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Overview

We give how to construct new linear codes and how to
prove the nonexistence of some codes geometrically to
determine ng(4,d), the minimum value of n for which
an [n,4,d]g code exists.
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1. Optimal linear codes problem

Fg — {(CL]_,CLQ, °°°7an) | aj, ..., An S Fq}

For a = (CL]_, ...,an),b — (bl, ,bn) & IF’I’L,

the (Hamming) distance between a and b is
d(a,b) = {7 | a; 7 bi}|.

The weight of a is wt(a) = |{i | a; # 0} = d(a,0).

An [n,k,d]; code C means a k-dimensional subspace
of IFZ’ with minimum distance d,

d min{d(a,b) | a # b, a,b €C}

min{wt(a) | wt(a) # 0, a € C}.

The elements of C are called codewords.



A good [n, k,d]; code will have

small n for fast transmission of messages,

large k to enable transmission of a wide variety
of messages,

large d to correct many errors.

Optimal linear codes problem.

Optimize one of the parameters n, k, d
for given the other two.



Optimal linear codes problem.

Problem 1. Find ng(k,d), the minimum value of n
for which an [n,k,d], code exists.

Problem 2. Find d,(n,k), the largest value of d for
which an [n, k,d], code exists.

An [n,k,d]; code is called optimal if
n = ng(k,d) or d =dy(n,k).

As for the updated bounds on dq4(n, k) for small q, k,
n see the website maintained by Markus Grassl:

http://www.codetables.de/.



Optimal linear codes problem.

Problem 1. Find ng(k,d), the minimum value of n
for which an [n,k,d], code exists.

Problem 2. Find dq(n,k), the largest value of d for
which an [n, k,d], code exists.

An [n,k,d]; code is called optimal if
n = ng(k,d) or d =dy(n,k).
See also

http://www.geocities.jp/mars39geo/griesmer.htm
for ny(k,d) tables for some small ¢ and k.



T he Griesmer bound

k=171 4
nCI(kad) > QQ(k7d> = Z {Z}
=01 94

where [z| is a smallest integer > x.

Griesmer (1960) proved for binary codes.
Solomon and Stiffler (1965) proved for all gq.

A linear code attaining the Griesmer bound is called
a Griesmer code.
Griesmer codes are optimal.



Problem to determine ng(k,d) for all d

[k < 4]
ng(k,d) = gg(k,d) for all d for k =1, 2.
n8(3, d) = 98(37 d) + 1 for

d= 13-16, 29-32, 37-40, 43-48.
ng(3,d) = gg(3,d) for other d.

ng(4,d) is not determined for 488 values of d although
ng(4,d) = gg(4,d) for all d > 833, see

R. Kanazawa, T. Maruta, On optimal linear codes over Fg, Electron. J.

Combin. 18, #P34, 27pp, 2011.



We consider the following open cases:

ng(4,d) =g or g+ 1 for 575 < d < 608,

ng(4,d) =g+ 1,9+ 2 or g+ 3 for 317 < d < 320,
ng(4,d) =g+ 1 or g+ 2 for d = 379,380,639, 640,

where g = gg(4,d).



Theorem 1. There exist codes with parameters
368, 4,320]g, [436,4,380]g, [669,4,584]g, [678,4,592]g,
[687,4,600]g, [696,4,608]g, [733,4,640]s.

Theorem 2. There exists no [658,4,575]g code.

Corollary.

(1) ng(4,d) = g for 581 < d < 608.

(2) ng(4,d) = g+1 for d = 379,380, 575,576, 639, 640.
(3) ng(4,d) =g+ 1 or g+ 2 for 317 < d < 320,

where g = gg(4,d).

Remark.
ng(4,d) is still undetermined for 454 values of d.



2. A geometric approach

PG(r,q): projective space of dim. r over Fy
j-flat: j-dim. projective subspace of PG(r,q)

0, =|PG(j,q)| = (¢/Tt - 1)/(¢—1)
C: an [n,k,d]; code with By =0
l.e. with no coordinate which is identically zero

GG: a generator matrix of C
The columns of G can be considered as a multiset of
n points in X = PG(k — 1,q) denoted also by C.

F; = the set of j-flats of >



> 3 P: -point <« P has multiplicity 7 in C

vo= max{: | AP : ¢-point in X}

Cii={PeX | P:i-point}, 0<i<

For VS C ¥ we define the multiplicity of S, denoted

by me(S), as
Y0
me(8) = 3, #1SNCil
1=

Y0
Then we obtain the partition = ] C; s.t.
i=0

n

n—d

me(Z),
max{me(m) | m € Fr._o}.

Conversely such a partition of > as above gives an
[n, k,d]q code in the natural manner.



A line [ is called an i-line if mg(l) = 1.
An -plane, an -hp and so on are defined similarly.

a; = |{H c Fr_»o | mc(H) — Z}| = # of i-hps
List of a;'s: the spectrum of C

Lemma 3. Let 1 be an +-hp and let
t = max{|mc(A)| | A CMN,A € F._3}. Then

SfH—q-(n—d)—n
q

t

and an i-hp gives an [i,k — 1,7 — t], code.



For an [n,k,d]y code C with a generator matrix G,

C is extendable if [G, h] generates an [n+ 1,k,d + 1]4
code ' for some column vector h, AT € Fr.

C’ is an extension of C.

Theorem 4 (Hill-Lizak, 1999)

C: [n,k,d]qy codellgcd(d,q) = 1, > a; = 0
iZn,n—d ( mod q)
= (C is extendable.

The nonexistence of [658,4,575]|g codes (Thm 2) is
proved applying Thm 4.



3. Nonexistence of [658,4,575]g codes.
Note n — d = 83 for [658,4,575]5.

Lemma 5
The spectrum of a [83,3,72]g code satisfies a; = 0
for all ¢+ ¢ {3,5,7,9,11}.

An [n,k,d]; code is called m-divisible if all codewords
have weights divisible by an integer m > 1.

Theorem (Ward, 2001)
C: a Griesmer [n, k,d]g code.
If 8|d, then C is 2-divisible.



Lemma 6
There exists no [659,4,576]g code.

Proof. Cg: a [659,4,576]g code.

e a;, =0 for all : ¢ {67,69,71,73,83}.

® a73 = a7l = agg = 0.

o (ag7,ag3) = (28,557).

d: 67-plane.

e / gives a projective Griesmer [67,3,58]g code.

0 has a 8-line, say ¢. x = # of 67-planes through Z.
Then (67 —8)x + (83 -—8)(9 —x) + 8 = 659, i.e.,
y = 15/2, a contradiction.



Proof of Theorem 2.

C: a [658,4,575]g code.

ea, =0 foralli¢ {66,67,68,69,70,71,72,73,82,383}.
e a, =0 for 67 <3 < 72.

® 473 — 0.

e a; =0 for all + € {66,82,83}, which implies that

C is extendable by Thm 4 (Hill-Lizak).

T his contradicts Lemma 6.

Open cases
ng(4,d) = gg(4,d) or gg(4,d) + 1 for 569 < d < 574.




4. Constructing new codes

An [n,k,d]q code is called m-divisible if all codewords
have weights divisible by an integer m > 1.

Lemma 7. C: m-divisible [n, k,d], code, g = p",
p prime, m=9p", 1 <r<h(k—2), \g> 0, with spec.
Gy d—im — g TOr 0 < < w — 1.

= 3C*: t-divisible [n* k,d*]; code with t = ¢F¥=2/m,
n* = ZE-U:_oljaj = ntq — 20,_1, d* = ((n — d)q — n)t,
whose spectrum is

Qp* % — it = >‘Z for O S ) S YO
where \; = |C;| (# of i-points for C).



C* is called a projective dual of C, see

A.E. Brouwer, M. van Eupen, The correspondence between projective codes
and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261—266.

Let Fg = {0,1,a,a2,--- ab) with a3 =a 4+ 1.
We deno’ceaa2 ...a® by 2,3,.--,7 so that
Fg =4{0,1,2,3 7}

Lemma 8.

[21,4,16]g with generator matrix

-1 1 111 1 0 011110111111 1 17
G — 6 6 7 4 51 1 16 6 3 b104 4 3 5 2 6 3
°~106 07 00332174257 2122031

|26 36 47 3125230406056 7 2|
= Cp has spec. (ai1,a3,a5) = (228,240,117).

As a projective dual of Cy, we obtain a 2°-divisible
(696, 4,608]g code C, which is new.



Cor. There exists a [696,4,608]g code with spec.
(as6,agg) = (21,564).

Remark. The code in the previous lemmma is from the
A. Kohnert’s database:

http://www.algorithm.uni-bayreuth.de/en/
research/Coding_Theory/Linear_Codes BKW/

A 4-divisible [76, 4, 64]g code and a 2-divisible [28, 4, 22]g
code in the database also give new codes with param-
eters [368,4,320]g and [733,4,640]s.



Note: C is a [696 = gg(4,d),4,d = 608]g code.

To show d[gg(4,d),4,d]3 codes for 581 < d < 608,
it suffices to construct [gg(4,d), 4, d]g codes for
d = 584,592,600, 608 since

d[n, k,dlq = 3I[n—1,k,d— 1]
We construct codes with parameters
687 = gg(4,d),6,d = 600]g
678 = gg(4,d),6,d = 592]g
669 = gg(4,d),6,d = 584]g

applying the following lemma.



Lemma 9.
C: [n,k,d]q code, Z =PG(k—1,q), 0<t<k—-2
U0 ,C;: the partition of < obtained from C.

If Uilei O A: t-flat s.t. (C1\A)U (U’iZQCi) spans 2
= 3C": [n— 0 k,d— q']q code

Proof. Define a new partition X = U,;C! by
Cé = (C; \ A) U (Ci—l—l NA) for all ¢

which gives an [n’ = n — 04, k,d’]4 code (.
For VH € Fi._»>, HNA = 0;_1 or 0.
So, mp(H) <n'—d' <n—-—d—0;_4, giving d >d— qt.



Lemma 9.
C: [n,k,d]q code, Z =PG(k—1,q9), 0<t<k—-2
UZ&OC,-: the partition of > obtained from C.

If Uilez- O A: t-flat s.t. (C1\A)U (UiZQCi) spans 2
= 3C": [n— 0 k,d— q']q code

Example.
C: simplex [0;_1,k,¢" 1], code
A: a hp of X
= (' Griesmer [¢" 1 Kk, ¢*=1 — ¢*=2], code



Lemma 9.
C: [n,k,d]q code, Z =PG(k—1,q9), 0<t<k—-2
UZ&OC,-: the partition of > obtained from C.

If Uilez- O A: t-flat s.t. (C1\A)U (UiZQCi) spans 2
= 3C": [n— 0 k,d— q']q code

Note.
The converse of Lemma 9 holds if dA: t-flat s.t.

me(H) <n—d—6¢ for all hp H D A.



C: [696,4,608]g with spec. (agg,agg) = (21,564)
found as a projective dual of the [21,4,16]g code Cp.

Co U C1 UCC5: the partition of >~ = PG(4,8) obtained
from C. Then we have

(Ao, A1, Ap) = (228,240,117), where \; = |C;].

The sets (; for C are given from Gg in Lemma 8 as
follows for 0 <1 < 2:

C; = {P(po, - ,p3) € X | wt(pogo+- - -+p393) = 16+2i},

where g; is the (i + 1)-th row of G for 0 <3 < 3.



It can be checked with the aid of a computer that the
set C'1 U (> contains three skew lines

I1 = (1523,0152), I, = (2342, 7220), I3 = (3545, 5352),

where zgrixox3 stands for the point P(xzq, - ,x3) of
2.

Applying Lem 9 with N =17 to C gives a [687,4,600]g
code Cq with spec. (ass,a79,ag7) = (21,9,555).

Applying Lem 9 with Nl =[5 to C1 gives a [678,4,592]g
code C» with spec. (agsg,a7g,ag6) = (21,18,546).

Applying Lem 9 with NN = I3 to C» gives a [669, 4,584]g
code with spec. (ag3,a77,ag5) = (21,27,537).



Lemma 9 can be generalized as follows.

Lemma 10 (Geometric Puncturing).

C: [n,k,d]q code, Z =PG(k—1,q9), 0<t<k—-2
UZ&OCZ-: the partition of > obtained from C.

If Up>1C; D F: {f,m; k—1,q}-minihyper

s.t. (C1\F)U (U;>2C;) spans X

= 3C" [n— f,k,d+ m — f]; code
An f-set F in PG(r,q) is an {f,m;r,q}-minihyper if
m=min{|FNx| | 7meF _1}.

Ex. Alineisa {¢+1,1;r g}-minihyper.
A blocking b-set in some planeis a {b,1; r,q}-minihyper.



Next, we construct [436,4,380]g from [449,4,6392]5
by projective puncturing.

Let H = V(zgx1 + zox3) be a hyperbolic quadric in
> = PG(3,38).

Take P(0010) € H and m = V(z3).

(7 is the tangent plane at P.)

Putting Co = (HuUn) \ {P} and C; = >\ Cp,

one can get a Griesmer [449,4,392]g code, say C.
Note that there is no line in (¢, for v1 = 8.

Instead, we take a blocking 13-set B in some plane
through P as F in Lemma 10.



Let § = V(zg + 1) and take a blocking 13-set in §:

B = {P =0010,0011,0012,0014,0017,1101, 1121,
1161,1171,1112,1132,1142, 1152}

Then B C (1. Applying Lemma 10 with B to F gives
a [436,4,380]g code with spectrum

(a’Oa aq4, 046, A48, a52, A54, a56) — (17 17 107 547 247 1187 377)
This completes the proof of Theorem 1. B

Note: A projective triad of side 5 is a blocking 13-set
in PG(2,8), see
J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon

Press, Oxford (1998).



A projective triad of side 5 in PG(2,8)

P



Let § = V(zg + 1) and take a blocking 13-set in §:

B = {P =0010,0011,0012,0014,0017,1101, 1121,
1161,1171,1112,1132,1142, 1152}

Then B C (1. Applying Lemma 10 with B to F gives
a [436,4,380]g code with spectrum

(a’Oa aq4, 046, A48, a52, A54, a56) — (17 17 107 547 247 1187 377)
This completes the proof of Theorem 1. B

Note: A projective triad of side 5 is a blocking 13-set
in PG(2,8), see
J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon

Press, Oxford (1998).



Thank you for your attention!



