Determination of the weight enumerator for optimal binary self-dual code of length 52

Nikolay Yankov

Faculty of Mathematics and Informatics, Shumen University, Shumen, Bulgaria

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, Pomorie, Bulgaria, 2012
Outline

1. **Introduction**
 - Previous Results
 - Some definitions

2. **Construction method**

3. **Self-dual \([52, 26, 10]\) codes with an automorphism of order 5**
Why deal with self-dual [52, 26, 10] codes?

Binary self-dual codes with an automorphism of odd prime order p

- All extremal binary self-dual codes up to length 48 are classified (assuming the code possesses an automorphism of odd prime order p)
- All possible weight enumerators for [50, 25, 10] codes are already obtained
- There was just one open case for the weight enumerator of [52, 26, 10] code
- The case of a [52, 26, 10] code with automorphism of order 5 was open
Definitions 1

- \mathbb{F}_q – finite field with $q = p^r$ elements, p - prime
- A linear $[n, k]$ code C is a k-dimensional subspace of the vector space \mathbb{F}_q^n
- The elements of C are called codewords and the (Hamming) weight of a codeword is the number of its nonzero coordinate positions
- The minimum weight d of C is the smallest weight among all nonzero code words of C, and C is called a $[n, k, d]$ code
- A matrix which rows form a basis of C is called a generator matrix of this code
The weight enumerator $W(y)$ of a code C is given by $W(y) = \sum_{i=0}^{n} A_i y^i$ where A_i, is the number of codewords of weight i in C.

Let $(u, v) : F_q^n \times F_q^n \to F_q$ be an inner product in the linear space F_q^n.

The dual code of C is

$$C^\perp = \{ u \in F_q^n : (u, v) = 0 \text{ for all } v \in C \}.$$

The dual code C^\perp is a linear $[n, n - k]$ code.
Definitions 3

- We call the code C **self-orthogonal** if $C \subseteq C^\perp$.
- We call the code C **self-dual** if $C = C^\perp$. Every binary self-dual code have even length $n = 2k$ and dimension $k = \frac{n}{2}$.

A self-dual code C

- Is **doubly-even** if $\text{wt}(v) \equiv 0 \pmod{4}$, $\forall \; v \in C$
- Is **singly-even** if $\exists \; v \in C : \text{wt}(v) \equiv 2 \pmod{4}$

We will deal with singly-even codes.
Definitions 4

Code equivalence

- Two binary codes C, C' are equivalent ($C \cong C'$) if C can be obtained from C' using permutation of coordinates.
- Let S_n denotes the symmetric group of degree n.
- $\sigma \in S_n$ is an automorphism of C, if $C = \sigma(C)$.
- All automorphisms of C form a group, called the automorphism group $\text{Aut}(C)$ of C.
Type of automorphisms

C is a binary self-dual $[n, n/2]$ code

σ is an automorphism of C of odd prime order p

Let

$$\sigma = \Omega_1 \cdots \Omega_c \Omega_{c+1} \cdots \Omega_{c+t},$$

$\Omega_1, \ldots, \Omega_c$ – cycles of length p

$\Omega_{c+1}, \ldots, \Omega_{c+t}$ – fixed points

σ is of type $p-(c, f)$, $n = cp + f$
The two subcodes

\[F_\sigma(C) = \{ \mathbf{v} \in C \mid \sigma(\mathbf{v}) = \mathbf{v} \} \]

\[E_\sigma(C) = \{ \mathbf{v} \in C \mid \text{wt}(\mathbf{v}|\Omega_i) \equiv 0 \pmod{2} \}, i = 1, 2, \ldots, c \]

\(\mathbf{v}|\Omega_i \) is the restriction of the vector \(\mathbf{v} \) on \(\Omega_i \)

Lemma

\[C = F_\sigma(C) \oplus E_\sigma(C), \dim F_\sigma(C) = (p - 1)c/2. \text{ When } C \text{ is self-dual and } 2 \text{ is a primitive root modulo } p, \text{ then } c \text{ is even.} \]
The map π

$\nu \in F_\sigma(C)$ iff $\nu \in C$ and ν is constant on each cycle.

$$\pi : F_\sigma(C) \to \mathbb{F}_2^{c+f}, \quad \nu \in F_\sigma(C), \quad (\nu \pi)_i = \nu_j \text{ for some } j \in \Omega_i$$

For every vector of length p we have

$$(a_0, a_1, \ldots, a_{p-1}) \mapsto a_0 + a_1 x + \cdots + a_{p-1} x^{p-1} \in \mathbb{F}_2[x]/(x^p - 1).$$
The even weight code P

Weight of a polynomial $f(x) = a_0 + a_1 x + \cdots + a_{p-1} x^{p-1}$

$$\text{wt}(f(x)) = \# \{i \mid a_i \neq 0\}.$$

$$P = \{ f(x) \in F_2[x]/(x^p - 1) \mid \text{wt}(f(x)) \equiv 0 \pmod{2} \}$$

is a cyclic code of length p with generator polynomial $x - 1$.

Lemma

*Let p be an odd prime such that $1 + x + x^2 + \cdots + x^{p-1}$ is irreducible over F_2. Then P is a field with identity $x + x^2 + \cdots + x^{p-1}$.***
Let $E_\sigma(C)^*$ is the code $E_\sigma(C)$ with the last f coordinates deleted.

For $v \in E_\sigma(C)$, $v|\Omega_i = (a_0, \ldots, a_{p-1})$

$$(a_0, \ldots, a_{p-1}) \xrightarrow{\varphi} a_0 + \cdots + a_{p-1} x^{p-1}, \text{ for } 1 \leq i \leq c.$$

We have a map $\varphi : E_\sigma(C)^* \to P^c$.

The map φ
The main theorem

Theorem

If \(1 + x + x^2 + \cdots + x^{p-1} \) is irreducible over \(F_2 \) then a code \(C \) with automorphism \(\sigma \) of type \(p - (c, f) \) is self-dual iff:

i) \(C_\pi = \pi(F_\sigma(C)) \) is a \([c + f, \frac{c+f}{2}]\) binary self-dual code;

ii) \(C_\varphi = \varphi(E_\sigma(C)^*) \) is a self-dual \([c, \frac{c}{2}]\) code over the field \(P \) under the inner product \((u, v) = \sum_{i=0}^{c} u_i v_i^{2(\frac{p-1}{2})} \), where \(u = (u_1, \ldots, u_c) \), \(v = (v_1, \ldots, v_c) \) \(\in \mathbb{P}^c \).
A binary self-dual [52, 26, 10] code can have two possible forms of the weight enumerator:

\[W_{52,1} = 1 + 250y^{10} + 7980y^{12} + 42,800y^{14} + \cdots , \]
\[W_{52,2} = 1 + (442 - 16\beta)y^{10} + (6188 + 64\beta)y^{12} + \cdots , \]

where \(0 \leq \beta \leq 12, \beta \neq 11.\)

Codes exist with \(W_{52,1}\) and with \(W_{52,2}\) for all values of the parameter except \(\beta = 10.\)
Let C be a binary self-dual $[52, 26, 10]$ code, possessing an automorphism σ of order 5. There is only one possible cycle structure: σ is of type $5 - (10, 2)$. So

$$\sigma = (1, 2, \ldots, 5)(6, 7, \ldots, 10) \ldots (46, 47, \ldots, 50).$$

Using the Main Theorem we have that the subcode C_{φ} is a self-dual code of length 10 over the field \mathcal{P} under the inner product

$$(u, v) = \sum_{i=1}^{10} u_i v_i^4.$$
The field \mathbb{F}_{16}

2 is a prime root modulo 5, \mathcal{P} is a finite field with 16 elements isomorphic to

$$\mathcal{P} \cong \mathbb{F}_{16} = \{0, \alpha^k | k = 0, \ldots, 14\},$$

where $e = x + x^2 + x^3 + x^4$, $\alpha = x + 1$ is a primitive element of multiplicative order 15. Denote by $\delta = \alpha^5$ – an element of multiplicative order 3. We list the elements of \mathcal{P} in the following Table.

<table>
<thead>
<tr>
<th>e</th>
<th>01111</th>
<th>α</th>
<th>11000</th>
<th>α^2</th>
<th>10100</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^3</td>
<td>11110</td>
<td>α^4</td>
<td>10001</td>
<td>α^5</td>
<td>01001</td>
</tr>
<tr>
<td>α^6</td>
<td>11101</td>
<td>α^7</td>
<td>00011</td>
<td>α^8</td>
<td>10010</td>
</tr>
<tr>
<td>α^9</td>
<td>11011</td>
<td>α^{10}</td>
<td>00110</td>
<td>α^{11}</td>
<td>00101</td>
</tr>
<tr>
<td>α^{12}</td>
<td>10111</td>
<td>α^{13}</td>
<td>01100</td>
<td>α^{14}</td>
<td>01010</td>
</tr>
</tbody>
</table>
The generator matrix of C_φ

Theorem

Let C_φ be a $[10, 5]$ code over \mathcal{P}, self-dual under the orthogonality condition such that $E_\sigma(C)$ has $d \geq 10$. Then

$$\text{gen}_{C_\varphi} = \begin{pmatrix}
e & 0 & 0 & 0 & 0 & a_{16} & a_{17} & a_{18} & a_{19} & a_{1,10} \\
0 & e & 0 & 0 & 0 & a_{26} & a_{27} & a_{28} & a_{29} & a_{2,10} \\
0 & 0 & e & 0 & 0 & a_{36} & a_{37} & a_{38} & a_{39} & a_{3,10} \\
0 & 0 & 0 & e & 0 & a_{46} & a_{47} & a_{48} & a_{49} & a_{4,10} \\
0 & 0 & 0 & 0 & e & a_{56} & a_{57} & a_{58} & a_{59} & a_{5,10} \\
\end{pmatrix},$$

$a_{1i} \in \{0, e, \delta, \delta^2\}$, $i = 6, \ldots, 10$, $a_{j6} \in \{0, e, \delta, \delta^2\}$, $j = 1, \ldots, 6$. Furthermore $(a_{16}, a_{17}, a_{18}, a_{19}, a_{1,10})$ is one of the following five vectors $(0, e, e, \delta, \delta^2)$, (e, e, e, e, e), $(e, \delta, \delta, \delta, \delta)$, $(e, \delta, \delta, \delta^2, \delta^2)$, $(e, e, e, \delta, \delta)$.
Sketch of the Proof:

Interchanging the columns of G_φ, we assume that $0 \leq a_{16} \leq a_{17} \leq a_{18} \leq a_{19} \leq a_{1,10} \leq \delta^2$.

By the orthogonal condition $v = (a_{16}, a_{17}, a_{18}, a_{19}, a_{1,10})$ is one of the vectors

<table>
<thead>
<tr>
<th>v_1</th>
<th>$(0,0,0,0,e)$</th>
<th>v_2</th>
<th>$(0,0,e,e,e)$</th>
<th>v_3</th>
<th>$(0,0,e,\delta,\delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_4</td>
<td>$(0,0,e,\delta^2,\delta^2)$</td>
<td>v_5</td>
<td>$(0,e,e,\delta,\delta^2)$</td>
<td>v_6</td>
<td>(e,e,e,e,e)</td>
</tr>
<tr>
<td>v_7</td>
<td>$(e,\delta,\delta,\delta,\delta)$</td>
<td>v_8</td>
<td>$(e,\delta^2,\delta^2,\delta^2,\delta^2)$</td>
<td>v_9</td>
<td>$(e,\delta,\delta,\delta^2,\delta^2)$</td>
</tr>
<tr>
<td>v_{10}</td>
<td>(e,e,e,δ,δ)</td>
<td>v_{11}</td>
<td>$(e,e,e,\delta^2,\delta^2)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first three cases lead to vectors of weight 8

Using the \mathbb{F}_{16}-automorphism $\gamma : x \rightarrow x^{-1}$, $\delta \rightarrow \delta^2$

$$v_4 \xrightarrow{\gamma} v_3, \quad v_8 \xrightarrow{\gamma} v_7, \quad v_{11} \xrightarrow{\gamma} v_{10}$$

Weight enumerator of optimal self-dual code of length 52
A computer program for calculating all codes with generator matrix using the orthogonality condition, was created. It turns out that there are exactly 56 inequivalent \([10, 5]\) codes. Denote their generator matrices by \(H_i, i = 1, \ldots, 56\).

Table: Order of automorphism groups of the optimal codes over \(\mathbb{F}_{16}\)

| \(|\text{Aut}(C)|\) | 5 | 10 | 15 | 20 | 40 | 80 | 160 |
|---------------------|-----|-----|-----|-----|-----|-----|-----|
| \(\#\) | 15 | 25 | 2 | 8 | 3 | 2 | 1 |
\(C_\pi \) is a binary self-dual [12, 6, \(\geq 2 \)] code

There are three such codes:

- \(6i_2, B_1 = \text{gen}(6i_2) = (l_6 | l_6) \)

- \(2i_2 + e_8, B_2 = \text{gen}(2i_2 + e_8) = \)
 \[
 \begin{pmatrix}
 100000100000 \\
 010000100000 \\
 001000001111 \\
 000100010111 \\
 000010011101 \\
 000001001110 \\
 \end{pmatrix}
 \]

- \(d_{12}, B_3 = \text{gen}(d_{12}) = \)
 \[
 \begin{pmatrix}
 100000100001 \\
 010000100011 \\
 001000010111 \\
 000100001111 \\
 000010111110 \\
 000001111101 \\
 \end{pmatrix}
 \]
We have to arrange 2 of the coordinate positions \{1, \ldots, 12\} to be the fixed points \(X_f\), such that \(F_\sigma\) have \(d \geq 10\)

There are three different generators \(G_i\):

- one from \(2i_2 + e_8\): \(G_1 = B_2\),
- two from \(d_{12}\): \(G_2 = B_3\); and \(G_3\) – the matrix \(B_3\) with columns permuted by \((10, 11)\)
The generator matrix

$S_{t_i} < S_{10}$, $i = 1, 2, 3$ consisting of all permutations on the first ten coordinates, which are induced by an automorphism of the code generated by C_i, $i = 1, 2, 3$

$\tau \in S_{10}$ by $C_{52, i, j}^\tau$, $i = 1, 2, 3$, $j = 1, \ldots, 56$ we denote the $[52, 26]$ self-dual code with

$$\text{gen } C_{52, i, j}^\tau = \begin{pmatrix} \varphi^{-1}(H_j) & O \\ \pi^{-1}(\tau G_i) \end{pmatrix}$$
Right transversal

Lemma

If \(\tau_1 \) and \(\tau_2 \) belong to one and the same right coset of \(S_{10} \) to \(G_i \), then the codes \(C_{i,j}^{\tau_1} \) and \(C_{i,j}^{\tau_2} \) are equivalent.

We need only to consider permutations from the right transversals \(T_i \) of \(S_{10} \) with respect to \(St_i \).
Case 1. F_σ generated by G_1.

\[St_1 = \langle (2, 8)(3, 6, 10, 5), (2, 8)(3, 4, 5)(6, 10, 9), (3, 10)(4, 9)(5, 6), (1, 2)(3, 10)(4, 9)(5, 6)(7, 8) \rangle \]

$|St_1| = 384$

T_1 have 9450 elements

There are 10486 codes with weight enumerator $W_{52,2}$

- 9881 with $\beta = 0$
- 604 with $\beta = 5$
- 1 code with $\beta = 10$
Case 2. $F_σ$ generated by G_2

$St_2 = \langle (5, 6), (4, 5)(6, 10), (3, 4)(9, 10), (2, 3)(8, 9), (1, 2)(7, 8) \rangle$

$|St_2| = 3840, |T_2| = 945$

There exist exactly 147 inequivalent codes all with weight enumerator $W_{52,1}$

Case 3. $F_σ$ generated by G_3

$St_3 = \langle (2, 8)(3, 6, 9, 5), (1, 2, 3, 7, 8, 9)(4, 10)(5, 6) \rangle$

$|St_3| = 384, |T_3| = 9450$

There are 8144 inequivalent codes with $W_{52,2}$

- 7624 codes for $\beta = 2$
- 520 codes for $\beta = 7$.
Main results

Proposition

There are exactly 18777 inequivalent binary \([52, 26, 10]\) self-dual codes having an automorphism of type \(5 - (10, 2)\). One of these codes have weight enumerator \(W_{52,2}\) for \(\beta = 10\).

Theorem

There exists an optimal binary self-dual \([52, 26, 10]\) code with weight enumerator \(W\) if and only if \(W = W_{52,2}\) in with \(\beta \in [0..12], \beta \neq 11 \) or \(W = W_{52,1}\).
Introduction
Construction method
Self-dual $[52, 26, 10]$ codes with an automorphism of order 5

Automorphism groups

Table: Order of automorphism groups for $[52, 26, 10]$ codes

| $|\text{Aut}(C)|$ | 5 | 10 | 50 | 150 |
|-----------------|----|----|----|-----|
| # | 18208 | 566 | 2 | 1 |

The 2 codes with $|\text{Aut}(C)| = 50$ are the 2 pure double-circulant self-dual codes.
All other codes are new.