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Overview

We give how to construct new linear codes and how to

prove the nonexistence of some codes geometrically to

determine n8(4, d), the minimum value of n for which

an [n,4, d]8 code exists.
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1. Optimal linear codes problem

Fn
q = {(a1, a2, ..., an) | a1, ..., an ∈ Fq}.

For a = (a1, ..., an), b = (b1, ..., bn) ∈ Fn
q ,

the (Hamming) distance between a and b is

d(a, b) = |{i | ai 6= bi}|.
The weight of a is wt(a) = |{i | ai 6= 0}| = d(a, 0).

An [n, k, d]q code C means a k-dimensional subspace

of Fn
q with minimum distance d,

d = min{d(a, b) | a 6= b, a, b ∈ C}
= min{wt(a) | wt(a) 6= 0, a ∈ C}.

The elements of C are called codewords.



A good [n, k, d]q code will have

small n for fast transmission of messages,

large k to enable transmission of a wide variety

of messages,

large d to correct many errors.

Optimal linear codes problem.

Optimize one of the parameters n, k, d

for given the other two.



Optimal linear codes problem.

Problem 1. Find nq(k, d), the minimum value of n

for which an [n, k, d]q code exists.

Problem 2. Find dq(n, k), the largest value of d for

which an [n, k, d]q code exists.

An [n, k, d]q code is called optimal if

n = nq(k, d) or d = dq(n, k).

As for the updated bounds on dq(n, k) for small q, k,

n see the website maintained by Markus Grassl:

http://www.codetables.de/.



Optimal linear codes problem.

Problem 1. Find nq(k, d), the minimum value of n

for which an [n, k, d]q code exists.

Problem 2. Find dq(n, k), the largest value of d for

which an [n, k, d]q code exists.

An [n, k, d]q code is called optimal if

n = nq(k, d) or d = dq(n, k).

See also

http://www.geocities.jp/mars39geo/griesmer.htm

for nq(k, d) tables for some small q and k.



The Griesmer bound

nq(k, d) ≥ gq(k, d) :=
k−1∑

i=0




d

qi




where dxe is a smallest integer ≥ x.

Griesmer (1960) proved for binary codes.

Solomon and Stiffler (1965) proved for all q.

A linear code attaining the Griesmer bound is called

a Griesmer code.

Griesmer codes are optimal.



Problem to determine n8(k, d) for all d

[k ≤ 4]

n8(k, d) = g8(k, d) for all d for k = 1,2.

n8(3, d) = g8(3, d) + 1 for

d = 13-16, 29-32, 37-40, 43-48.

n8(3, d) = g8(3, d) for other d.

n8(4, d) is not determined for 488 values of d although

n8(4, d) = g8(4, d) for all d ≥ 833, see

R. Kanazawa, T. Maruta, On optimal linear codes over F8, Electron. J.

Combin. 18, #P34, 27pp, 2011.



We consider the following open cases:

n8(4, d) = g or g + 1 for 575 ≤ d ≤ 608,

n8(4, d) = g + 1, g + 2 or g + 3 for 317 ≤ d ≤ 320,

n8(4, d) = g + 1 or g + 2 for d = 379,380,639,640,

where g = g8(4, d).



Theorem 1. There exist codes with parameters

[368,4,320]8, [436,4,380]8, [669,4,584]8, [678,4,592]8,

[687,4,600]8, [696,4,608]8, [733,4,640]8.

Theorem 2. There exists no [658,4,575]8 code.

Corollary.

(1) n8(4, d) = g for 581 ≤ d ≤ 608.

(2) n8(4, d) = g+1 for d = 379,380,575,576,639,640.

(3) n8(4, d) = g + 1 or g + 2 for 317 ≤ d ≤ 320,

where g = g8(4, d).

Remark.

n8(4, d) is still undetermined for 454 values of d.



2. A geometric approach

PG(r, q): projective space of dim. r over Fq

j-flat: j-dim. projective subspace of PG(r, q)

θj := |PG(j, q)| = (qj+1 − 1)/(q − 1)

C: an [n, k, d]q code with B1 = 0

i.e. with no coordinate which is identically zero

G: a generator matrix of C
The columns of G can be considered as a multiset of

n points in Σ = PG(k − 1, q) denoted also by C.
Fj := the set of j-flats of Σ



Σ 3 P : i-point ⇔ P has multiplicity i in C
γ0= max{i | ∃P : i-point in Σ}
Ci:= {P ∈ Σ | P : i-point}, 0 ≤ i ≤ γ0

For ∀S ⊂ Σ we define the multiplicity of S, denoted

by mC(S), as

mC(S) =
γ0∑

i=1
i·|S∩Ci|.

Then we obtain the partition Σ =
γ0⋃

i=0
Ci s.t.

n = mC(Σ),

n− d = max{mC(π) | π ∈ Fk−2}.

Conversely such a partition of Σ as above gives an

[n, k, d]q code in the natural manner.



A line l is called an i-line if mC(l) = i.

An i-plane, an i-hp and so on are defined similarly.

ai = |{H ∈ Fk−2 | mC(H) = i}| = # of i-hps

List of ai’s: the spectrum of C

Lemma 3. Let Π be an i-hp and let

t = max{|mC(∆)| | ∆ ⊂ Π,∆ ∈ Fk−3}. Then

t ≤ i + q · (n− d)− n

q

and an i-hp gives an [i, k − 1, i− t]q code.



For an [n, k, d]q code C with a generator matrix G,

C is extendable if [G, h] generates an [n + 1, k, d + 1]q
code C′ for some column vector h, hT ∈ Fk

q .

C′ is an extension of C.

Theorem 4 (Hill-Lizak, 1999)

C : [n, k, d]q code，gcd(d, q) = 1,
∑

i6≡n,n−d ( mod q)
ai = 0

⇒ C is extendable.

The nonexistence of [658,4,575]8 codes (Thm 2) is

proved applying Thm 4.



3. Nonexistence of [658,4,575]8 codes.

Note n− d = 83 for [658,4,575]8.

Lemma 5

The spectrum of a [83,3,72]8 code satisfies ai = 0

for all i /∈ {3,5,7,9,11}.

An [n, k, d]q code is called m-divisible if all codewords

have weights divisible by an integer m > 1.

Theorem (Ward, 2001)

C: a Griesmer [n, k, d]8 code.

If 8|d, then C is 2-divisible.



Lemma 6

There exists no [659,4,576]8 code.

Proof. C0: a [659,4,576]8 code.

• ai = 0 for all i /∈ {67,69,71,73,83}.
• a73 = a71 = a69 = 0.

• (a67, a83) = (28,557).

δ: 67-plane.

• δ gives a projective Griesmer [67,3,58]8 code.

δ has a 8-line, say `. x = # of 67-planes through `.

Then (67 − 8)x + (83 − 8)(9 − x) + 8 = 659, i.e.,

y = 15/2, a contradiction.



Proof of Theorem 2.

C: a [658,4,575]8 code.

• ai = 0 for all i /∈ {66,67,68,69,70,71,72,73,82,83}.
• ai = 0 for 67 ≤ i ≤ 72.

• a73 = 0.

• ai = 0 for all i 6∈ {66,82,83}, which implies that

C is extendable by Thm 4 (Hill-Lizak).

This contradicts Lemma 6.

Open cases

n8(4, d) = g8(4, d) or g8(4, d) + 1 for 569 ≤ d ≤ 574.



4. Constructing new codes

An [n, k, d]q code is called m-divisible if all codewords

have weights divisible by an integer m > 1.

Lemma 7. C: m-divisible [n, k, d]q code, q = ph,

p prime, m = pr, 1 ≤ r < h(k − 2), λ0 > 0, with spec.

an−d−im = αi for 0 ≤ i ≤ w − 1.

⇒ ∃C∗: t-divisible [n∗, k, d∗]q code with t = qk−2/m,

n∗ =
∑w−1

j=0 jαj = ntq − d
mθk−1, d∗ = ((n − d)q − n)t,

whose spectrum is

an∗−d∗−it = λi for 0 ≤ i ≤ γ0

where λi = |Ci| (# of i-points for C).



C∗ is called a projective dual of C, see
A.E. Brouwer, M. van Eupen, The correspondence between projective codes
and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261–266.

Let F8 = {0,1, α, α2, · · · , α6}, with α3 = α + 1.
We denote α, α2, · · · , α6 by 2,3, · · · ,7 so that
F8 = {0,1,2,3, · · · ,7}.
Lemma 8.
C0: [21,4,16]8 with generator matrix

G0 =




1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1
6 6 7 4 5 1 1 1 6 6 3 5 1 0 4 4 3 5 2 6 3
0 6 0 7 0 0 3 3 2 1 7 4 2 5 7 2 1 2 0 3 1
2 6 3 6 4 7 3 1 2 5 2 3 0 4 0 6 0 5 6 7 2


 .

⇒ C0 has spec. (a1, a3, a5) = (228,240,117).

As a projective dual of C0, we obtain a 25-divisible

[696,4,608]8 code C, which is new.



Cor. There exists a [696,4,608]8 code with spec.

(a56, a88) = (21,564).

Remark. The code in the previous lemma is from the

A. Kohnert’s database:

http://www.algorithm.uni-bayreuth.de/en/

research/Coding Theory/Linear Codes BKW/

A 4-divisible [76,4,64]8 code and a 2-divisible [28,4,22]8
code in the database also give new codes with param-

eters [368,4,320]8 and [733,4,640]8.



Note: C is a [696 = g8(4, d),4, d = 608]8 code.

To show ∃[g8(4, d),4, d]3 codes for 581 ≤ d ≤ 608,

it suffices to construct [g8(4, d),4, d]8 codes for

d = 584,592,600, 608 since

∃[n, k, d]q ⇒ ∃[n− 1, k, d− 1]q.

We construct codes with parameters

[687 = g8(4, d),6, d = 600]8
[678 = g8(4, d),6, d = 592]8
[669 = g8(4, d),6, d = 584]8

applying the following lemma.



Lemma 9.

C: [n, k, d]q code, Σ = PG(k − 1, q), 0 ≤ t ≤ k − 2

∪γ0
i=0Ci: the partition of Σ obtained from C.

If ∪i≥1Ci ⊃ ∆: t-flat s.t. (C1 \∆) ∪ (∪i≥2Ci) spans Σ

⇒ ∃C′: [n− θt, k, d− qt]q code

Proof. Define a new partition Σ = ∪iC
′
i by

C′i = (Ci \∆) ∪ (Ci+1 ∩∆) for all i

which gives an [n′ = n− θt, k, d′]q code C′.
For ∀H ∈ Fk−2, H ∩∆ = θt−1 or θt.

So, mC′(H) ≤ n′ − d′ ≤ n− d− θt−1, giving d′ ≥ d− qt.



Lemma 9.

C: [n, k, d]q code, Σ = PG(k − 1, q), 0 ≤ t ≤ k − 2

∪γ0
i=0Ci: the partition of Σ obtained from C.

If ∪i≥1Ci ⊃ ∆: t-flat s.t. (C1 \∆) ∪ (∪i≥2Ci) spans Σ

⇒ ∃C′: [n− θt, k, d− qt]q code

Example.

C: simplex [θk−1, k, qk−1]q code

∆: a hp of Σ

⇒ C′: Griesmer [qk−1, k, qk−1 − qk−2]q code

Define a new partition Σ = ∪iC
′
i by C′i = (Ci \∆) ∪

(Ci+1 ∩∆) for all i



Lemma 9.

C: [n, k, d]q code, Σ = PG(k − 1, q), 0 ≤ t ≤ k − 2

∪γ0
i=0Ci: the partition of Σ obtained from C.

If ∪i≥1Ci ⊃ ∆: t-flat s.t. (C1 \∆) ∪ (∪i≥2Ci) spans Σ

⇒ ∃C′: [n− θt, k, d− qt]q code

Note.

The converse of Lemma 9 holds if ∃∆: t-flat s.t.

mC(H) ≤ n− d− θt for all hp H ⊃ ∆.

⇒ C′: Griesmer [qk−1, k, qk−1 − qk−2]q code

Define a new partition Σ = ∪iC
′
i by C′i = (Ci \∆) ∪

(Ci+1 ∩∆) for all i



C: [696,4,608]8 with spec. (a56, a88) = (21,564)

found as a projective dual of the [21,4,16]8 code C0.
C0 ∪ C1 ∪ C2: the partition of Σ = PG(4,8) obtained

from C. Then we have

(λ0, λ1, λ2) = (228,240,117), where λi = |Ci|.
The sets Ci for C are given from G0 in Lemma 8 as

follows for 0 ≤ i ≤ 2:

Ci = {P(p0, · · · , p3) ∈ Σ | wt(p0g0+· · ·+p3g3) = 16+2i},

where gi is the (i + 1)-th row of G0 for 0 ≤ i ≤ 3.



It can be checked with the aid of a computer that the

set C1 ∪ C2 contains three skew lines

l1 = 〈1523,0152〉, l2 = 〈2342,7220〉, l3 = 〈3545,5352〉,
where x0x1x2x3 stands for the point P(x0, · · · , x3) of

Σ.

Applying Lem 9 with Π = l1 to C gives a [687,4,600]8
code C1 with spec. (a55, a79, a87) = (21,9,555).

Applying Lem 9 with Π = l2 to C1 gives a [678,4,592]8
code C2 with spec. (a54, a78, a86) = (21,18,546).

Applying Lem 9 with Π = l3 to C2 gives a [669,4,584]8
code with spec. (a53, a77, a85) = (21,27,537).



Lemma 9 can be generalized as follows.

Lemma 10 (Geometric Puncturing).

C: [n, k, d]q code, Σ = PG(k − 1, q), 0 ≤ t ≤ k − 2

∪γ0
i=0Ci: the partition of Σ obtained from C.

If ∪i≥1Ci ⊃ F: {f, m; k − 1, q}-minihyper

s.t. (C1 \ F) ∪ (∪i≥2Ci) spans Σ

⇒ ∃C′: [n− f, k, d + m− f ]q code

An f-set F in PG(r, q) is an {f, m; r, q}-minihyper if

m = min{|F ∩ π| | π ∈ Fr−1}.

Ex. A line is a {q + 1,1; r, q}-minihyper.

A blocking b-set in some plane is a {b,1; r, q}-minihyper.



Next, we construct [436,4,380]8 from [449,4,392]8
by projective puncturing.

Let H = V(x0x1 + x2x3) be a hyperbolic quadric in

Σ = PG(3,8).

Take P (0010) ∈ H and π = V(x3).

(π is the tangent plane at P .)

Putting C0 = (H∪ π) \ {P} and C1 = Σ \ C0,

one can get a Griesmer [449,4,392]8 code, say C.
Note that there is no line in C1, for γ1 = 8.

Instead, we take a blocking 13-set B in some plane

through P as F in Lemma 10.



Let δ = V(x0 + x1) and take a blocking 13-set in δ:

B = {P = 0010,0011,0012,0014,0017,1101,1121,

1161,1171,1112,1132,1142,1152}.

Then B ⊂ C1. Applying Lemma 10 with B to F gives

a [436,4,380]8 code with spectrum

(a0, a44, a46, a48, a52, a54, a56) = (1,1,10,54,24,118,377).

This completes the proof of Theorem 1.

Note: A projective triad of side 5 is a blocking 13-set

in PG(2,8), see

J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon

Press, Oxford (1998).



A projective triad of side 5 in PG(2,8)

P



Let δ = V(x0 + x1) and take a blocking 13-set in δ:

B = {P = 0010,0011,0012,0014,0017,1101,1121,

1161,1171,1112,1132,1142,1152}.

Then B ⊂ C1. Applying Lemma 10 with B to F gives

a [436,4,380]8 code with spectrum

(a0, a44, a46, a48, a52, a54, a56) = (1,1,10,54,24,118,377).

This completes the proof of Theorem 1.

Note: A projective triad of side 5 is a blocking 13-set

in PG(2,8), see

J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon

Press, Oxford (1998).



Thank you for your attention!


