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Notation

• En
q – a q-ary cube – the set of all words of length n

over an alphabet of q symbols

• d(x , y) = |{i : xi 6= yi}| – the Hamming distance

• w(x) = |{i : xi 6= 0}| – weight of x

• C ⊆ En
q – a q-ary code of length n

• d(C ) = min{d(x , y) : x , y ∈ C , x 6= y} – the minimum
distance of C
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Equivalent codes

Two codes are equivalent if there is an isometry of En
q that maps

one of the codes into the other one

Equivalent codes are identical from a metrical point of view.
They have the same structure and equaled metrical parameters.
Equivalent codes embedded in En

q in the similar way.
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Isometric codes

Two codes are isometric if there is any isometry between them,
a bijection preserving distances between codewords

Isometric, but not equivalent codes

There are many Hadamard codes that are isometric, but not
equivalent
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Problem statement

What kind of metric invariants makes codes to be equivalent and
which of them are not sufficient for that?
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Testing sets

A subset T ⊆ En
q is called a testing set for a class K of codes if

any codes C1,C2 ∈ K are equal whenever C1 ∩ T = C2 ∩ T .

Avgustinovich, 1995

The codewords of a perfect code are
determined by its codewords on the
middle layer of En

2

Avgustinovich, Vasilyeva, 2000

The values of a centred function are
determined by its values on the
middle layer of En

2
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Testing sets

A subset T ⊆ En
q is called a testing set for a class K of codes if

any codes C1,C2 ∈ K are equal whenever C1 ∩ T = C2 ∩ T .

Avgustinovich, Vasilyeva, 2006

The values of a centred function in a
ball with radius r ≤ n+1

2 are
determined by its values on the
sphere of radius r

S. V. Avgustinovich, E. V. Gorkunov (SIM, NSU) Strong Isometries of Codes Metric invariants 6/18



Isometries

An isometry preserves all distances between codewords.

• [Avgustinovich, 1994]
If perfect binary codes are isometric, then they are equivalent

• [Solov’eva, Avgustinovich, Honold, Heise, 1998]
Every isometry between q-ary perfect codes is extendable to
an isometry of the space En

q ,
i.e. q-ary perfect codes are metricaly rigid
(one exception: ternary perfect codes of length 4 are not)
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Weak isometries

A weak isometry between two codes preserves minimal distances
between their codewords.
Codes that are equivalent whenever they are weakly isometric:

• [Avgustinovich, 1998]
Perfect binary codes

• [Mogilnykh, 2009]
Preparata codes

• [Mogilnykh, Österg̊ard, Pottonen, Solov’eva, 2009]
Extended perfect binary codes
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Strong isometries of binary codes

A mapping between two binary codes that preserves dimensions of
all their subcodes.

Dimension of a binary code C

Dim(C ) denotes the dimension
of minimal face of En

2 that
contains the code

Remark

Dim{x , y} = d(x , y)

Example

C =

1 0 1 0 0
0 0 1 1 0
1 1 1 1 0

 ,

Dim(C ) = 3
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Strong isometries of binary codes

• [Avgustinovich, 2000]
If binary codes are strongly isometric, then they are equivalent

• Each strong isometry can be extended to an isometry of the
Boolean cube

• [Avgustinovich, Gorkunov, 2010]
If a mapping between two binary codes preserves dimensions
of their subcodes with even cardinality, then the mapping can
be extended to an isometry of the Boolean cube.
We refer to such a mapping as a semistrong isometry

• If binary codes are semistrongly isometric, then they are
equivalent
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Correlation coefficients

Unessential positions

If all codewords of a code C have the same symbol at the i-th
position, we call the position unessential for the code C .
N(C ) – the set of all unessential positions of C

Correlation coefficients
For subcodes C1,C2 ⊆ C with C1 ∩ C2 = ∅, we refer to the
number of positions from N(C1) ∩ N(C2) at which codewords from
different subcodes are distinct as correlation coefficient of C1 and
C2 and denote it by K (C1,C2), i.e.

K (C1,C2) = |{i ∈ N(C1) ∩ N(C2) : xi 6= yi for any x ∈ C1 and y ∈ C2}|

S. V. Avgustinovich, E. V. Gorkunov (SIM, NSU) Strong Isometries of Codes Correlation coefficients 11/18



Examples

C =


0 0 0 0 0 1 1 1
0 0 0 1 0 0 1 1
0 0 0 1 0 2 0 1
0 0 1 0 2 0 1 2
0 1 1 2 2 2 0 2


C1

C2

−→ K (C1,C2) = 3

Simple eqations

• K (x , y) = d(x , y) for any x , y ∈ En
3

• K ({x , y},∅) = n − d(x , y) for any x , y ∈ En
3

• K (C ,∅) = n −Dim(C ),
where Dim(C ) is dimension of the code C ⊆ En

3 in the sense
mentioned above
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Strong isometries of q-ary codes

I : C1 → C2 – a bijection between two ternary codes preserving
correlation coefficient of any pair of subcodes of C1, i.e.

K (A,B) = K (I (A), I (B)) for any A,B ⊆ C1

We refer to a bijection between codes preserving correlation
coefficients of its subcodes as a strong isometry

We say that two codes are strongly isometric if there exists a
strong isometry between them
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Strong isometries of q-ary codes

Theorem
Any strong isometry between ternary codes can be extended to
an isometry of the whole space En

3

Corollary

Strongly isometric ternary codes are equivalent
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Alphabet partitions

For each column of a code matrix, the symbols of the alphabet
{1, 2, 3} yield an alphabet partiotion of the set of row indeces

Example

C =


0 0 0 0 0 1 1 1
0 0 0 1 0 0 1 1
0 0 0 1 0 2 0 1
0 0 1 0 2 0 1 2
0 1 1 2 2 2 0 2


• The column C4 has {{1, 4}, {2, 3}, {5}} as its alphabet

partition

• The columns C5 and C8 have {{1, 2, 3}, {4, 5},∅} as their
alphabet partitions
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Alphabet partitions and codes

Lemma
If code matrices M1 and M2 have the same multisets of alphabet
partitions, then corresponding codes are equivalent
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Partial order on alphabet partitions

Define a partial order 4 by the rule

(P1,Q1,R1) 4 (P2,Q2,R2) if and only if

P1 ⊆ P2, Q1 ⊇ Q2, and R1 ⊇ R2,

where (P1,Q1,R1), (P2,Q2,R2) are two alphabet partitions
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Alphabet partitions and correlation coefficients

Consider a code C ⊆ En
3 , its code matrix M, and

an alphabet partition P = (P,Q,R).
Let k(P) be the number of columns of M with the partition P.
The following equalities are true.

Direct formula

K (Q,R) =
∑
Q4P

k(Q)

Inversion of direct formula

k(P) =
∑

(P′,Q′,R′)4P

(−1)|P|−|P
′|K (Q ′,R ′)
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