Steiner triple systems $S\left(2^{m}-1,3,2\right)$ of 2 -rank $r \leq 2^{m}-m+1$: construction and properties

D.V. Zinoviev, V.A. Zinoviev

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

ACCT2012 Pomorie, Bulgaria, June 15-21, 2012

Outline

1 Introduction
2 Preliminary Results

3 New Construction
4 New Construction

A Steiner system $S(v, k, t)$ is a pair $(X, B), X$ is a v-set (i.e. $|X|=v)$ and B - the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system $S(v, k, t)$ is a pair $(X, B), X$ is a v-set (i.e. $|X|=v)$ and B - the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system $S(v, 3,2)$ is a Steiner triple system STS (v).

A Steiner system $S(v, k, t)$ is a pair $(X, B), X$ is a v-set (i.e. $|X|=v)$ and B - the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system $S(v, 3,2)$ is a Steiner triple system $\mathrm{STS}(v)$.
A Steiner system $S(v, 4,3)$ is a Steiner quadruple system $\operatorname{SQS}(v)$.

A Steiner system $S(v, k, t)$ is a pair $(X, B), X$ is a v-set (i.e. $|X|=v)$ and B - the collection of k-subsets of X (called blocks) such that every t-subset (of t elements) of X is contained in exactly one block of B.

A Steiner system $S(v, 3,2)$ is a Steiner triple system $\mathrm{STS}(v)$.
A Steiner system $S(v, 4,3)$ is a Steiner quadruple system $\operatorname{SQS}(v)$.
Present a Steiner system $S(v, 3,2)(S(v, 4,3))$ by the binary incidence matrix (rather a set of rows). It is a binary constant weight code C of length v, blocks of B are codewords.

- Introduced by Woolhouse in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Introduced by Woolhouse in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple $S(v, 3,2)$ system exists iff $v \equiv 1,3(\bmod 6)$;
- Introduced by Woolhouse in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple $S(v, 3,2)$ system exists iff $v \equiv 1,3(\bmod 6)$;
- STS(7), STS(9) - unique up to isomorphism;
- Introduced by Woolhouse in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple $S(v, 3,2)$ system exists iff $v \equiv 1,3(\bmod 6)$;
- STS(7), STS(9) - unique up to isomorphism;
- STS(13) - two non-equivalent (mentioned by M.Hall (1967));
- Introduced by Woolhouse in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple $S(v, 3,2)$ system exists iff $v \equiv 1,3(\bmod 6)$;
- STS(7), STS(9) - unique up to isomorphism;
- STS(13) - two non-equivalent (mentioned by M.Hall (1967));
- Cole, Cummings, White(1917,1919): there exist 80 non-equivalent STS(15);
- Introduced by Woolhouse in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple $S(v, 3,2)$ system exists iff $v \equiv 1,3(\bmod 6)$;
- STS(7), STS(9) - unique up to isomorphism;
- STS(13) - two non-equivalent (mentioned by M.Hall (1967));
- Cole, Cummings, White(1917,1919): there exist 80 non-equivalent STS(15);
- Östergård (2004): there exist 11,084,874,829 non-equivalent STS(19);
- Introduced by Woolhouse in 1844, who asked: for which v, k, t does exist ? (still unsolved);
- Kirkman (1847) A Steiner triple $S(v, 3,2)$ system exists iff $v \equiv 1,3(\bmod 6)$;
- STS(7), STS(9) - unique up to isomorphism;
- STS(13) - two non-equivalent (mentioned by M.Hall (1967));
- Cole, Cummings, White(1917,1919): there exist 80 non-equivalent STS(15);
- Östergård (2004): there exist 11,084,874,829 non-equivalent STS(19);

Suppose a Steiner system $S(v, 3,2),(S(v, 4,3))$ is presented by a binary code C.

Suppose a Steiner system $S(v, 3,2),(S(v, 4,3))$ is presented by a binary code C.

Then $\operatorname{rk}(C)=$ dimension of linear envelope of C over \mathbb{F}_{2}.

Suppose a Steiner system $S(v, 3,2),(S(v, 4,3))$ is presented by a binary code C.

Then $\operatorname{rk}(C)=$ dimension of linear envelope of C over \mathbb{F}_{2}.
The rank of $S(v, 3,2),(S(v, 4,3))$ is the rank of code C over \mathbb{F}_{2}.

Suppose a Steiner system $S(v, 3,2),(S(v, 4,3))$ is presented by a binary code C.

Then $\operatorname{rk}(C)=$ dimension of linear envelope of C over \mathbb{F}_{2}.
The rank of $S(v, 3,2),(S(v, 4,3))$ is the rank of code C over \mathbb{F}_{2}. Note that, for the case $v=2^{m}-1$ the minimal rank of $S(v, 3,2)$ is $v-m=2^{m}-m-1$.

Suppose a Steiner system $S(v, 3,2),(S(v, 4,3))$ is presented by a binary code C.

Then $\operatorname{rk}(C)=$ dimension of linear envelope of C over \mathbb{F}_{2}.
The rank of $S(v, 3,2),(S(v, 4,3))$ is the rank of code C over \mathbb{F}_{2}. Note that, for the case $v=2^{m}-1$ the minimal rank of $S(v, 3,2)$ is $v-m=2^{m}-m-1$.

The minimal rank of $S\left(2^{m}, 4,3\right)$ is $2^{m}-m-1$.

Tonchev $(2001,2003)$ enumerated all different Steiner triple systems STS (v) and quadruple systems $\operatorname{SQS}(v+1)$ or order $v=2^{m}-1$ and $v+1=2^{m}$, respectively, both with rank equal to $2^{m}-m$ (i.e $\min +1$).

Tonchev $(2001,2003)$ enumerated all different Steiner triple systems STS (v) and quadruple systems $\operatorname{SQS}(v+1)$ or order $v=2^{m}-1$ and $v+1=2^{m}$, respectively, both with rank equal to $2^{m}-m$ (i.e $\min +1$).

Osuna (2006): there are 1239 non-isomorphic Steiner Triple systems STS(31) of rank 27 (i.e $\min +1$).

Tonchev $(2001,2003)$ enumerated all different Steiner triple systems STS (v) and quadruple systems $\operatorname{SQS}(v+1)$ or order $v=2^{m}-1$ and $v+1=2^{m}$, respectively, both with rank equal to $2^{m}-m$ (i.e $\min +1$).

Osuna (2006): there are 1239 non-isomorphic Steiner Triple systems STS(31) of rank 27 (i.e min +1).

In the previous paper (2007), the authors enumerated all different Steiner quadruple systems $\operatorname{SQS}(v)$ of order $v=2^{m}$ and rank $\leq 2^{m}-m+1$ (i.e. $\min +2$).

Tonchev $(2001,2003)$ enumerated all different Steiner triple systems STS (v) and quadruple systems $\operatorname{SQS}(v+1)$ or order $v=2^{m}-1$ and $v+1=2^{m}$, respectively, both with rank equal to $2^{m}-m$ (i.e $\min +1$).

Osuna (2006): there are 1239 non-isomorphic Steiner Triple systems STS(31) of rank 27 (i.e $\min +1$).

In the previous paper (2007), the authors enumerated all different Steiner quadruple systems SQS (v) of order $v=2^{m}$ and rank $\leq 2^{m}-m+1$ (i.e. $\min +2$).

Now, we enumerate $S(v, 3,2)$, where $v=2^{m}-1$, of rank $2^{m}-m+1(\min +2)$.

Suppose $S_{v}=S(v, 3,2)$ is a Steiner triple system of order
$v=2^{m}-1$ and of rank $\leq 2^{m}-m+1$.

Suppose $S_{v}=S(v, 3,2)$ is a Steiner triple system of order $v=2^{m}-1$ and of rank $\leq 2^{m}-m+1$.
Then, can assume, its dual $G\left(\mathcal{A}_{m}\right)$ ($m-2$ by v matrix):

Suppose $S_{v}=S(v, 3,2)$ is a Steiner triple system of order $v=2^{m}-1$ and of rank $\leq 2^{m}-m+1$.
Then, can assume, its dual $G\left(\mathcal{A}_{m}\right)$ ($m-2$ by v matrix):
$\left[\begin{array}{ccccccccc}1111 & 1111 & 1111 & 1111 & \ldots & 0000 & 0000 & 0000 & 000 \\ \ldots & \ldots \\ 1111 & 1111 & 0000 & 0000 & \ldots & 1111 & 1111 & 0000 & 000 \\ 1111 & 0000 & 1111 & 0000 & \ldots & 1111 & 0000 & 1111 & 000\end{array}\right]$

Suppose $S_{v}=S(v, 3,2)$ is a Steiner triple system of order $v=2^{m}-1$ and of rank $\leq 2^{m}-m+1$.
Then, can assume, its dual $G\left(\mathcal{A}_{m}\right)$ ($m-2$ by v matrix):

$$
\left[\begin{array}{ccccccccc}
1111 & 1111 & 1111 & 1111 & \ldots & 0000 & 0000 & 0000 & 000 \\
\ldots & \ldots \\
1111 & 1111 & 0000 & 0000 & \ldots & 1111 & 1111 & 0000 & 000 \\
1111 & 0000 & 1111 & 0000 & \ldots & 1111 & 0000 & 1111 & 000
\end{array}\right]
$$

Let $J(v)=\{1, \ldots, v\}$ be the coordinate set of S_{v}. Set $u=(v-3) / 4$. Define the subsets J_{i} of $J(v)$:

$$
J_{i}=\{4 i-3,4 i-2,4 i-1,4 i\}, \quad i=1, \ldots, u
$$

Suppose $S_{v}=S(v, 3,2)$ is a Steiner triple system of order $v=2^{m}-1$ and of rank $\leq 2^{m}-m+1$.
Then, can assume, its dual $G\left(\mathcal{A}_{m}\right)$ ($m-2$ by v matrix):

$$
\left[\begin{array}{ccccccccc}
1111 & 1111 & 1111 & 1111 & \ldots & 0000 & 0000 & 0000 & 000 \\
\ldots & \ldots \\
1111 & 1111 & 0000 & 0000 & \ldots & 1111 & 1111 & 0000 & 000 \\
1111 & 0000 & 1111 & 0000 & \ldots & 1111 & 0000 & 1111 & 000
\end{array}\right]
$$

Let $J(v)=\{1, \ldots, v\}$ be the coordinate set of S_{v}. Set $u=(v-3) / 4$. Define the subsets J_{i} of $J(v)$:

$$
J_{i}=\{4 i-3,4 i-2,4 i-1,4 i\}, \quad i=1, \ldots, u
$$

and $J_{u+1}=\{v-2, v-1, v\}$. We have

Suppose $S_{v}=S(v, 3,2)$ is a Steiner triple system of order $v=2^{m}-1$ and of rank $\leq 2^{m}-m+1$.
Then, can assume, its dual $G\left(\mathcal{A}_{m}\right)$ ($m-2$ by v matrix):

$$
\left[\begin{array}{ccccccccc}
1111 & 1111 & 1111 & 1111 & \ldots & 0000 & 0000 & 0000 & 000 \\
\ldots & \ldots \\
1111 & 1111 & 0000 & 0000 & \ldots & 1111 & 1111 & 0000 & 000 \\
1111 & 0000 & 1111 & 0000 & \ldots & 1111 & 0000 & 1111 & 000
\end{array}\right]
$$

Let $J(v)=\{1, \ldots, v\}$ be the coordinate set of S_{v}. Set $u=(v-3) / 4$. Define the subsets J_{i} of $J(v)$:

$$
J_{i}=\{4 i-3,4 i-2,4 i-1,4 i\}, \quad i=1, \ldots, u
$$

and $J_{u+1}=\{v-2, v-1, v\}$. We have

$$
J(v)=J_{1} \cup \cdots \cup J_{u} \cup J_{u+1} .
$$

We need a class of the quaternary MDS codes:

- $(3,2,16)_{4}$-code, denoted by L, different $\Gamma_{L}=(24)^{2}$;

We need a class of the quaternary MDS codes:

- $(3,2,16)_{4}$-code, denoted by L, different $\Gamma_{L}=(24)^{2}$;

Define the mapping φ of E_{4}^{n} into $E^{4 n}$ setting for $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$: $\varphi(\mathbf{c})=\left(\varphi\left(c_{1}\right), \ldots, \varphi\left(c_{n}\right)\right)$, where $0 \mapsto(1000), 1 \mapsto(0100)$, $2 \mapsto(0010), 3 \mapsto(0001)$.

We need a class of the quaternary MDS codes:

- $(3,2,16)_{4}$-code, denoted by L, different $\Gamma_{L}=(24)^{2}$;

Define the mapping φ of E_{4}^{n} into $E^{4 n}$ setting for $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$: $\varphi(\mathbf{c})=\left(\varphi\left(c_{1}\right), \ldots, \varphi\left(c_{n}\right)\right)$, where $0 \mapsto(1000), 1 \mapsto(0100)$, $2 \mapsto(0010), 3 \mapsto(0001)$.

For a given code $(3,2,16)_{4}$-code L, define the constant weight (12, 3, 4, 16)-code $C(L)$:

$$
C(L)=\{\varphi(\mathbf{c}): \mathbf{c} \in L\} .
$$

We need a class of the quaternary MDS codes:

- $(3,2,16)_{4}$-code, denoted by L, different $\Gamma_{L}=(24)^{2}$;

Define the mapping φ of E_{4}^{n} into $E^{4 n}$ setting for $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$: $\varphi(\mathbf{c})=\left(\varphi\left(c_{1}\right), \ldots, \varphi\left(c_{n}\right)\right)$, where $0 \mapsto(1000), 1 \mapsto(0100)$, $2 \mapsto(0010), 3 \mapsto(0001)$.

For a given code $(3,2,16)_{4}$-code L, define the constant weight (12, 3, 4, 16)-code $C(L)$:

$$
C(L)=\{\varphi(\mathbf{c}): \mathbf{c} \in L\} .
$$

For $x \in E^{u}$ with $\operatorname{supp}(\mathbf{x})=\left\{j_{1}, j_{2}, j_{3}\right\}$, we define a ($4 u, 3,4,16$)-code
$C(L ; \mathbf{x})=C\left(L ; j_{1}, j_{2}, j_{3}\right)=\left\{\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{u}\right):\left(\mathbf{c}_{j_{1}}, \mathbf{c}_{j_{2}}, \mathbf{c}_{j_{3}}\right) \in C(L)\right\}$, and $\mathbf{c}_{i}=(0000)$ if $i \neq j_{1}, j_{2}, j_{3}$ (i.e. insert 3 blocks into u blocks).

As usual $u=(v-3) / 4=2^{m-2}-1$. Define the following three sets:

As usual $u=(v-3) / 4=2^{m-2}-1$. Define the following three sets:

■ $S^{(1,1,1)}$ is a set of $(4 u, 3,4,16)$-codes $C\left(j_{1}, j_{2}, j_{3}\right)$, where the triples $\left\{\left(j_{1}, j_{2}, j_{3}\right)\right\}, j_{1}, j_{2}, j_{3} \in J(u)$, is a Steiner triple system $S(u, 3,2)$ on coordinate set $J(u)$ of order u (and $u(u-1) / 6$ elements).

As usual $u=(v-3) / 4=2^{m-2}-1$. Define the following three sets:

■ $S^{(1,1,1)}$ is a set of $(4 u, 3,4,16)$-codes $C\left(j_{1}, j_{2}, j_{3}\right)$, where the triples $\left\{\left(j_{1}, j_{2}, j_{3}\right)\right\}, j_{1}, j_{2}, j_{3} \in J(u)$, is a Steiner triple system $S(u, 3,2)$ on coordinate set $J(u)$ of order u (and $u(u-1) / 6$ elements).

- $S^{(2,1)}=S_{v-2}^{(2,1)} \cup S_{v-1}^{(2,1)} \cup S_{v}^{(2,1)}$ is the set of words $\{\mathbf{c}\}$, $\operatorname{supp}(\mathbf{c})=\left\{j_{1}, j_{2}, j_{3}\right\}, j_{1}, j_{2} \in J_{i}$, and $\left.j_{3} \in J_{u+1}\right\}$. The set $S_{v-2}^{(2,1)}$:

As usual $u=(v-3) / 4=2^{m-2}-1$. Define the following three sets:

- $S^{(1,1,1)}$ is a set of $(4 u, 3,4,16)$-codes $C\left(j_{1}, j_{2}, j_{3}\right)$, where the triples $\left\{\left(j_{1}, j_{2}, j_{3}\right)\right\}, j_{1}, j_{2}, j_{3} \in J(u)$, is a Steiner triple system $S(u, 3,2)$ on coordinate set $J(u)$ of order u (and $u(u-1) / 6$ elements).
- $S^{(2,1)}=S_{v-2}^{(2,1)} \cup S_{v-1}^{(2,1)} \cup S_{v}^{(2,1)}$ is the set of words $\{\mathbf{c}\}$, $\operatorname{supp}(\mathbf{c})=\left\{j_{1}, j_{2}, j_{3}\right\}, j_{1}, j_{2} \in J_{i}$, and $\left.j_{3} \in J_{u+1}\right\}$. The set $S_{v-2}^{(2,1)}$:
$\left[\begin{array}{ccccc}1100 & 0000 & \ldots & 0000 & 100 \\ 0011 & 0000 & \ldots & 0000 & 100 \\ 0000 & 1010 & \ldots & 0000 & 100 \\ 0000 & 0101 & \ldots & 0000 & 100 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0000 & 0000 & \ldots & 0110 & 100 \\ 0000 & 0000 & \ldots & 1001 & 100\end{array}\right]$

As usual $u=(v-3) / 4=2^{m-2}-1$. Define the following three sets:

- $S^{(1,1,1)}$ is a set of $(4 u, 3,4,16)$-codes $C\left(j_{1}, j_{2}, j_{3}\right)$, where the triples $\left\{\left(j_{1}, j_{2}, j_{3}\right)\right\}, j_{1}, j_{2}, j_{3} \in J(u)$, is a Steiner triple system $S(u, 3,2)$ on coordinate set $J(u)$ of order u (and $u(u-1) / 6$ elements).
- $S^{(2,1)}=S_{v-2}^{(2,1)} \cup S_{v-1}^{(2,1)} \cup S_{v}^{(2,1)}$ is the set of words $\{\mathbf{c}\}$, $\operatorname{supp}(\mathbf{c})=\left\{j_{1}, j_{2}, j_{3}\right\}, j_{1}, j_{2} \in J_{i}$, and $\left.j_{3} \in J_{u+1}\right\}$. The set $S_{v-2}^{(2,1)}$:
$\left[\begin{array}{ccccc}1100 & 0000 & \ldots & 0000 & 100 \\ 0011 & 0000 & \ldots & 0000 & 100 \\ 0000 & 1010 & \ldots & 0000 & 100 \\ 0000 & 0101 & \ldots & 0000 & 100 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0000 & 0000 & \ldots & 0110 & 100 \\ 0000 & 0000 & \ldots & 1001 & 100\end{array}\right]$

Define (split 6 words of weight 2 into 3 pairs): $V(1)=\{(1100),(0011)\}, V(2)=\{(1010),(0101)\}$,
$V(3)=\{(1001),(0110)\}$.

Define (split 6 words of weight 2 into 3 pairs):
$V(1)=\{(1100),(0011)\}, V(2)=\{(1010),(0101)\}$,
$V(3)=\{(1001),(0110)\}$.
The sets $S_{v-2}^{(2,1)}, S_{v-1}^{(2,1)}, S_{v}^{(2,1)}$ should satisfy (for all u blocks):
$\left[\begin{array}{cccccc}0000 & \ldots & 1100 & \ldots & 0000 & 100 \\ 0000 & \ldots & 0011 & \ldots & 0000 & 100 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0000 & \ldots & 1010 & \ldots & 0000 & 010 \\ 0000 & \ldots & 0101 & \ldots & 0000 & 010 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0000 & \ldots & 1001 & \ldots & 0000 & 001 \\ 0000 & \ldots & 0110 & \ldots & 0000 & 001 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right]$

Define (split 6 words of weight 2 into 3 pairs):
$V(1)=\{(1100),(0011)\}, V(2)=\{(1010),(0101)\}$,
$V(3)=\{(1001),(0110)\}$.
The sets $S_{v-2}^{(2,1)}, S_{v-1}^{(2,1)}, S_{v}^{(2,1)}$ should satisfy (for all u blocks):
$\left[\begin{array}{cccccc}0000 & \ldots & 1100 & \ldots & 0000 & 100 \\ 0000 & \ldots & 0011 & \ldots & 0000 & 100 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0000 & \ldots & 1010 & \ldots & 0000 & 010 \\ 0000 & \ldots & 0101 & \ldots & 0000 & 010 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0000 & \ldots & 1001 & \ldots & 0000 & 001 \\ 0000 & \ldots & 0110 & \ldots & 0000 & 001 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right]$
$■ S^{(3)}=\left\{\mathbf{c}=(0 \ldots 0111): \operatorname{supp}(\mathbf{c})=J_{u+1}\right\}$.

Theorem 1.

Let $S_{u}=S(u, 3,2)$ be a Steiner system and $\mathbf{c}^{(s)}, \quad s=1,2, \ldots, k$ its words, $k=u(u-1) / 6$. Let $S^{(1,1,1)}, S^{(2,1)}$ and $S^{(3)}$ be the sets, obtained by our construction, based on the families of $(3,2,16)_{4}$-codes $L_{1}, L_{2}, \ldots, L_{k}$ and the constant weight $(4,2,4,2)$-codes $V(1), V(2)$ and $V(3)$. Set

$$
S=S^{(1,1,1)} \cup S^{(2,1)} \cup S^{(3)}
$$

Theorem 1.

Let $S_{u}=S(u, 3,2)$ be a Steiner system and $\mathbf{c}^{(s)}, \quad s=1,2, \ldots, k$ its words, $k=u(u-1) / 6$. Let $S^{(1,1,1)}, S^{(2,1)}$ and $S^{(3)}$ be the sets, obtained by our construction, based on the families of $(3,2,16)_{4}$-codes $L_{1}, L_{2}, \ldots, L_{k}$ and the constant weight (4, 2, 4, 2)-codes $V(1), V(2)$ and $V(3)$. Set

$$
S=S^{(1,1,1)} \cup S^{(2,1)} \cup S^{(3)}
$$

Then, for any choice of the codes $L_{1}, L_{2}, \ldots, L_{k}$, the set S is the Steiner triple system $S_{v}=S(v, 3,2)$ of order $v=4 u+3$ with rank

$$
v-\left(u-\operatorname{rk}\left(S_{u}\right)\right)-2 \leq \operatorname{rk}\left(S_{v}\right) \leq v-\left(u-\operatorname{rk}\left(S_{u}\right)\right)
$$

A system $S_{u}=S(u, 3,2)$ of order $u=2^{l}-1$ is called boolean if its rank is $u-l$, i.e. it is formed by the codewords of weight 3 of the linear Hamming code of length u.

A system $S_{u}=S(u, 3,2)$ of order $u=2^{l}-1$ is called boolean if its rank is $u-l$, i.e. it is formed by the codewords of weight 3 of the linear Hamming code of length u.

Theorem 2.

Suppose $S_{v}=S(v, 3,2)$ is a Steiner system of order $v=2^{m}-1=4 u+3$. Suppose that its rank not greater than $v-m+2$.

A system $S_{u}=S(u, 3,2)$ of order $u=2^{l}-1$ is called boolean if its rank is $u-l$, i.e. it is formed by the codewords of weight 3 of the linear Hamming code of length u.

Theorem 2.

Suppose $S_{v}=S(v, 3,2)$ is a Steiner system of order $v=2^{m}-1=4 u+3$. Suppose that its rank not greater than $v-m+2$.

Then this system S_{v} is obtained from the boolean Steiner triple system $S_{u}=S(u, 3,2)$ of order $u=2^{m-2}-1$ using our construction, described above.

Theorem 3.

The following is true:

- Let $m \geq 4$ and $v=2^{m}-1 \geq 15$. Set $u=(v-3) / 4$ and $k=u(u-1) / 6$. Then, the number M_{v} of different Steiner triple systems $S(v, 3,2)$ of order v, whose rank is not greater than $v-m+2$, and the fixed dual code \mathcal{A}_{m}, is equal to

$$
M_{v}=\left(2^{6} \cdot 3^{2}\right)^{k} \times(6)^{u}, \quad k=u(u-1) / 6
$$

Theorem 3.

The following is true:
■ Let $m \geq 4$ and $v=2^{m}-1 \geq 15$. Set $u=(v-3) / 4$ and $k=u(u-1) / 6$. Then, the number M_{v} of different Steiner triple systems $S(v, 3,2)$ of order v, whose rank is not greater than $v-m+2$, and the fixed dual code \mathcal{A}_{m}, is equal to

$$
M_{v}=\left(2^{6} \cdot 3^{2}\right)^{k} \times(6)^{u}, \quad k=u(u-1) / 6
$$

- The overall number $M_{v}^{(o)}$ of different Steiner triple systems $S(v, 3,2)$, whose rank $\leq v-m+2$, is equal to

$$
M_{v}^{(o)}=\frac{v!\cdot\left(2^{6} \cdot 3^{2}\right)^{k} \cdot(6)^{u}}{(u(u-1)(u-2) \cdots(u+1) / 2) \cdot(4!)^{u} \cdot 3!}
$$

A system $S(v, 3,2)$ of order $v=2^{m}-1$ is called Hamming, if it can be embedded into a binary non-linear perfect ($v, 3,2^{v-m}$)-code (denoted by H_{v}), i.e. if it is the set of words of weight 3 of the code H_{v}, which contains the zero codeword.

A system $S(v, 3,2)$ of order $v=2^{m}-1$ is called Hamming, if it can be embedded into a binary non-linear perfect $\left(v, 3,2^{v-m}\right)$-code (denoted by H_{v}), i.e. if it is the set of words of weight 3 of the code H_{v}, which contains the zero codeword.

Theorem 4.

Any Steiner triple system $S_{v}=S(v, 3,2)$ of order $v=2^{m}-1$ and rank $\operatorname{rk}\left(S_{v}\right) \leq 2^{m}-m+1$ is a Hamming system.

