Optimal 4-dimensional linear codes over $\mathbb{F} 8$

Tatsuya Maruta

Department of Mathematics and Information Sciences

Osaka Prefecture University maruta@mi.s.osakafu-u.ac.jp

Overview

We give how to construct new linear codes and how to prove the nonexistence of some codes geometrically to determine $n_{8}(4, d)$, the minimum value of n for which an $[n, 4, d]_{8}$ code exists.

Contents

1. Optimal linear codes problem
2. A geometric approach
3. Nonexistence of $[658,4,575]_{8}$ codes
4. Constructing new codes

1. Optimal linear codes problem

$\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}\right\}$.
For $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$,
the (Hamming) distance between a and b is

$$
d(a, b)=\left|\left\{i \mid a_{i} \neq b_{i}\right\}\right| .
$$

The weight of a is $w t(a)=\left|\left\{i \mid a_{i} \neq 0\right\}\right|=d(a, \mathbf{0})$.
An $[n, k, d]_{q}$ code \mathcal{C} means a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum distance d,

$$
\begin{aligned}
d & =\min \{d(a, b) \mid a \neq b, a, b \in \mathcal{C}\} \\
& =\min \{w t(a) \mid w t(a) \neq 0, a \in \mathcal{C}\} .
\end{aligned}
$$

The elements of \mathcal{C} are called codewords.

A good $[n, k, d]_{q}$ code will have small n for fast transmission of messages, large k to enable transmission of a wide variety of messages,
large d to correct many errors.

Optimal linear codes problem.
Optimize one of the parameters n, k, d for given the other two.

Optimal linear codes problem.

Problem 1. Find $n_{q}(k, d)$, the minimum value of n for which an $[n, k, d]_{q}$ code exists.

Problem 2. Find $d_{q}(n, k)$, the largest value of d for which an $[n, k, d]_{q}$ code exists.

An $[n, k, d]_{q}$ code is called optimal if

$$
n=n_{q}(k, d) \text { or } d=d_{q}(n, k)
$$

As for the updated bounds on $d_{q}(n, k)$ for small q, k, n see the website maintained by Markus Grassl:
http://www.codetables.de/.

Optimal linear codes problem.

Problem 1. Find $n_{q}(k, d)$, the minimum value of n for which an $[n, k, d]_{q}$ code exists.

Problem 2. Find $d_{q}(n, k)$, the largest value of d for which an $[n, k, d]_{q}$ code exists.

An $[n, k, d]_{q}$ code is called optimal if

$$
n=n_{q}(k, d) \text { or } d=d_{q}(n, k)
$$

See also
http://www.geocities.jp/mars39geo/griesmer.htm for $n_{q}(k, d)$ tables for some small q and k.

The Griesmer bound

$$
n_{q}(k, d) \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ is a smallest integer $\geq x$.

Griesmer (1960) proved for binary codes.
Solomon and Stiffler (1965) proved for all q.
A linear code attaining the Griesmer bound is called
a Griesmer code.
Griesmer codes are optimal.

Problem to determine $n_{8}(k, d)$ for all d

$$
\begin{aligned}
& {[k \leq 4] } \\
& n_{8}(k, d)= g_{8}(k, d) \text { for all } d \text { for } k=1,2 \\
& n_{8}(3, d)= g_{8}(3, d)+1 \text { for } \\
& d=13-16,29-32,37-40,43-48 \\
& n_{8}(3, d)= g_{8}(3, d) \text { for other } d .
\end{aligned}
$$

$n_{8}(4, d)$ is not determined for 488 values of d although $n_{8}(4, d)=g_{8}(4, d)$ for all $d \geq 833$, see
R. Kanazawa, T. Maruta, On optimal linear codes over \mathbb{F}_{8}, Electron. J. Combin. 18, \#P34, 27 pp, 2011.

We consider the following open cases:

$$
n_{8}(4, d)=g \text { or } g+1 \text { for } 575 \leq d \leq 608
$$

$$
n_{8}(4, d)=g+1, g+2 \text { or } g+3 \text { for } 317 \leq d \leq 320
$$ $n_{8}(4, d)=g+1$ or $g+2$ for $d=379,380,639,640$, where $g=g_{8}(4, d)$.

Theorem 1. There exist codes with parameters $[368,4,320]_{8},[436,4,380]_{8},[669,4,584]_{8},[678,4,592]_{8}$, $[687,4,600]_{8},[696,4,608]_{8},[733,4,640]_{8}$.

Theorem 2. There exists no [658, 4, 575] 8 code.

Corollary.

(1) $n_{8}(4, d)=g$ for $581 \leq d \leq 608$.
(2) $n_{8}(4, d)=g+1$ for $d=379,380,575,576,639,640$.
(3) $n_{8}(4, d)=g+1$ or $g+2$ for $317 \leq d \leq 320$,
where $g=g_{8}(4, d)$.
Remark.
$n_{8}(4, d)$ is still undetermined for 454 values of d.

2. A geometric approach

$\mathrm{PG}(r, q)$: projective space of dim. r over \mathbb{F}_{q}
j-flat: j-dim. projective subspace of $\mathrm{PG}(r, q)$
$\theta_{j}:=|\mathrm{PG}(j, q)|=\left(q^{j+1}-1\right) /(q-1)$
\mathcal{C} : an $[n, k, d]_{q}$ code with $B_{1}=0$
i.e. with no coordinate which is identically zero
G : a generator matrix of \mathcal{C}
The columns of G can be considered as a multiset of n points in $\Sigma=\mathrm{PG}(k-1, q)$ denoted also by \mathcal{C}.
$\mathcal{F}_{j}:=$ the set of j-flats of Σ
$\Sigma \ni P$: i-point $\Leftrightarrow P$ has multiplicity i in \mathcal{C} $\gamma_{0}=\max \{i \mid \exists P: i$-point in $\Sigma\}$
$C_{i}:=\{P \in \Sigma \mid P: i$-point $\}, 0 \leq i \leq \gamma_{0}$
For ${ }^{\forall} S \subset \Sigma$ we define the multiplicity of S, denoted by $m_{\mathcal{C}}(S)$, as

$$
m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right| .
$$

Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ s.t.

$$
\begin{aligned}
n & =m_{\mathcal{C}}(\Sigma) \\
n-d & =\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}
\end{aligned}
$$

Conversely such a partition of Σ as above gives an $[n, k, d]_{q}$ code in the natural manner.

A line l is called an i-line if $m_{\mathcal{C}}(l)=i$.
An i-plane, an i-hp and so on are defined similarly.
$a_{i}=\left|\left\{H \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(H)=i\right\}\right|=\#$ of i-hps
List of a_{i} 's: the spectrum of \mathcal{C}
Lemma 3. Let Π be an i-hp and let
$t=\max \left\{\left|m_{\mathcal{C}}(\Delta)\right| \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{k-3}\right\}$. Then

$$
t \leq \frac{i+q \cdot(n-d)-n}{q}
$$

and an i-hp gives an $[i, k-1, i-t]_{q}$ code.

For an $[n, k, d]_{q}$ code \mathcal{C} with a generator matrix G, \mathcal{C} is extendable if $[G, h]$ generates an $[n+1, k, d+1]_{q}$ code \mathcal{C}^{\prime} for some column vector $h, h^{\top} \in \mathbb{F}_{q}^{k}$.
\mathcal{C}^{\prime} is an extension of \mathcal{C}.

Theorem 4 (Hill-Lizak, 1999)

$\mathcal{C}:[n, k, d]_{q} \operatorname{code}, \operatorname{gcd}(d, q)=1, \sum_{i \neq n, n-d(\bmod q)} a_{i}=0$
$\Rightarrow \mathcal{C}$ is extendable.

The nonexistence of $[658,4,575]_{8}$ codes (Thm 2) is proved applying Thm 4.
3. Nonexistence of $[658,4,575]_{8}$ codes.

Note $n-d=83$ for $[658,4,575]_{8}$.

Lemma 5

The spectrum of a $[83,3,72]_{8}$ code satisfies $a_{i}=0$ for all $i \notin\{3,5,7,9,11\}$.

An $[n, k, d]_{q}$ code is called m-divisible if all codewords have weights divisible by an integer $m>1$.

Theorem (Ward, 2001)

\mathcal{C} : a Griesmer $[n, k, d]_{8}$ code.
If $8 \mid d$, then \mathcal{C} is 2-divisible.

Lemma 6

There exists no $[659,4,576]_{8}$ code.

Proof. \mathcal{C}_{0} : a $[659,4,576]_{8}$ code.

- $a_{i}=0$ for all $i \notin\{67,69,71,73,83\}$.
- $a_{73}=a_{71}=a_{69}=0$.
- $\left(a_{67}, a_{83}\right)=(28,557)$.
δ : 67-plane.
- δ gives a projective Griesmer $[67,3,58]_{8}$ code.
δ has a 8 -line, say $\ell . \quad x=\#$ of 67 -planes through ℓ.
Then $(67-8) x+(83-8)(9-x)+8=659$, i.e., $y=15 / 2$, a contradiction.

Proof of Theorem 2.

\mathcal{C} : a $[658,4,575]_{8}$ code.

- $a_{i}=0$ for all $i \notin\{66,67,68,69,70,71,72,73,82,83\}$.
- $a_{i}=0$ for $67 \leq i \leq 72$.
- $a_{73}=0$.
- $a_{i}=0$ for all $i \notin\{66,82,83\}$, which implies that
\mathcal{C} is extendable by Thm 4 (Hill-Lizak).
This contradicts Lemma 6.

Open cases
$n_{8}(4, d)=g_{8}(4, d)$ or $g_{8}(4, d)+1$ for $569 \leq d \leq 574$.

4. Constructing new codes

An $[n, k, d]_{q}$ code is called m-divisible if all codewords have weights divisible by an integer $m>1$.

Lemma 7. \mathcal{C} : m-divisible $[n, k, d]_{q}$ code, $q=p^{h}$, p prime, $m=p^{r}, 1 \leq r<h(k-2), \lambda_{0}>0$, with spec.

$$
a_{n-d-i m}=\alpha_{i} \text { for } 0 \leq i \leq w-1
$$

$\Rightarrow \exists \mathcal{C}^{*}: t$-divisible $\left[n^{*}, k, d^{*}\right]_{q}$ code with $t=q^{k-2} / m$, $n^{*}=\sum_{j=0}^{w-1} j \alpha_{j}=n t q-\frac{d}{m} \theta_{k-1}, d^{*}=((n-d) q-n) t$, whose spectrum is

$$
a_{n^{*}-d^{*}-i t}=\lambda_{i} \text { for } 0 \leq i \leq \gamma_{0}
$$

where $\lambda_{i}=\left|C_{i}\right|$ (\# of i-points for \mathcal{C}).

\mathcal{C}^{*} is called a projective dual of \mathcal{C}, see

A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261-266.
Let $\mathbb{F}_{8}=\left\{0,1, \alpha, \alpha^{2}, \cdots, \alpha^{6}\right\}$, with $\alpha^{3}=\alpha+1$. We denote $\alpha, \alpha^{2}, \cdots, \alpha^{6}$ by $2,3, \cdots, 7$ so that $\mathbb{F}_{8}=\{0,1,2,3, \cdots, 7\}$.

Lemma 8.

\mathcal{C}_{0} : $[21,4,16]_{8}$ with generator matrix
$G_{0}=\left[\begin{array}{lllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 6 & 6 & 7 & 4 & 5 & 1 & 1 & 1 & 6 & 6 & 3 & 5 & 1 & 0 & 4 & 4 & 3 & 5 & 2 & 6 & 3 \\ 0 & 6 & 0 & 7 & 0 & 0 & 3 & 3 & 2 & 1 & 7 & 4 & 2 & 5 & 7 & 2 & 1 & 2 & 0 & 3 & 1 \\ 2 & 6 & 3 & 6 & 4 & 7 & 3 & 1 & 2 & 5 & 2 & 3 & 0 & 4 & 0 & 6 & 0 & 5 & 6 & 7 & 2\end{array}\right]$.
$\Rightarrow \mathcal{C}_{0}$ has spec. $\left(a_{1}, a_{3}, a_{5}\right)=(228,240,117)$.
As a projective dual of \mathcal{C}_{0}, we obtain a 2^{5}-divisible [696, 4, 608] ${ }_{8}$ code \mathcal{C}, which is new.

Cor. There exists a $[696,4,608]_{8}$ code with spec. $\left(a_{56}, a_{88}\right)=(21,564)$.

Remark. The code in the previous lemma is from the A. Kohnert's database:
http://www.algorithm.uni-bayreuth.de/en/ research/Coding_Theory/Linear_Codes_BKW/

A 4-divisible $[76,4,64]_{8}$ code and a 2-divisible $[28,4,22]_{8}$ code in the database also give new codes with parameters $[368,4,320]_{8}$ and $[733,4,640]_{8}$.

Note: \mathcal{C} is a $\left[696=g_{8}(4, d), 4, d=608\right]_{8}$ code.
To show $\exists\left[g_{8}(4, d), 4, d\right]_{3}$ codes for $581 \leq d \leq 608$, it suffices to construct $\left[g_{8}(4, d), 4, d\right]_{8}$ codes for $d=584,592,600,608$ since

$$
\exists[n, k, d]_{q} \Rightarrow \exists[n-1, k, d-1]_{q} .
$$

We construct codes with parameters

$$
\begin{aligned}
& {\left[687=g_{8}(4, d), 6, d=600\right]_{8}} \\
& {\left[678=g_{8}(4, d), 6, d=592\right]_{8}} \\
& {\left[669=g_{8}(4, d), 6, d=584\right]_{8}}
\end{aligned}
$$

applying the following lemma.

Lemma 9.

$\mathcal{C}:[n, k, d]_{q}$ code, $\Sigma=\mathrm{PG}(k-1, q), 0 \leq t \leq k-2$
$\cup_{i=0}^{\gamma_{0}} C_{i}$: the partition of Σ obtained from \mathcal{C}.
If $\cup_{i \geq 1} C_{i} \supset \Delta$: t-flat s.t. $\left(C_{1} \backslash \Delta\right) \cup\left(\cup_{i \geq 2} C_{i}\right)$ spans Σ $\Rightarrow \quad \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d-q^{t}\right]_{q}$ code

Proof. Define a new partition $\Sigma=\cup_{i} C_{i}^{\prime}$ by

$$
C_{i}^{\prime}=\left(C_{i} \backslash \Delta\right) \cup\left(C_{i+1} \cap \Delta\right) \text { for all } i
$$

which gives an $\left[n^{\prime}=n-\theta_{t}, k, d^{\prime}\right]_{q}$ code \mathcal{C}^{\prime}.
For $\forall H \in \mathcal{F}_{k-2}, H \cap \Delta=\theta_{t-1}$ or θ_{t}.
So, $m_{\mathcal{C}^{\prime}}(H) \leq n^{\prime}-d^{\prime} \leq n-d-\theta_{t-1}$, giving $d^{\prime} \geq d-q^{t}$.

Lemma 9.
$\mathcal{C}:[n, k, d]_{q}$ code, $\Sigma=\mathrm{PG}(k-1, q), 0 \leq t \leq k-2$
$\cup_{i=0}^{\gamma_{0}} C_{i}$: the partition of Σ obtained from \mathcal{C}.
If $\cup_{i \geq 1} C_{i} \supset \Delta$: t-flat s.t. $\left(C_{1} \backslash \Delta\right) \cup\left(\cup_{i \geq 2} C_{i}\right)$ spans Σ $\Rightarrow \quad \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d-q^{t}\right]_{q}$ code

Example.

\mathcal{C} : simplex $\left[\theta_{k-1}, k, q^{k-1}\right]_{q}$ code
Δ : a hp of Σ
$\Rightarrow \mathcal{C}^{\prime}$: Griesmer $\left[q^{k-1}, k, q^{k-1}-q^{k-2}\right]_{q}$ code

Lemma 9.
$\mathcal{C}:[n, k, d]_{q}$ code, $\Sigma=\mathrm{PG}(k-1, q), 0 \leq t \leq k-2$
$\cup_{i}^{\gamma_{0}}{ }_{0} C_{i}$: the partition of Σ obtained from \mathcal{C}.
If $\cup_{i \geq 1} C_{i} \supset \Delta$: t-flat s.t. $\left(C_{1} \backslash \Delta\right) \cup\left(\cup_{i \geq 2} C_{i}\right)$ spans Σ $\Rightarrow \quad \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d-q^{t}\right]_{q}$ code

Note.
The converse of Lemma 9 holds if $\exists \Delta$: t-flat s.t. $m_{\mathcal{C}}(H) \leq n-d-\theta_{t}$ for all hp $H \supset \Delta$.
$\mathcal{C}:[696,4,608]_{8}$ with spec. $\left(a_{56}, a_{88}\right)=(21,564)$ found as a projective dual of the $[21,4,16]_{8}$ code \mathcal{C}_{0}. $C_{0} \cup C_{1} \cup C_{2}$: the partition of $\Sigma=\mathrm{PG}(4,8)$ obtained from \mathcal{C}. Then we have
$\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)=(228,240,117)$, where $\lambda_{i}=\left|C_{i}\right|$.
The sets C_{i} for \mathcal{C} are given from G_{0} in Lemma 8 as follows for $0 \leq i \leq 2$:
$C_{i}=\left\{\mathbf{P}\left(p_{0}, \cdots, p_{3}\right) \in \Sigma \mid w t\left(p_{0} g_{0}+\cdots+p_{3} g_{3}\right)=16+2 i\right\}$,
where g_{i} is the $(i+1)$-th row of G_{0} for $0 \leq i \leq 3$.

It can be checked with the aid of a computer that the set $C_{1} \cup C_{2}$ contains three skew lines $l_{1}=\langle 1523,0152\rangle, l_{2}=\langle 2342,7220\rangle, l_{3}=\langle 3545,5352\rangle$, where $x_{0} x_{1} x_{2} x_{3}$ stands for the point $\mathbf{P}\left(x_{0}, \cdots, x_{3}\right)$ of Σ.
Applying Lem 9 with $\Pi=l_{1}$ to \mathcal{C} gives a $[687,4,600]_{8}$ code \mathcal{C}_{1} with spec. $\left(a_{55}, a_{79}, a_{87}\right)=(21,9,555)$.
Applying Lem 9 with $\Pi=l_{2}$ to \mathcal{C}_{1} gives a $[678,4,592]_{8}$ code \mathcal{C}_{2} with spec. $\left(a_{54}, a_{78}, a_{86}\right)=(21,18,546)$.
Applying Lem 9 with $\Pi=l_{3}$ to \mathcal{C}_{2} gives a $[669,4,584]_{8}$ code with spec. $\left(a_{53}, a_{77}, a_{85}\right)=(21,27,537)$.

Lemma 9 can be generalized as follows.

Lemma 10 (Geometric Puncturing).
$\mathcal{C}:[n, k, d]_{q}$ code, $\Sigma=\mathrm{PG}(k-1, q), 0 \leq t \leq k-2$
$\cup_{i=0}^{\gamma_{0}} C_{i}$: the partition of Σ obtained from \mathcal{C}.
If $\cup_{i \geq 1} C_{i} \supset \mathcal{F}:\{f, m ; k-1, q\}$-minihyper
s.t. $\left(C_{1} \backslash \mathcal{F}\right) \cup\left(\cup_{i \geq 2} C_{i}\right)$ spans Σ
$\Rightarrow \quad \exists \mathcal{C}^{\prime}:[n-f, k, d+m-f]_{q}$ code
An f-set F in $\mathrm{PG}(r, q)$ is an $\{f, m ; r, q\}$-minihyper if

$$
m=\min \left\{|F \cap \pi| \mid \pi \in \mathcal{F}_{r-1}\right\}
$$

Ex. A line is a $\{q+1,1 ; r, q\}$-minihyper.
A blocking b-set in some plane is a $\{b, 1 ; r, q\}$-minihyper.

Next, we construct $[436,4,380]_{8}$ from $[449,4,392]_{8}$ by projective puncturing.
Let $\mathcal{H}=\mathrm{V}\left(x_{0} x_{1}+x_{2} x_{3}\right)$ be a hyperbolic quadric in $\Sigma=\mathrm{PG}(3,8)$.
Take $P(0010) \in \mathcal{H}$ and $\pi=\mathrm{V}\left(x_{3}\right)$.
(π is the tangent plane at P.)
Putting $C_{0}=(\mathcal{H} \cup \pi) \backslash\{P\}$ and $C_{1}=\Sigma \backslash C_{0}$,
one can get a Griesmer [449, 4, 392]8 code, say \mathcal{C}.
Note that there is no line in C_{1}, for $\gamma_{1}=8$.
Instead, we take a blocking 13-set \mathcal{B} in some plane through P as \mathcal{F} in Lemma 10.

Let $\delta=\mathbf{V}\left(x_{0}+x_{1}\right)$ and take a blocking 13-set in δ :

$$
\begin{aligned}
\mathcal{B}= & \{P=0010,0011,0012,0014,0017,1101,1121, \\
& 1161,1171,1112,1132,1142,1152\} .
\end{aligned}
$$

Then $\mathcal{B} \subset C_{1}$. Applying Lemma 10 with \mathcal{B} to \mathcal{F} gives a $[436,4,380]_{8}$ code with spectrum
$\left(a_{0}, a_{44}, a_{46}, a_{48}, a_{52}, a_{54}, a_{56}\right)=(1,1,10,54,24,118,377)$.
This completes the proof of Theorem 1.
Note: A projective triad of side 5 is a blocking 13-set in $\operatorname{PG}(2,8)$, see
J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford (1998).

A projective triad of side 5 in $\operatorname{PG}(2,8)$

Let $\delta=\mathbf{V}\left(x_{0}+x_{1}\right)$ and take a blocking 13-set in δ :

$$
\begin{aligned}
\mathcal{B}= & \{P=0010,0011,0012,0014,0017,1101,1121, \\
& 1161,1171,1112,1132,1142,1152\} .
\end{aligned}
$$

Then $\mathcal{B} \subset C_{1}$. Applying Lemma 10 with \mathcal{B} to \mathcal{F} gives a $[436,4,380]_{8}$ code with spectrum
$\left(a_{0}, a_{44}, a_{46}, a_{48}, a_{52}, a_{54}, a_{56}\right)=(1,1,10,54,24,118,377)$.
This completes the proof of Theorem 1.
Note: A projective triad of side 5 is a blocking 13-set in $\operatorname{PG}(2,8)$, see
J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford (1998).

Thank you for your attention!

