On the Error Exponent of Low-Complexity Decoded LDPC Codes with Special Construction

> Pavel Rybin and Victor Zyablov Email: {prybin, zyablov}@iitp.ru

Inst. for Information Transmission Problems Russian Academy of Sciences

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory June 16, 2012

Outline

1 Introduction

- 2 LDPC codes with special construction
- 3 Decoding algorithm
- 4 Main result
- 5 Numerical results

Gallager's LDPC codes

Parity-check matrix of Gallager's LDPC code (G-LDPC code)

$$\mathbf{H_2} = \begin{pmatrix} \pi_1(\mathbf{H}_{b_0}) \\ \pi_2(\mathbf{H}_{b_0}) \\ \vdots \\ \pi_\ell(\mathbf{H}_{b_0}) \end{pmatrix}_{\ell b_0 \times b_0 n_0}$$

where

$$\mathbf{H}_{b_0} = \begin{pmatrix} \mathbf{H}_0 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_0 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{H}_0 \end{pmatrix}_{b_0 \times b_0 n_0}$$

H₀ is 1 × n₀ parity-check matrix of single parity-check code.
l random column permutations of H_{b0} form layers of H₂.

3 Code rate is
$$R_2 \geqslant 1 - \ell/n_0$$
.

Ensemble of Gallager's LDPC codes

Definition

For a given constituent code with parity-check matrix \mathbf{H}_0 , the elements of the ensemble $\mathscr{E}_G(n_0, \ell, b_0)$ are obtained by sampling independently the permutations π_I , $I = 1, 2, ..., \ell$, which are equiprobable.

Ensemble of Gallager's LDPC codes

Definition

For a given constituent code with parity-check matrix \mathbf{H}_0 , the elements of the ensemble $\mathscr{E}_G(n_0, \ell, b_0)$ are obtained by sampling independently the permutations π_I , $I = 1, 2, ..., \ell$, which are equiprobable.

Remark

It is known^a that in ensemble $\mathscr{E}_G(n_0, \ell, b_0)$ of G-LDPC codes such code exists which can correct any error pattern with weight up to $\lfloor \omega_t n \rfloor$ while decoding with majority algorithm \mathscr{A}_M with complexity $\mathcal{O}(n \log n)$.

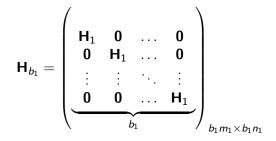
^aP. S. Rybin and V. V. Zyablov, Asymptotic estimation of error fraction corrected by binary LDPC code, *2011 IEEE International Symposium on Information Theory Proceedings (ISIT)*, 2011, 351 – 355.

LDPC codes with special construction

Parity-check matrix of LDPC code with special construction:

$$\mathbf{H} = \left(\begin{array}{c} \mathbf{H}_{2} \\ \pi \left(\mathbf{H}_{b_{1}}\right) \end{array}\right)_{(\ell b_{0} m_{0} + b_{1} m_{1}) \times b_{0} n_{0}}$$

where



- H₁ parity-check matrix of "best" linear code.
- \mathbf{H}_2 parity-check matrix of G-LDPC code from $\mathscr{E}_G(n_0, \ell, b_0)$.

•
$$R \ge R_1 + R_2 - 1$$
.

Ensemble of LDPC codes with special construction

Definition

Obtained construction of LDPC code we will call G-LDPC code with added layer composed from linear codes (LG-LDPC code).

Ensemble of LDPC codes with special construction

Definition

Obtained construction of LDPC code we will call G-LDPC code with added layer composed from linear codes (LG-LDPC code).

Definition

For a given linear code with parity-check matrix \mathbf{H}_1 , the elements of the ensemble $\mathscr{E}_L(n_0, \ell, b_0, n_1, 1, b_1)$ are obtained by sampling independently the parity-check matrix \mathbf{H}_2 from $\mathscr{E}_G(n_0, \ell, b_0)$ and permutation π .

Decoding algorithm description

Decoding algorithm $\mathscr{A}_{\mathcal{C}}$ consists of the following two steps:

1 Received sequence is decoded with well known maximum likehood algorithm separately by b_1 linear codes with parity-check matrix \mathbf{H}_1 from $\ell + 1$ layer of \mathbf{H} ;

Decoding algorithm description

Decoding algorithm \mathscr{A}_C consists of the following two steps:

- 1 Received sequence is decoded with well known maximum likehood algorithm separately by b_1 linear codes with parity-check matrix \mathbf{H}_1 from $\ell + 1$ layer of \mathbf{H} ;
- 2 Tentative sequence is decoded with well known majority decoding algorithm \mathscr{A}_M by G-LDPC code with parity-check matrix \mathbf{H}_2 .

Error exponent

- Investigating error probability P under decoding algorithm A_C of LG-LDPC code we considered memoryless BSC with BER p.
- Estimation on error probability *P* we wrote in the following way:

$$P \leq \exp\left\{-nE\left(R_1, n_1, \omega_t, p\right)\right\},$$

where $E(R_1, n_1, \omega_t, p)$ is error exponent.

Main result

If $R \to \mathscr{C}$ such, that $R_1 < \mathscr{C}$ and $R_2 < 1$, then $\exists n_1$, that $E(R_1, n_1, \omega_t, p) > 0$, if $\omega_t > 0$ for $\forall R_2 < 1$.

Main result

If $R \to \mathscr{C}$ such, that $R_1 < \mathscr{C}$ and $R_2 < 1$, then $\exists n_1$, that $E(R_1, n_1, \omega_t, p) > 0$, if $\omega_t > 0$ for $\forall R_2 < 1$. Existence conditions:

- Let in the ensemble *E*_G (n₀, ℓ, b₀) of G-LDPC codes such code with code rate R₂ exists, which can correct any error pattern of weight up to [ω_tn] while decoding with majority algorithm *A*_M.
- Let the such linear code exists, which has code length n_1 , code rate R_1 and error exponent of this code under maximum likehood decoding is lower-bounded with $E_0(R_1, p)$.

Theorem

If above conditions are fulfilled then in the ensemble $\mathscr{E}_L(n_0, \ell, b_0, n_1, 1, b_1)$ of LG-LDPC codes such code exists, which has the code length *n*:

$$n=n_0b_0=n_1b_1,$$

code rate R:

$$R \geqslant R_1 + R_2 - 1$$

and error exponent of this code over memoryless BSC with BER p under decoding algorithm \mathscr{A}_C with complexity $\mathcal{O}(n \log n)$ is lower-bounded with:

$$E(R_1, n_1, \omega_t, p) = \min_{\omega_t \leq \beta \leq \beta_0} \left\{ \beta E_0(R_1, p) + E_2(\beta, \omega_t, p) - \frac{1}{n_1} H(\beta) \right\}.$$

Notations

•
$$\beta_0 = \min\left(\frac{\omega_t}{2p}, 1\right);$$

• $H(\beta) = \beta \ln \beta$ $(1 - \beta) \ln (1 - \beta) = \text{ontropy function};$

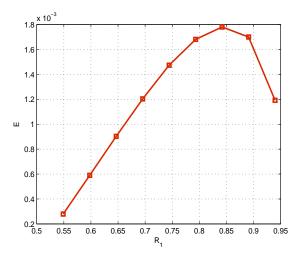
- $H(\beta) = -\beta \ln \beta (1 \beta) \ln (1 \beta)$ entropy function;
- $E_2(\beta, \omega_t, p)$ is given by:

$$E_2(\beta,\omega_t,p) = \frac{1}{2} \left(\omega_t \ln \frac{\omega_t}{p} + (2\beta - \omega_t) \ln \frac{2\beta - \omega_t}{1-p} \right) - \beta \ln (2\beta);$$

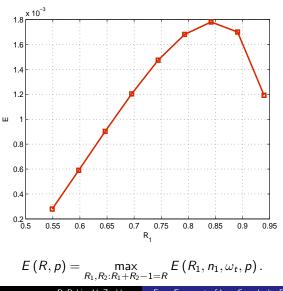
• *n*₁ satisfies the following conditions:

$$\frac{-\ln\beta_0}{E_0\left(R_1,p\right)} \le n_1 \le \frac{1}{R_1}\log_2\log_2\left(n\right).$$

Values of $E(R_1, n_1, \omega_t, p)$ according to R_1 of linear code and for fixed R = 0.5, $n_1 = 2000$ and $p = 10^{-3}$:

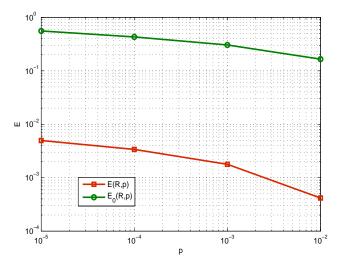


Values of $E(R_1, n_1, \omega_t, p)$ according to R_1 of linear code and for fixed R = 0.5, $n_1 = 2000$ and $p = 10^{-3}$:

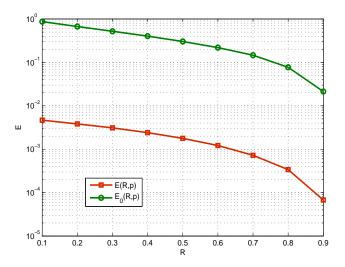


P. Rybin, V. Zyablov Error Exponent of Low-Complexity Decoded LDPC Codes

Values of E(R, p) and $E_0(R, p)$ according to p and for fixed R = 0.5:



Values of E(R, p) and $E_0(R, p)$ according to R and for fixed $p = 10^{-3}$:



P. Rybin, V. Zyablov Error Exponent of Low-Complexity Decoded LDPC Codes

• Construction of LG-LDPC codes was proposed.

- Construction of LG-LDPC codes was proposed.
- Decoding algorithm $\mathscr{A}_{\mathcal{C}}$ with low complexity was developed.

- Construction of LG-LDPC codes was proposed.
- Decoding algorithm \mathscr{A}_C with low complexity was developed.
- Lower-bound of error exponent for LG-LDPC codes under decoding algorithm \mathscr{A}_C was obtained.

- Construction of LG-LDPC codes was proposed.
- Decoding algorithm \mathscr{A}_C with low complexity was developed.
- Lower-bound of error exponent for LG-LDPC codes under decoding algorithm \mathscr{A}_C was obtained.
- It was proved, that for any code rate less than channel capacity such LG-LDPC code exists, that under decoding algorithm *A_C* with low-complexity *O* (*n* log *n*) the error probability decreases exponentially.

Thank you for the attention!