An Isomorphism between two Arithmetic Fuchsian Groups using Different Edge-Pairings

UNICAMP

Cintya Wink O. Benedito Reginaldo Palazzo Jr.

Department of Telematics - University of Campinas, Brazil

June 20th, 2012

Introduction

- The concept of geometrically uniform codes is strongly dependent on the existence of regular tessellations in homogeneous space.
- The error probability in the hyperbolic plane depends on the genus of a surface and the best performance is achieved with genus ≥ 2 (viewed as edge-pairings of a regular hyperbolic polygon in the hyperbolic plane associated with a hyperbolic tessellations $\{p, q\}$).
- Find Fuchsian groups in order to generate signal constellation.
- For tessellation $\{4 g, 4 g\}$, with $g \geq 2$, we have shown the arithmetic Fuchsian groups associated with the diametrically opposite edge-pairings and the normal form are isomorphic.

An Example: Tesselation $\{8,8\}$

Tesselation $\{8,8\}$ on the Poincare disc

Proposal

Obtain arithmetic Fuchsian groups derived from the quaternion orders associated with the tessellation $\{p, q\}$ by using different edge-pairings, and show they are isomorphic.

Motivation

- Construct lattices and geometrically uniform codes using hyperbolic tessellations.
- E. D. Carvalho, Identification of lattices from genus of compact surface, IEEE Trans. Inform. Theory, International Telecommunications Symposium, pp. 146-151, 2006.
- G. D. Forney, Jr., Geometrically uniform codes, IEEE Trans. Inform. Theory, vol. IT 37, pp. 1241-1260, 1991.
- Obtain topological quantum codes algebraically (using Fuchsian groups)
- C. D. de Albuquerque, R. Palazzo Jr. and E. B. da Silva. Topological quantum codes on compact surfaces with genus $g \geq 2$, Journal of Mathematical Physics 50, pp. 023513, 2009.

Hyperbolic Geometry and Fuchsian Groups

Euclidean models for the hyperbolic plane:

- $\mathbb{H}^{2}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ (upper-half plane)
- $\mathbb{D}^{2}=\{z \in \mathbb{C}:|z|<1\}$ (Poincare disc)

Definition

Let $\operatorname{PSL}(2, \mathbb{R})$ be the set of all Möbius transformations, $T: \mathbb{H}^{2} \longrightarrow \mathbb{H}^{2}$, given by $T_{A}(z)=\frac{a z+b}{c z+d}$, where $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$. A Fuchsian group Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

If $f: \mathbb{H}^{2} \longrightarrow \mathbb{D}^{2}$ given by $f(z)=\frac{z i+1}{z+i}$, then $\Gamma=f^{-1} \Gamma_{p} f$ is a subgroup of $\operatorname{PSL}(2, \mathbb{R})$, where $T_{p}: \mathbb{D}^{2} \longrightarrow \mathbb{D}^{2}$ and $T_{p} \in \Gamma_{p}<\operatorname{PSL}(2, \mathbb{C})$ is such that $T_{p}(z)=\frac{a z+b}{b z+\bar{a}}, a, b \in \mathbb{C}$, $|a|^{2}-|b|^{2}=1$. Furthermore, $\Gamma \simeq \Gamma_{p}$.

Hyperbolic Geometry and Fuchsian Groups

Definition

Let $\mathcal{A}=(\alpha, \beta)_{\mathbb{K}}$ be a quaternion algebra over a field \mathbb{K} with basis $\{1, i, j, k\}$ satisfying $i^{2}=\alpha, j^{2}=\beta$ and $k=i j=-j i$, where $\alpha, \beta \in \mathbb{K} /\{0\}$.

Consider $\varphi: \mathcal{A} \longrightarrow M(2, \mathbb{K}(\sqrt{\alpha}))$ where

$$
\begin{aligned}
& \varphi(1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \varphi(i)=\left(\begin{array}{cc}
\sqrt{\alpha} & 0 \\
0 & -\sqrt{\alpha}
\end{array}\right), \\
& \varphi(j)=\left(\begin{array}{cc}
0 & 1 \\
\beta & 0
\end{array}\right), \varphi(k)=\left(\begin{array}{cc}
0 & \sqrt{\alpha} \\
-\beta \sqrt{\alpha} & 0
\end{array}\right) .
\end{aligned}
$$

So φ is an isomorphism of $\mathcal{A}=(\alpha, \beta)_{\mathbb{K}}$ in the subalgebra $M(2, \mathbb{K}(\sqrt{\alpha}))$. Each element of \mathcal{A} is identified with

$$
x \longmapsto \varphi(x)=\left(\begin{array}{cc}
x_{0}+x_{1} \sqrt{\alpha} & x_{2}+x_{3} \sqrt{\alpha} \\
\beta\left(x_{2}-x_{3} \sqrt{\alpha}\right) & x_{0}-x_{1} \sqrt{\alpha}
\end{array}\right) .
$$

Hyperbolic Geometry and Fuchsian Groups

Definition

Let $\mathcal{A}=(\alpha, \beta)_{\mathbb{K}}$ be a quaternion algebra and R be a ring of \mathbb{K}. An order \mathcal{O} in \mathcal{A} is a subring of \mathcal{A} containing 1 , equivalently, it is a finitely generated R-module such that $\mathcal{A}=\mathbb{K} \mathcal{O}$.

- Considering R a ring of \mathbb{K} and the algebra $\mathcal{A}=(\alpha, \beta)_{\mathbb{K}}$, with $\alpha, \beta \in R$, then

$$
\mathcal{O}=\left\{\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k: \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} \in R\right\},
$$

is an order in \mathcal{A} denoted by $\mathcal{O}=(\alpha, \beta)_{R}$.

- $\Gamma[\mathcal{A}, \mathcal{O}] \simeq \operatorname{PSL}(2, \mathbb{R})$. Therefore, $\Gamma[\mathcal{A}, \mathcal{O}]$ is a Fuchsian group called arithmetic Fuchsian group.

Fuchsian Groups $\Gamma_{4 g}$ and $\Gamma_{4 g}^{*}$

- Let $\{4 g, 4 g\}$ be a self-dual tessellation with $g \geq 2$ in the hyperbolic plane and $P_{4 g}$ the associated regular hyperbolic polygon.

P_{8}-normal edge-pairings

P_{8}-diametrically opposite edge-pairings

The Fuchsian Group $\Gamma_{4 g}$

For the normal edge-pairings, we consider the edges of $P_{4 g}$ are ordered as follows

$$
u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{2 g-1}, u_{2 g}, u_{2 g-1}^{\prime}, u_{2 g}^{\prime}
$$

such that

$$
T_{i}\left(u_{i}\right)=u_{i}^{\prime}, i=1, \ldots, 2 g
$$

The Fuchsian Group $\Gamma_{4 g}$

If $T_{1} \in \Gamma_{4 g}$ is such that $T_{1}\left(u_{1}\right)=u_{1}^{\prime}$ then:

$$
A_{1}=\left(\begin{array}{ll}
a & \bar{b} \\
b & \bar{a}
\end{array}\right)
$$

with

$$
\arg (a)=\frac{(g-1) \pi}{2 g},|a|=\tan \frac{(2 g-1) \pi}{4 g}
$$

and $\arg (b)=\frac{-(2 g+1) \pi}{4 g},|b|=\left(\left(\tan \frac{(2 g-1) \pi}{4 g}\right)^{2}-1\right)^{\frac{1}{2}}$.

The Fuchsian Group $\Gamma_{4 g}$

The remaining generators are obtained by conjugations of the form

$$
\begin{cases}A_{i}=C^{4 j+1} A_{1} C^{-(4 j+1)}, & \text { with } i \text { even and } j=0, \ldots, g-1 ; \tag{2}\\ A_{i}=C^{4 k} A_{1} C^{-4 k}, & \text { with } i \text { odd and } k=1, \ldots, g-1 .\end{cases}
$$

where the $A_{i}^{\prime} s$ are the transformation matrices associated with the generators $T_{i}^{\prime} \mathrm{s}$ of $\Gamma_{4 g}$, with $i=1, \ldots, 2 g$ and

$$
C=\left(\begin{array}{cc}
e^{\frac{i \pi}{4 g}} & 0 \\
0 & e^{-\frac{i \pi}{4 g}}
\end{array}\right)
$$

is the matrix corresponding to the elliptic transformation with order $4 g$.

$$
\Gamma_{4 g}=\left\langle T_{1}, \ldots, T_{2 g}: T_{1} \circ T_{2} \circ T_{1}^{-1} \circ T_{2}^{-1} \circ \cdots \circ T_{2 g-1} \circ T_{2 g} \circ T_{2 g-1}^{-1} \circ T_{2 g}^{-1}=\mid d\right\rangle .
$$

The Fuchsian Group $\Gamma_{4 g}^{*}$

By using the diametrically opposite edge-pairings, we will consider the Fuchsian group, denoted by $\Gamma_{4 g}^{*}$. Let the edges of $P_{4 g}$ are ordered as follows

$$
u_{1}, \ldots, u_{4 g}, \text { such that } T_{i}^{*}\left(u_{i}\right)=u_{i+2 g}, \quad i=1, \ldots, 2 g .
$$

The Fuchsian Group $\Gamma_{4 g}^{*}$

In the same way, if we have the transformation $T_{1}^{*} \in \Gamma_{4 g}^{*}$ and so the corresponding matrix A_{1}^{*}, the remaining generators are obtained by conjugations of the form

$$
\begin{equation*}
A_{i}^{*}=C^{i-1} A_{1}^{*} C^{-(i-1)}, i=2, \ldots, 2 g \tag{3}
\end{equation*}
$$

$$
\Gamma_{4 g}^{*}=\left\langle T_{1}^{*}, \ldots, T_{2 g}^{*}: T_{1}^{*} \circ\left(T_{2}^{*}\right)^{-1} \circ \cdots \circ\left(T_{2 g-1}^{*}\right)^{-1} \circ T_{2 g}^{*}=\mid d\right\rangle
$$

The Fuchsian Group $\Gamma_{4 g}^{*}$

Theorem

Let P_{p} be a hyperbolic regular polygon with p edges and Γ_{p} the Fuchsian group associated with the tessellation $\{p, q\}$. If $T_{1} \in \Gamma_{p}$ is such that $T_{1}\left(u_{1}\right)=u_{1+\frac{p}{2}}$ then the matrix A_{1} associated with the transformation T_{1} is given by

$$
A_{1}=\left(\begin{array}{cc}
\frac{2 \cos \frac{\pi}{q}}{2 \sin \frac{\pi}{p}} & \frac{\sqrt{2 \cos \frac{\pi}{p}+2 \cos \frac{\pi}{q}} \cdot e^{i\left(\frac{p+1}{\rho}\right) \pi}}{2 \sin \frac{\pi}{p}} \tag{4}\\
\frac{\sqrt{2 \cos \frac{\pi}{P}+2 \cos \frac{\pi}{q}} \cdot e^{-i\left(\frac{p+1}{p}\right) \pi}}{2 \sin \frac{\pi}{p}} & \frac{2 \cos \frac{\pi}{q}}{2 \sin \frac{\pi}{p}}
\end{array}\right)
$$

Using an appropriate set of edge-pairings of P_{p}, all the side pairing transformations are obtained by conjugation of the form $T_{i}=T_{C^{r_{i}}} \circ T_{1} \circ T_{C^{-r_{i}}}$, where $T_{C^{r_{i}}}$ is a power of matrix C.

Fuchsian Groups $\Gamma_{4 g}$ and $\Gamma_{4 g}^{*}$

- The process of identifying Fuchsian groups derived from a quaternion algebra over a totally real algebraic number field are given by the following results:

Theorem
For each $g=2^{n}, 3 \cdot 2^{n}$ and $5 \cdot 2^{n}$, where $n \in \mathbb{N}$, the elements of a Fuchsian group $\Gamma_{4 g}$ are identified, via isomorphism, with the elements of an order $\mathcal{O}=(\theta,-1)_{R}$, where $R=\left\{\frac{\delta}{2^{m}}: \delta \in \mathbb{Z}[\theta]\right.$ e $\left.m \in \mathbb{N}\right\}$ and

$$
\theta= \begin{cases}\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}} & \text { for } g=2^{n} ; \tag{5}\\ \sqrt{2+\sqrt{2+\ldots+\sqrt{2+\sqrt{3}}}} & \text { for } g=3 \cdot 2^{n} ; \\ \sqrt{2+\sqrt{2+\ldots+\sqrt{2+\frac{\sqrt{10+2 \sqrt{5}}}{2}}}} & \text { for } g=5 \cdot 2^{n} .\end{cases}
$$

Fuchsian Groups $\Gamma_{4 g}$ and $\Gamma_{4 g}^{*}$

Theorem
For each $g=2^{n}, 3 \cdot 2^{n}$ and $5 \cdot 2^{n}$, with $n \in \mathbb{N}$, the Fuchsian group $\Gamma_{4 g}$, associated with the hyperbolic polygon $P_{4 g}$, is derived from a quaternion algebra $\mathcal{A}=(\theta,-1)_{\mathbb{K}}$, over the number field $\mathbb{K}=\mathbb{Q}(\theta)$, where $[\mathbb{K}: \mathbb{Q}]=2^{n}, 2^{n+1}$ and 2^{n+2}, respectively, and θ is as in (5).

Reminding the proposal:

The purpose is to show that there is an isomorphism between arithmetic Fuchsian groups derived from quaternion algebra each fixed tessellation $\{p, q\}$.

Following, we prove this for the groups $\Gamma_{4 g}$ and $\Gamma_{4 g}^{*}$.

Isomorphism between Arithmetic Fuchsian Groups

Lemma

Let $\Gamma \subset P S L(2, \mathbb{R})$ be a finitely generated Fuchsian group with generators $G_{1}, \ldots G$. Then

$$
G_{i}=\frac{1}{2^{s}}\left(\begin{array}{cc}
x_{i}+y_{i} \sqrt{\theta} & z_{i}+w_{i} \sqrt{\theta} \tag{6}\\
-z_{i}+w_{i} \sqrt{\theta} & x_{i}-y_{i} \sqrt{\theta}
\end{array}\right),
$$

where $G_{i} \in M(2, \mathbb{K}(\sqrt{\theta}))$, $s \in \mathbb{N}, \theta, x_{i}, y_{i}, z_{i}, w_{i} \in \mathbb{K}$, with
$i=1, \ldots, /$ and \mathbb{K} a totally real algebraic number field. Furthermore, any element $T \in \Gamma$ has the same form as that of the generators of Γ.

Isomorphism between Arithmetic Fuchsian Groups

Theorem
Let $\Gamma_{4 g}, \Gamma_{4 g}^{*} \subset \operatorname{PSL}(2, \mathbb{C})$ be arithmetic Fuchsian groups associated with the tessellation $\{4 g, 4 g\}$ using the normal edge-paring and the diametrically opposite edge-pairings, respectively. Then $\Gamma_{4 g} \simeq \Gamma_{4 g}^{*}$.

Isomorphism between Arithmetic Fuchsian Groups

Proof.

- Fixed a genus g and consider Γ_{1} and Γ_{2} as Fuchsian groups in \mathbb{H}^{2}.
- So, $\Gamma_{1}=f^{-1} \Gamma_{4 g} f$ and $\Gamma_{2}=f^{-1} \Gamma_{4 g}^{*} f$, where $f: z \longmapsto \frac{z i+1}{z+i}$.
- Consider the isomorphism of groups $\phi_{1}: \Gamma_{1} \longrightarrow \Gamma_{4 g}$ and $\phi_{2}: \Gamma_{2} \longrightarrow \Gamma_{4 g}^{*}$ given by $\phi_{1}(T)=\phi_{2}(T)=f^{-1} T f$.
- So, $\Gamma_{1} \simeq \Gamma_{4 g}$ and $\Gamma_{2} \simeq \Gamma_{4 g}^{*}$.
- For $i=1, \ldots, 2 g$ we have that $G_{i}=f^{-1} A_{i} f$ and $G_{i}^{*}=f^{-1} A_{i}^{*} f$.
- Since $\Gamma_{1}, \Gamma_{2} \subset \operatorname{PSL}(2, \mathbb{R})$, by Lemma it follows that both generators G_{i} and G_{i}^{*} are of the form given in (6) and $G_{i}, G_{i}^{*} \subset M(2, \mathbb{Q}(\sqrt{\theta}))$.
- There exists an isomorphism $\psi: \Gamma_{1} \longrightarrow \Gamma_{2}$ in which $\psi\left(G_{i}\right)=G_{i}^{*}$.
- By the chain of isomorphisms $\Gamma_{4 g} \simeq \Gamma_{1} \simeq \Gamma_{2} \simeq \Gamma_{4 g}^{*}$.

Examples

Example

Let P_{8} be the regular hyperbolic polygon associated with the tessellation $\{8,8\}$. Let us consider the normal form for the edge-pairings of P_{8}. Using the equalities in (1) and (2), and the fact that $G_{i}=f^{-1} A_{i} f$, with $i=1, \cdots, 4$ we obtain the following generators of the arithmetic Fuchsian group Γ_{8} :

Examples

$$
\begin{aligned}
& G_{1}=\left(\begin{array}{cc}
\frac{x_{1}-x_{1} \sqrt[4]{2}}{2} & \frac{x_{1}-y_{1} \sqrt[4]{2}}{2} \\
\frac{-x_{1}-y_{1}}{2} \sqrt[4]{2} & \frac{x_{1}+x_{1} \sqrt[4]{2}}{2}
\end{array}\right), \quad G_{2}=\left(\begin{array}{cc}
\frac{x_{1}+x_{1}}{2} \sqrt[4]{2} & \frac{x_{1}+y_{1}}{2} \\
\frac{-x_{1}}{2}+y_{1} \sqrt[4]{2} & \frac{x_{1}-x_{1} \sqrt[4]{2}}{2}
\end{array}\right) \\
& =\varphi\left(\frac{x_{1}}{2}-\frac{x_{1}}{2} i+\frac{x_{1}}{2} j-\frac{y_{1}}{2} k\right)=\varphi\left(\frac{x_{1}}{2}+\frac{x_{1}}{2} i+\frac{x_{1}}{2} j+\frac{y_{1}}{2} k\right) \\
& G_{3}=\left(\begin{array}{ll}
\frac{x_{1}-x_{1}}{2} \sqrt[4]{2} & \frac{-x_{1}+y_{1} \sqrt[4]{2}}{2} \\
\frac{x_{1}+y_{1}}{2} & \frac{x_{1}}{2}+x_{1} \sqrt[4]{2} \\
2
\end{array}\right), \quad G_{4}=\left(\begin{array}{cc}
\frac{x_{1}+x_{1} \sqrt[4]{2}}{2} & \frac{-x_{1}-y_{1} y_{1}}{2} \\
\frac{x_{1}-y_{1} \sqrt[4]{2}}{2} & \frac{x_{1}-x_{1} \sqrt[4]{2}}{2}
\end{array}\right) \\
& =\varphi\left(\frac{x_{1}}{2}-\frac{x_{1}}{2} i-\frac{x_{1}}{2} j+\frac{y_{1}}{2} k\right)=\varphi\left(\frac{x_{1}}{2}+\frac{x_{1}}{2} i-\frac{x_{1}}{2} j-\frac{y_{1}}{2} k\right)
\end{aligned}
$$

where $x_{1}=2+\sqrt{2}$ and $y_{1}=\sqrt{2}$.

Examples

Hence, the quaternion order associated with the Fuchsian group Γ_{8} is $\mathcal{O}=(\sqrt{2},-1)_{R}$, where $R=\left\{\frac{\delta}{2^{m}}: \delta \in \mathbb{Z}[\sqrt{2}]\right.$ and $\left.m \in \mathbb{N}\right\}$, and Γ_{8} is derived from the quaternion algebra $\mathcal{A}=(\sqrt{2},-1)_{\mathbb{K}}$, with $\mathbb{K}=\mathbb{Q}(\sqrt{2})$ and $[\mathbb{K}: \mathbb{Q}]=2$.

Example

Let P_{8} be the regular hyperbolic polygon associated with the tessellation $\{8,8\}$. Let us consider the diametrically opposite edge-pairings of P_{8}. Using the equalities in (3) and (4), and the fact that $G_{i}^{*}=f^{-1} A_{i} f, i=1, \cdots, 4$ we obtain the following generators of the arithmetic Fuchsian group Γ_{8}^{*} :

Examples

$$
\begin{aligned}
G_{1}^{*} & =\left(\begin{array}{cc}
\frac{x_{1}+y_{1} \sqrt[4]{2}}{2} & \frac{-w_{1}}{2} \sqrt[4]{2} \\
\frac{-w_{1}}{2} \sqrt[4]{2} & \frac{x_{1}-y_{1} \sqrt[4]{2}}{2}
\end{array}\right), G_{2}^{*}
\end{aligned}=\left(\begin{array}{cc}
\frac{x_{1}-w_{1}}{2} \sqrt[4]{2} & \frac{y_{1} \sqrt[4]{2}}{2} \\
& =\left(\frac{y_{1} \sqrt[4]{2}}{2}\right. \\
\varphi\left(\frac{x_{1}}{2}+\frac{y_{1}}{2} i-\frac{w_{1}}{2} k\right) & \left.\frac{x_{1}+w_{1} \sqrt[4]{2}}{2}-\frac{w_{1}}{2} i+\frac{y_{1}}{2} k\right)
\end{array}\right),
$$

where $x_{1}=2+2 \sqrt{2}, y_{1}=\sqrt{2}$ and $w_{1}=2+\sqrt{2}$.

Examples

Hence, the quaternion order associated with the Fuchsian group Γ_{8}^{*} derived from the quaternion algebra $\mathcal{A}=(\sqrt{2},-1)_{\mathbb{K}}$, is $\mathcal{O}=(\sqrt{2},-1)_{R}$, where $R=\left\{\frac{\delta}{2^{m}}: \delta \in \mathbb{Z}[\sqrt{2}]\right.$ and $\left.m \in \mathbb{N}\right\}$, $\mathbb{K}=\mathbb{Q}(\sqrt{2})$ and $[\mathbb{K}: \mathbb{Q}]=2$.

Observation: These results extend to other tessellations other than the self-dual tessellation $\{4 g, 4 g\}$.

References

䍰 S．Katok，Fuchsian Groups，The University of Chicago Press， Chicago， 1992.

目 G．D．Forney，Jr．，Geometrically uniform codes，IEEE Trans． Inform．Theory，vol．IT 37，pp．1241－1260， 1991.

直 V．L．Vieira，R．Palazzo，Jr．and M．B．Faria，On the arithmetic Fuchsian groups derived from quaternion orders，IEEE Trans． Inform．Theory，International Telecommunications Symposium， pp．586－591， 2006.

圊 V．L．Vieira，Arithmetic Fuchsian groups identified in quaternion orders for signal constellations construction，Doctoral Dissertation，FEEC－UNICAMP， 2007 （in Portuguese）．

Acknowledgment

- UNICAMP
- FAPESP
- CNPQ

THANK YOU!

cintyawink@gmail.com

