\}.$ The sets $S_{v-2}^{(2,1)}, S_{v-1}^{(2,1)}, S_{v}^{(2,1)}$ should satisfy (for all u blocks):

Γ	0000	 1100	 0000	100
	0000	 0011	 0000	100
	0000	 1010	 0000	010
	0000	 0101	 0000	010
	0000	 1001	 0000	001
	0000	 0110	 0000	001
L		 	 	

10/14

-New Construction

Define (split 6 words of weight 2 into 3 pairs): $V(1) = \{(1100), (0011)\}, V(2) = \{(1010), (0101)\},$ $V(3) = \{(1001), (0110)\}.$ The sets $S_{v-2}^{(2,1)}, S_{v-1}^{(2,1)}, S_{v}^{(2,1)}$ should satisfy (for all u blocks):

0000	 1100	 0000	100
0000	 0011	 0000	100
	 	 •••	
0000	 1010	 0000	010
0000	 0101	 0000	010
0000	 1001	 0000	001
0000	 0110	 0000	001
L	 	 	

• $S^{(3)} = \{ \mathbf{c} = (0 \dots 0111) : \operatorname{supp}(\mathbf{c}) = J_{u+1} \}.$

Theorem 1.

Let $S_u = S(u, 3, 2)$ be a Steiner system and $\mathbf{c}^{(s)}$, $s = 1, 2, \ldots, k$ its words, k = u(u-1)/6. Let $S^{(1,1,1)}$, $S^{(2,1)}$ and $S^{(3)}$ be the sets, obtained by our construction, based on the families of $(3, 2, 16)_4$ -codes L_1, L_2, \ldots, L_k and the constant weight (4, 2, 4, 2)-codes V(1), V(2) and V(3). Set

$$S = S^{(1,1,1)} \cup S^{(2,1)} \cup S^{(3)}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem 1.

Let $S_u = S(u, 3, 2)$ be a Steiner system and $\mathbf{c}^{(s)}$, $s = 1, 2, \ldots, k$ its words, k = u(u-1)/6. Let $S^{(1,1,1)}$, $S^{(2,1)}$ and $S^{(3)}$ be the sets, obtained by our construction, based on the families of $(3, 2, 16)_4$ -codes L_1, L_2, \ldots, L_k and the constant weight (4, 2, 4, 2)-codes V(1), V(2) and V(3). Set

 $S = S^{(1,1,1)} \cup S^{(2,1)} \cup S^{(3)}.$

Then, for any choice of the codes L_1, L_2, \ldots, L_k , the set S is the Steiner triple system $S_v = S(v, 3, 2)$ of order v = 4u + 3 with rank

$$v - (u - \operatorname{rk}(S_u)) - 2 \leq \operatorname{rk}(S_v) \leq v - (u - \operatorname{rk}(S_u)).$$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへ⊙

A system $S_u = S(u, 3, 2)$ of order $u = 2^l - 1$ is called boolean if its rank is u - l, i.e. it is formed by the codewords of weight 3 of the linear Hamming code of length u.

A system $S_u = S(u, 3, 2)$ of order $u = 2^l - 1$ is called boolean if its rank is u - l, i.e. it is formed by the codewords of weight 3 of the linear Hamming code of length u.

Theorem 2.

Suppose $S_v = S(v, 3, 2)$ is a Steiner system of order $v = 2^m - 1 = 4u + 3$. Suppose that its rank not greater than v - m + 2.

くロット (雪) (目) (日) (日) (日)

A system $S_u = S(u, 3, 2)$ of order $u = 2^l - 1$ is called boolean if its rank is u - l, i.e. it is formed by the codewords of weight 3 of the linear Hamming code of length u.

Theorem 2.

Suppose $S_v = S(v, 3, 2)$ is a Steiner system of order $v = 2^m - 1 = 4u + 3$. Suppose that its rank not greater than v - m + 2.

Then this system S_v is obtained from the boolean Steiner triple system $S_u = S(u, 3, 2)$ of order $u = 2^{m-2} - 1$ using our construction, described above.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Theorem 3.

The following is true:

• Let $m \ge 4$ and $v = 2^m - 1 \ge 15$. Set u = (v - 3)/4 and k = u(u - 1)/6. Then, the number M_v of different Steiner triple systems S(v, 3, 2) of order v, whose rank is not greater than v - m + 2, and the fixed dual code \mathcal{A}_m , is equal to

$$M_v = \left(2^6 \cdot 3^2\right)^k \times (6)^u$$
, $k = u(u-1)/6$.

13/14

Theorem 3.

The following is true:

• Let $m \ge 4$ and $v = 2^m - 1 \ge 15$. Set u = (v - 3)/4 and k = u(u - 1)/6. Then, the number M_v of different Steiner triple systems S(v, 3, 2) of order v, whose rank is not greater than v - m + 2, and the fixed dual code \mathcal{A}_m , is equal to

$$M_v = \left(2^6 \cdot 3^2\right)^k \times (6)^u$$
, $k = u(u-1)/6$.

The overall number $M_v^{(o)}$ of different Steiner triple systems S(v,3,2), whose rank $\leq v - m + 2$, is equal to

$$M_v^{(o)} = \frac{v! \cdot (2^6 \cdot 3^2)^k \cdot (6)^u}{(u(u-1)(u-2)\cdots(u+1)/2) \cdot (4!)^u \cdot 3!}.$$

A system S(v,3,2) of order $v = 2^m - 1$ is called *Hamming*, if it can be embedded into a binary non-linear perfect $(v,3,2^{v-m})$ -code (denoted by H_v), i.e. if it is the set of words of weight 3 of the code H_v , which contains the zero codeword.

A system S(v,3,2) of order $v = 2^m - 1$ is called *Hamming*, if it can be embedded into a binary non-linear perfect $(v,3,2^{v-m})$ -code (denoted by H_v), i.e. if it is the set of words of weight 3 of the code H_v , which contains the zero codeword.

Theorem 4.

Any Steiner triple system $S_v = S(v, 3, 2)$ of order $v = 2^m - 1$ and rank $\operatorname{rk}(S_v) \leq 2^m - m + 1$ is a Hamming system.

(日) (日) (日) (日) (日) (日) (日) (日) (日)