A Multiple Access System for a Disjunctive Vector Channel

Dmitry Osipov, Alexey Frolov and Victor Zyablov Email: {d_osipov, alexey.frolov, zyablov}@iitp.ru

Inst. for Information Transmission Problems Russian Academy of Sciences

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory June 15–21, 2012

Outline

- 2 Signal-code construction
- O Probability of denial

Task statement

Our task is to propose a signal-code construction using A-channel and to study the properties of multiple access system built on the basis of this construction.

A-channel

Let us denote the number of active users by S, $S \ge 2$.

Input at time t

Vectors
$$\mathbf{x}_{i}^{(t)} \in \{0,1\}^{q}, |\mathbf{x}_{i}^{(t)}| = 1, \ i = 1, \dots, S.$$

Output at time t

$$\mathbf{y}^{(t)} = \bigvee_{i=1\dots S} \mathbf{x}_i^{(t)}$$

The channel is noiseless.

Transmission

Each user encodes the information transmitted by q-ary (n, k, d)code C (all users use the same code). Consider the process of sending the message by *i*-th user.

Let us denote the codeword to be transmitted by c_i , each symbol c_i is associated with a binary vector of length q and weight 1, the unit is in a position corresponding to the element of GF(q) to be transmitted. We denote the matrix constructed in this way by C_i .

Transmission is performed symbol by symbol. Before sending a binary vector a random permutation of its elements is performed. The permutations used are selected independently and with equal probability.

Transmission

Example

Let q = 3, $C = \{(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2)\}$, $c_i = (1, 1, 1, 1)$.

Let the mapping($GF(q) \rightarrow \{0,1\}^q$) be defined in such a way: $0 \rightarrow (100)^T$, $1 \rightarrow (010)^T$, $2 \rightarrow (001)^T$, then

 $\mathbf{C}_i = \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}$

The base station sequentially receives messages from all users. Let us consider the process of receiving a message from the i-th user. At receiving of each column the reverse permutation is performed. Thus, we obtain the matrix

$$\mathbf{Y}_i = \mathbf{C}_i \lor \left(\bigvee_{m=1...S, m \neq i} \mathbf{X}_m \right),$$

where C_i is a matrix corresponding to c_i and matrixes $X_m, m = 1 \dots S, m \neq i$ are the results of another users activity.

Reception

For all $c_t \in C$

- **(**) construct a matrix C_t corresponding to c_t .
- if the condition C_t \lapha Y_i = C_t follows add c_t to a list of possible codewords.
- **3** go to next c_t .

In case of only one word in the list output the word, else output a denial of decoding.

Probability of denial

Theorem

The estimate follows

$$egin{aligned} p_* &\leqslant & \sum_{W=d}^n \left[A\left(W
ight) \left(1-\left(1-rac{1}{q}
ight)^{S-1}
ight)^W
ight] < \ &< & q^k \left(1-\left(1-rac{1}{q}
ight)^{S-1}
ight)^d, \end{aligned}$$

where A(W) is a number of codewords of weight W in a code C.

Probability of denial

Corollary

Let q, k, S and p_r be fixed, than if the condition

$$d \geqslant rac{k - \log_q p_r}{eta},$$

follows, where
$$eta = -\log_q \left(1 - \left(1 - rac{1}{q}
ight)^{S-1}
ight)$$
, than $p_* < p_r$

Definitions

The rate for one user

$$R_i(q, S, k, c) = \frac{k}{n(q, S, k, c)} \log_2 q.$$

Group rate

$$R_{\Sigma}(q, S, k, c) = S \frac{k}{n(q, S, k, c)} \log_2 q.$$

Dependencies of group rate on number of active users

Definitions

Relative number of users

 $\gamma = S/q.$

Relative asymptotic group rate ($p_r = 2^{-cn}, c > 0$)

$$\rho(\gamma, k, c) = \lim_{q \to \infty} \frac{R_{\Sigma}(q, \gamma q, k, c)}{q}.$$

An asymptotic estimate of group rate

Theorem

If
$$\gamma < -\ln(1-2^{-c})$$
 than the following inequality follows
 $\rho(\gamma, k, c) \ge \underline{\rho}(\gamma, c) = \gamma\left(\log_2\left(\frac{1}{1-e^{-\gamma}}\right) - c\right).$

Let us introduce a notion

$$\rho^*(\boldsymbol{c}) = \max_{\gamma} \left[\underline{\rho}(\gamma, \boldsymbol{c}) \right].$$

The dependency of $\rho^*(c)$ on c

Note that $\rho^*(\varepsilon) \geqslant (1-\varepsilon) \ln 2 = (1-\varepsilon)0,693\ldots$

Conclusion

Main results:

- A novel signal-code construction has been proposed. The construction does not need block synchronization.
- A lower bound on a group rate in the multiple access system built on the basis of this construction is derived. The bound coincides with an upper bound in case of c = ε.

Thank you for the attention!

D. Osipov, A. Frolov, V. Zyablov A Multiple Access System for a Disjunctive Vector Channel