Classification of the odd sets in $\operatorname{PG}(4,4)$

Taichiro Tanaka
(Joint work with Tatsuya Maruta)

Department of Mathematics and Information Sciences

Osaka Prefecture University

Contents

1. Geometric approach
2. Odd sets in PG(4,4)

1. Geometric approach

$\mathcal{C}:[n, k, d]_{4}$ code, $k \geq 3$
$G=\left[g_{1}^{\top}, \cdots, g_{k}^{\top}\right]^{\top}$: a generator matrix of \mathcal{C}
$\Sigma:=\mathrm{PG}(k-1,4)$: the projective space of dimension $k-1$ over \mathbb{F}_{4}
For $P=\mathrm{P}\left(p_{1}, \ldots, p_{k}\right) \in \Sigma$ we define the weight of P with respect to G, denoted by $w_{G}(P)$, as

$$
w_{G}(P)=w t\left(p_{1} g_{1}+\cdots+p_{k} g_{k}\right)
$$

A hyperplane H of Σ is defined by a non-zero
vector $h=\left(h_{0}, \ldots, h_{k-1}\right) \in \mathbb{F}_{4}^{k}$ as
$H=\left\{P=\mathbf{P}\left(p_{0}, \ldots, p_{k-1}\right) \in \Sigma \mid\right.$

$$
\left.h_{0} p_{0}+\cdots+h_{k-1} p_{k-1}=0\right\} .
$$

h is called a defining vector of H.

Let $F_{d}=\left\{P \in \Sigma \mid w_{G}(P)=d\right\}$.

Lem 1. (Maruta 2008)
\mathcal{C} is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_{d} \cap H=\emptyset$.
Moreover, $[G, h]$ generates an extension of \mathcal{C}, where $h^{\top} \in \mathbb{F}_{q}^{k}$ is a defining vector of H.

Now, let

$$
\begin{aligned}
& F_{0}=\left\{P \in \Sigma \mid w_{G}(P) \equiv 0 \quad(\bmod 4)\right\} \\
& F_{1}=\left\{P \in \Sigma \mid w_{G}(P) \not \equiv 0, d \quad(\bmod 4)\right\}
\end{aligned}
$$

$\left(\Phi_{0}, \Phi_{1}\right)=\left(\left|F_{0}\right|,\left|F_{1}\right|\right)$: diversity of \mathcal{C}
Assume $\left|F_{1}\right|=0$.
Let $\mathscr{K}=F_{0}$.
$\Pi_{t}:$ a t-flat in Σ.
For $\mathscr{K} \subset \Sigma$,
hyperplane π : i-hyperplane if $|\pi \cap \mathscr{K}|=i$
solid $\quad \Delta: i$-solid if $|\Delta \cap \mathscr{K}|=i$.
plane $\quad \delta: i$-plane if $|\delta \cap \mathscr{K}|=i$.
line $\quad l: i$-line if $|l \cap \mathscr{K}|=i$.
point $\quad P$: 1-point if $P \in \mathscr{K}$.
0-point if $P \notin \mathscr{K}$.

Lem 2.

\mathcal{C} is extendable if there exists a hyperplane H of Σ such that $H \subset F_{0}$.

The following two theorems can be proved applying this lemma.

Thm 3. (Yoshida \& Maruta 2009)
Let \mathcal{C} be an $[n, k, d]_{4}$ code with diversity ($\Phi_{0}, 0$), $k \geq 3, d \equiv 2(\bmod 4)$. Then \mathcal{C} is extendable if $\Phi_{0}=\theta_{k-2}$ or $\left(\theta_{k-1}+\theta_{k-2}+4^{k-2}\right) / 2$ where $\theta_{j}=\left(4^{j+1}-1\right) /(4-1)$.

Thm 4.
Let \mathcal{C} be an $[n, k, d]_{4}$ code with diversity ($\Phi_{0}, 0$), $k \geq 3, d \equiv 2(\bmod 4)$. Then \mathcal{C} is extendable if $\Phi_{0}=\left(\theta_{k-1}+\theta_{k-2}\right) / 2$, where $\theta_{j}=\left(4^{j+1}-1\right) / 3$.

This can be proved by using our results.

Lem 5. (Maruta 2008)
For a line $L=\left\{P_{0}, P_{1}, \cdots, P_{5}\right\}$ in Σ,
it hold that

$$
\sum_{i=0}^{5} w_{G}\left(P_{i}\right) \equiv 0 \quad(\bmod 4)
$$

Since $w_{G}\left(P_{i}\right) \equiv 0$ or $2(\bmod 4)$,
$|L \backslash \mathscr{K}| \in\{0,2,4\}$, i.e. $|L \cap \mathscr{K}| \in\{1,3,5\}$.

So, \mathscr{K} has only 1-lines, 3 -lines, 5-lines.
2. Odd sets in $P G(d, 4)$

For $\mathscr{K} \subset P G(d, 4)$,
\mathscr{K} is an odd set,
if \mathscr{K} has only 1 -lines, 3 -lines, 5 -lines.
O_{d} is the set of odd sets in $P G(d, 4)$.

1-line, 3-line, 5-line

$\circ \in \mathscr{K}, \bullet \notin \mathscr{K}$.

Known results on odd sets in $P G(d, 4)$

- Hirschfeld and Hubaut (1980) characterized all odd sets in $P G(3,4)$.
- Sherman (1983) gave an algebraic characterization of odd sets in $P G(d, 4)$.

This research...

1. We classify odd sets in $P G(4,4)$ by way of Sherman's method.
2. We prove Thm 4 applying our results on odd sets.

Spectrum

c_{i} : the number of i-hyperplanes.
The list of c_{i} 's is spectrum of \mathscr{K}.

Odd sets in $P G(2,4)$ [1]

Type	Φ_{0}	$c_{1}^{(2)}$	$c_{3}^{(2)}$	$c_{5}^{(2)}$
Π_{2}	21			21
Π_{1}	5	20		1
$\Pi_{0} \mathscr{U}_{1}$	13	2	16	3
\mathscr{U}_{2}	9	9	12	
\mathscr{F}_{a}	7	14	7	
\mathscr{P}	11	5	15	1
\mathscr{O}^{c}	15		15	6

$\Pi_{2}:\left(\Phi_{0} ; c_{1}, c_{3}, c_{5}\right)=(21 ; 0,0,21)$

$\Pi_{1}:\left(\Phi_{0} ; c_{1}, c_{3}, c_{5}\right)=(5 ; 20,0,1)$

$\Pi_{0} \mathscr{U}_{1}:\left(\Phi_{0} ; c_{1}, c_{3}, c_{5}\right)=(13 ; 2,16,3)$

$$
\mathscr{U}_{2}:\left(\Phi_{0} ; c_{1}, c_{3}, c_{5}\right)=(9 ; 9,12,0)
$$

$\mathrm{v}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)$.
Hermitian arc
$\mathscr{F}_{a}:\left(\Phi_{0} ; c_{1}, c_{3}, c_{5}\right)=(7 ; 14,7,0)$

$\mathrm{V}\left(x_{0}^{2} x_{1}^{2} x_{2}^{2}+x_{0} x_{1} x_{2}+x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)$.
Fano plane
$\mathscr{P}:\left(\Phi_{0} ; c_{1}, c_{3}, c_{5}\right)=(11 ; 5,15,1)$

$\mathbf{v}\left(x_{0}^{2} x_{1}^{2} x_{2}^{2}+x_{0} x_{1} x_{2}+x_{0}^{3}\right)$.

$\mathscr{O}^{c}:\left(\Phi_{0} ; c_{1}, c_{3}, c_{5}\right)=(15 ; 0,15,6)$

Let Π_{r} be an r-flat $\operatorname{PG}(d, q)$.
Take Π_{r} and Π_{s} in $\mathrm{PG}(d, q)$ s.t. $\Pi_{r} \cap \Pi_{s}=\emptyset$. For a set \mathscr{K} in Π_{r},

$$
\Pi_{s} \mathscr{K}=\bigcup_{P \in \Pi_{s}, Q \in \mathscr{K}}^{\bigcup}\langle P, Q\rangle
$$

is called a cone with vertex Π_{s} and base \mathscr{K}, where $\langle P, Q\rangle$ stands for the line through P and Q.
$\mathscr{K} \in O_{r} \Rightarrow \Pi_{s} \mathscr{K} \in O_{d}$

Example 1.

vertex Π_{1} and base $\mathscr{U}_{1} \rightarrow\left(\Pi_{1} \mathscr{U}_{1}\right)$

For $\mathscr{K} \in O_{d}$ and a hyperplane π of Π_{d}, define the map $\delta_{\pi}: O_{d} \rightarrow O_{d}$ by $\mathscr{K} \delta_{\pi}=\mathscr{K} \nabla \pi$, with

$$
\mathscr{K} \nabla \pi=\left(\mathscr{K}^{c} \cap \pi^{c}\right) \cup(\mathscr{K} \cap \pi),
$$

where $\mathscr{K}^{c}=\Pi_{d} \backslash \mathscr{K}$.
The map δ_{π} is called a disflection by π.
$\left|\mathscr{K} \nabla \mathscr{K}^{\prime}\right|=\left|\Pi_{d}\right|-|\mathscr{K}|-\left|\mathscr{K}^{\prime}\right|+2\left|\mathscr{K} \cap \mathscr{K}^{\prime}\right|$
for $\mathscr{K}, \mathscr{K}^{\prime} \in O_{d}$.

$$
\mathscr{K}^{\prime}=\mathscr{K} \nabla \pi
$$

$P G(d, 4)$

\square is K'

Example 2.

disflection $\left(\Pi_{0} \mathscr{U}_{1} \rightarrow \mathscr{U}_{2}\right)$

disflection diagram in $P G(2,4)$ [4]

disflection diagram in $P G(3,4)$ [4]

See Table 1 in the proceedings, P. 308.

No. $1 \sim 23$ are found by
the cone construction and disflections.

No. $1 \sim 5$ and No. $7 \sim 15$ are obtaind by
the cone construction.
No. 6 and No. $16 \sim 23$ are found by
the disflection of them.
$\mathscr{K} \sim \mathscr{K}^{\prime}$
if \mathscr{K} and \mathscr{K}^{\prime} are projectively equivalent. \mathscr{K} and \mathscr{K}^{\prime} are of the same type.

Let

$$
N(\mathscr{K}):=\left|\left\{\mathscr{K}^{\prime} \in O_{d} \mid \mathscr{K} \sim \mathscr{K}^{\prime}\right\}\right| .
$$

Lem 6 (Sherman 1983)
The dimension of O_{d}
as a binary vector space is

$$
\operatorname{dim}\left(O_{d}\right)=\left(d^{3}+3 d^{2}+5 d+3\right) / 3
$$

And

$$
\sum N(\mathscr{K})=\left|O_{d}\right|=2^{\operatorname{dim}\left(O_{d}\right)} .
$$

So $\Sigma N(\mathscr{K})=\left|O_{4}\right|=2^{45}$.

Lem 7.

Take Π_{d-s-1} and Π_{s} in $\operatorname{PG}(d, 4)$ so that $\Pi_{d-s-1} \cap \Pi_{s}=\emptyset$.
For a non-singular odd set \mathscr{K} in Π_{d-s-1}, it holds that

$$
N\left(\Pi_{s} \mathscr{K}\right)=N(\mathscr{K}) \times \frac{\theta_{d} \theta_{d-s-1}}{\theta_{s}} .
$$

Non-singular odd sets don't have singular point.
A point of \mathscr{K} is singular if there is no 3 -line through it.

Lem 8.

For an odd set \mathscr{K} in Π_{d} and a hyperplane Δ of Π_{d},
let $\mathscr{K}^{\prime}=\mathscr{K} \nabla \Delta$,
$s=\left|\left\{\pi \in \mathcal{F}_{d-1} \mid \mathscr{K} \nabla \pi \sim \mathscr{K}^{\prime}\right\}\right|$, and
$s^{\prime}=\left|\left\{\pi^{\prime} \in \mathcal{F}_{d-1} \mid \mathscr{K}^{\prime} \nabla \pi^{\prime} \sim \mathscr{K}\right\}\right|$.
Then

$$
N\left(\mathscr{K}^{\prime}\right)=N(\mathscr{K}) \times \frac{s}{s^{\prime}} .
$$

See Table 3, P. 310.

Then
${ }_{i=1}^{23} N\left(\mathscr{K}_{i}\right)<2^{45}$.
\mathscr{K}_{i} : the i-th odd set in Table 3.
In order to find a new odd set, we use the next theorem.

Thm 9 (Sherman 1983)
Every odd set in $\mathrm{PG}(d, 4)$ is uniquely expressed as

$$
\mathbf{v}\left(E^{2}+E+H\right)
$$

where $E={ }_{0<i, j, k<d} c_{i j k} x_{i} x_{j} x_{k}$ and H is Hermitian.

We found

$$
\begin{aligned}
\mathscr{V} & :\left(\Phi_{0} ; c_{85}, c_{61}, c_{53}\right)=(221 ; 1,85,255) \\
\mathscr{V} & =\mathrm{V}\left(E^{2}+E\right)
\end{aligned}
$$

where $E=x_{0} x_{3} x_{4}+x_{1} x_{2} x_{4}$.

See Table 2 and Table 3, P. 309-310.

We found \mathscr{V} and the disflected sets.
$\sum_{i=1}^{45} N\left(\mathscr{K}_{i}\right)=2^{45}$.

Results

1. By the method of Brian Scherman, we found all odd sets in $\operatorname{PG}(4,4)$.
2. They are classified to three cycles
by disflection.
3. We give a new extension theorem
as an application.

Thank you for your attention!

References

[1] J.W.P. Hirschfeld, Projective geometries over finite fields 2nd ed., Clarendon Press, Oxford, 1998.
[2] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
[3] J.W.P. Hirschfeld and J.A. Thas, General Galois Geometries, Clarendon Press, Oxford, 1991.
[4] B. Sherman, On sets with only odd secants in Geometries over GF(4), J. London Math. Soc. 27 (1983), 539-551
[5] T. Maruta, Extendability of linear codes over \mathbb{F}_{q},
Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Pamporovo, Bulgaria, 2008, 203-209.
[6] Y. Yoshida, T. Maruta, An extension theorem for $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=2$, Australasian Journal of Combinatorics 48 (2010), 117-131.

Lemma.

$N(\mathscr{V})=N\left(\mathscr{P}_{4}\right)=263983104$.
\mathscr{P}_{4} is a parabolic quadric.
For $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \in P G(4,4)$
$\mathscr{P}_{4}=\mathrm{V}\left(x_{0} x_{3}+x_{1} x_{2}+x_{4}^{2}\right)$.

