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1. Geometric approach

C: [n, k, d]4 code, k ≥ 3

G = [gT
1 , · · · , gT

k ]T: a generator matrix of C
Σ :=PG(k−1,4): the projective space of di-

mension k − 1 over F4
For P = P(p1, . . . , pk) ∈ Σ we define the weight

of P with respect to G, denoted by wG(P ),

as

wG(P ) = wt(p1g1 + · · ·+ pkgk).



A hyperplane H of Σ is defined by a non-zero

vector h = (h0, . . . , hk−1) ∈ Fk
4 as

H = {P = P(p0, . . . , pk−1) ∈ Σ |
h0p0+· · ·+hk−1pk−1 = 0}.

h is called a defining vector of H.

Let Fd = {P ∈ Σ | wG(P ) = d}.



Lem 1. (Maruta 2008)

C is extendable ⇔ there exists a hyperplane

H of Σ s.t. Fd ∩H = ∅.
Moreover, [G, h] generates an extension of C,
where hT ∈ Fk

q is a defining vector of H.



Now, let

F0 = {P ∈ Σ | wG(P ) ≡ 0 (mod 4)},
F1 = {P ∈ Σ | wG(P ) 6≡ 0, d (mod 4)},

(Φ0,Φ1) = (|F0|, |F1|) : diversity of C
Assume |F1| = 0.

Let K = F0.



Πt : a t-flat in Σ.

For K ⊂ Σ,

hyperplane π: i-hyperplane if |π ∩K | = i

solid ∆: i-solid if |∆ ∩K | = i.

plane δ : i-plane if |δ ∩K | = i.

line l : i-line if |l ∩K | = i.

point P : 1-point if P ∈ K .

0-point if P /∈ K .



Lem 2.

C is extendable if there exists a hyperplane H

of Σ such that H ⊂ F0.

The following two theorems can be proved

applying this lemma.



Thm 3. (Yoshida & Maruta 2009)

Let C be an [n, k, d]4 code with diversity (Φ0,0),

k ≥ 3, d ≡ 2 (mod 4). Then C is extendable

if Φ0 = θk−2 or (θk−1 + θk−2 + 4k−2)/2

where θj = (4j+1 − 1)/(4− 1).



Thm 4.

Let C be an [n, k, d]4 code with diversity (Φ0,0),

k ≥ 3, d ≡ 2 (mod 4). Then C is extendable

if Φ0 = (θk−1 + θk−2)/2,

where θj = (4j+1 − 1)/3.

This can be proved by using our results.



Lem 5. (Maruta 2008)

For a line L = {P0, P1, · · · , P5} in Σ,

it hold that

5∑

i=0
wG(Pi) ≡ 0 (mod 4).

Since wG(Pi) ≡ 0 or 2 (mod 4),

|L\K | ∈ {0,2,4}, i.e. |L ∩K | ∈ {1,3,5}.

So, K has only 1-lines, 3-lines, 5-lines.



2. Odd sets in PG(d,4)

For K ⊂ PG(d,4),

K is an odd set,

if K has only 1-lines, 3-lines, 5-lines.

Od is the set of odd sets in PG(d,4).



1-line, 3-line, 5-line

◦ ∈ K , • /∈ K .



Known results on odd sets in PG(d,4)

· Hirschfeld and Hubaut (1980) characterized

all odd sets in PG(3,4).

· Sherman (1983) gave an algebraic

characterization of odd sets in PG(d,4).



This research...

1. We classify odd sets in PG(4,4)

by way of Sherman’s method.

2. We prove Thm 4 applying our results

on odd sets.



Spectrum

ci : the number of i-hyperplanes.

The list of ci’s is spectrum of K .



Odd sets in PG(2,4) [1]

Type Φ0 c
(2)
1 c

(2)
3 c

(2)
5

Π2 21 21
Π1 5 20 1

Π0U1 13 2 16 3
U2 9 9 12
Fa 7 14 7
P 11 5 15 1
Oc 15 15 6



Π2 : (Φ0; c1, c3, c5) = (21; 0,0,21)



Π1 : (Φ0; c1, c3, c5) = (5; 20,0,1)

V(x3
0).



Π0U1 : (Φ0; c1, c3, c5) = (13; 2,16,3)

V(x3
0 + x3

1).



U2 : (Φ0; c1, c3, c5) = (9; 9,12,0)

V(x3
0 + x3

1 + x3
2).

Hermitian arc



Fa : (Φ0; c1, c3, c5) = (7; 14,7,0)

V(x2
0x2

1x2
2 + x0x1x2 + x3

0 + x3
1 + x3

2).

Fano plane



P : (Φ0; c1, c3, c5) = (11; 5,15,1)

V(x2
0x2

1x2
2 + x0x1x2 + x3

0).



Oc : (Φ0; c1, c3, c5) = (15; 0,15,6)

V(x2
0x2

1x2
2 + x0x1x2).



Let Πr be an r-flat PG(d, q).

Take Πr and Πs in PG(d, q) s.t. Πr ∩Πs = ∅.
For a set K in Πr,

ΠsK =
⋃

P∈Πs,Q∈K
〈P, Q〉

is called a cone with vertex Πs and base K ,

where 〈P, Q〉 stands for the line through P

and Q.

K ∈ Or ⇒ ΠsK ∈ Od



Example 1.

vertex Π1 and base U1 → (Π1U1)



For K ∈ Od and a hyperplane π of Πd,

define the map δπ : Od → Od by K δπ = K ∇π,

with

K ∇π = (K c ∩ πc) ∪ (K ∩ π),

where K c = Πd \K .

The map δπ is called a disflection by π.

|K ∇K ′| = |Πd| − |K | − |K ′|+ 2|K ∩K ′|
for K , K ′ ∈ Od.



K ′ = K ∇π



Example 2.

disflection (Π0U1 → U2)



disflection diagram in PG(2,4) [4]

 U  U

F P

O

1

0 1



disflection diagram in PG(3,4) [4]

 U  

U

F

P

O

2 1 1

0

0

0

0U

S

S

S

T

K

R



See Table 1 in the proceedings, P. 308.

No.1 ∼ 23 are found by

the cone construction and disflections.

No.1 ∼ 5 and No.7 ∼ 15 are obtaind by

the cone construction.

No.6 and No.16 ∼ 23 are found by

the disflection of them.



K ∼ K ′

if K and K ′ are projectively equivalent.

K and K ′ are of the same type.

Let

N(K ) := |{K ′ ∈ Od | K ∼ K ′}|.



Lem 6 (Sherman 1983)

The dimension of Od

as a binary vector space is

dim(Od) = (d3 + 3d2 + 5d + 3)/3.

And

∑
N(K ) = |Od| = 2dim(Od).

So
∑

N(K ) = |O4| = 245.



Lem 7.

Take Πd−s−1 and Πs in PG(d,4)

so that Πd−s−1 ∩Πs = ∅.
For a non-singular odd set K in Πd−s−1, it

holds that

N(ΠsK ) = N(K )× θdθd−s−1

θs
.

Non-singular odd sets don’t have singular point.

A point of K is singular if there is no 3-line

through it.



Lem 8.

For an odd set K in Πd

and a hyperplane ∆ of Πd,

let K ′ = K ∇∆,

s = |{π ∈ Fd−1 | K ∇π ∼ K ′}|, and

s′ = |{π′ ∈ Fd−1 | K ′∇π′ ∼ K }|.
Then

N(K ′) = N(K )× s

s′
.



See Table 3, P. 310.

Then
23∑

i=1
N(Ki) < 245.

Ki : the i-th odd set in Table 3.

In order to find a new odd set,

we use the next theorem.



Thm 9 (Sherman 1983)

Every odd set in PG(d,4) is uniquely expressed

as

V(E2 + E + H),

where E =
∑

0<i,j,k<d
cijkxixjxk

and H is Hermitian.



We found

V : (Φ0; c85, c61, c53) = (221; 1,85,255).

V = V(E2 + E),

where E = x0x3x4 + x1x2x4.



See Table 2 and Table 3, P. 309-310.

We found V and the disflected sets.
45∑

i=1
N(Ki) = 245.



Results

1. By the method of Brian Scherman,

we found all odd sets in PG(4,4).

2. They are classified to three cycles

by disflection.

3. We give a new extension theorem

as an application.



Thank you for your attention!
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Lemma.

N(V ) = N(P4) = 263983104.

P4 is a parabolic quadric.

For (x0, x1, x2, x3, x4) ∈ PG(4,4)

P4 = V(x0x3 + x1x2 + x2
4).


