Optimal 4-dimensional linear codes over \mathbb{F}_8

Tatsuya Maruta

Department of Mathematics and Information Sciences Osaka Prefecture University maruta@mi.s.osakafu-u.ac.jp

Overview

We give how to construct new linear codes and how to prove the nonexistence of some codes geometrically to determine $n_8(4,d)$, the minimum value of n for which an $[n,4,d]_8$ code exists.

Contents

- 1. Optimal linear codes problem
- 2. A geometric approach
- 3. Nonexistence of $[658, 4, 575]_8$ codes
- 4. Constructing new codes

1. Optimal linear codes problem

$$\begin{split} \mathbb{F}_q^n &= \{(a_1, a_2, ..., a_n) \mid a_1, ..., a_n \in \mathbb{F}_q\}.\\ \text{For } a &= (a_1, ..., a_n), b = (b_1, ..., b_n) \in \mathbb{F}_q^n,\\ \text{the (Hamming) distance between } a \text{ and } b \text{ is}\\ d(a, b) &= |\{i \mid a_i \neq b_i\}|.\\ \text{The weight of } a \text{ is } wt(a) &= |\{i \mid a_i \neq 0\}| = d(a, 0).\\ \text{An } [n, k, d]_q \text{ code } \mathcal{C} \text{ means a } k \text{-dimensional subspace}\\ \text{of } \mathbb{F}_q^n \text{ with minimum distance } d, \end{split}$$

$$d = \min\{d(a,b) \mid a \neq b, a, b \in \mathcal{C}\}$$
$$= \min\{wt(a) \mid wt(a) \neq 0, a \in \mathcal{C}\}.$$

The elements of \mathcal{C} are called codewords.

A good $[n, k, d]_q$ code will have

small n for fast transmission of messages,

large k to enable transmission of a wide variety of messages,

large d to correct many errors.

Optimal linear codes problem.

Optimize one of the parameters n, k, d for given the other two.

Optimal linear codes problem.

Problem 1. Find $n_q(k,d)$, the minimum value of n for which an $[n, k, d]_q$ code exists.

Problem 2. Find $d_q(n,k)$, the largest value of d for which an $[n,k,d]_q$ code exists.

An $[n, k, d]_q$ code is called optimal if

$$n = n_q(k, d)$$
 or $d = d_q(n, k)$.

As for the updated bounds on $d_q(n,k)$ for small q, k, n see the website maintained by Markus GrassI:

http://www.codetables.de/.

Optimal linear codes problem.

Problem 1. Find $n_q(k,d)$, the minimum value of n for which an $[n,k,d]_q$ code exists.

Problem 2. Find $d_q(n,k)$, the largest value of d for which an $[n,k,d]_q$ code exists.

An $[n, k, d]_q$ code is called optimal if

$$n = n_q(k, d)$$
 or $d = d_q(n, k)$.

See also

http://www.geocities.jp/mars39geo/griesmer.htm for $n_q(k, d)$ tables for some small q and k.

The Griesmer bound

$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \left[\frac{d}{q^i} \right]$$

where $\lceil x \rceil$ is a smallest integer $\ge x$.

Griesmer (1960) proved for binary codes. Solomon and Stiffler (1965) proved for all q.

A linear code attaining the Griesmer bound is called a Griesmer code.

Griesmer codes are optimal.

Problem to determine $n_8(k,d)$ for all d

$$\begin{split} [k \leq 4] \\ n_8(k,d) &= g_8(k,d) \text{ for all } d \text{ for } k = 1,2. \\ n_8(3,d) &= g_8(3,d) + 1 \text{ for} \\ d &= 13\text{-}16, \ 29\text{-}32, \ 37\text{-}40, \ 43\text{-}48. \\ n_8(3,d) &= g_8(3,d) \text{ for other } d. \\ n_8(4,d) &= g_8(4,d) \text{ for other } d. \end{split}$$

R. Kanazawa, T. Maruta, On optimal linear codes over \mathbb{F}_8 , *Electron. J. Combin.* **18**, #P34, 27pp, 2011.

although

We consider the following open cases:

$$n_8(4,d) = g \text{ or } g + 1 \text{ for } 575 \le d \le 608,$$

 $n_8(4,d) = g + 1, g + 2 \text{ or } g + 3 \text{ for } 317 \le d \le 320,$
 $n_8(4,d) = g + 1 \text{ or } g + 2 \text{ for } d = 379, 380, 639, 640,$
where $g = g_8(4,d).$

Theorem 1. There exist codes with parameters $[368, 4, 320]_8$, $[436, 4, 380]_8$, $[669, 4, 584]_8$, $[678, 4, 592]_8$, $[687, 4, 600]_8$, $[696, 4, 608]_8$, $[733, 4, 640]_8$.

Theorem 2. There exists no $[658, 4, 575]_8$ code.

Corollary.

(1)
$$n_8(4,d) = g$$
 for $581 \le d \le 608$.
(2) $n_8(4,d) = g+1$ for $d = 379, 380, 575, 576, 639, 640$.
(3) $n_8(4,d) = g+1$ or $g+2$ for $317 \le d \le 320$,
where $g = g_8(4,d)$.

Remark.

 $n_8(4,d)$ is still undetermined for 454 values of d.

2. A geometric approach

PG(r,q): projective space of dim. r over \mathbb{F}_q *j*-flat: *j*-dim. projective subspace of PG(r,q)

$$\theta_j := |\mathsf{PG}(j,q)| = (q^{j+1}-1)/(q-1)$$

$$\mathcal{C}$$
: an $[n, k, d]_q$ code with $B_1 = 0$

i.e. with no coordinate which is identically zero

G: a generator matrix of CThe columns of G can be considered as a multiset of n points in $\Sigma = PG(k - 1, q)$ denoted also by C.

 $\mathcal{F}_j :=$ the set of *j*-flats of Σ

$$\begin{split} \Sigma \ni P: i\text{-point} &\Leftrightarrow P \text{ has multiplicity } i \text{ in } \mathcal{C} \\ \gamma_0 &= \max\{i \mid \exists P: i\text{-point in } \Sigma\} \\ C_i: &= \{P \in \Sigma \mid P: i\text{-point}\}, \ 0 \leq i \leq \gamma_0 \\ \text{For } \forall S \subset \Sigma \text{ we define the multiplicity of } S, \text{ denoted} \\ \text{by } m_{\mathcal{C}}(S), \text{ as} \end{split}$$

$$m_{\mathcal{C}}(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|.$$

Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ s.t.

$$n = m_{\mathcal{C}}(\Sigma),$$

$$n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}.$$

Conversely such a partition of Σ as above gives an $[n, k, d]_q$ code in the natural manner.

A line *l* is called an *i*-line if $m_{\mathcal{C}}(l) = i$. An *i*-plane, an *i*-hp and so on are defined similarly.

$$a_i = |\{H \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(H) = i\}| = \# \text{ of } i\text{-hps}$$

List of a_i 's: the spectrum of C

Lemma 3. Let Π be an *i*-hp and let $t = \max\{|m_{\mathcal{C}}(\Delta)| \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{k-3}\}$. Then

$$t \le \frac{i+q \cdot (n-d) - n}{q}$$

and an *i*-hp gives an $[i, k - 1, i - t]_q$ code.

For an $[n, k, d]_q$ code C with a generator matrix G, C is extendable if [G, h] generates an $[n + 1, k, d + 1]_q$ code C' for some column vector h, $h^{\mathsf{T}} \in \mathbb{F}_q^k$. C' is an extension of C.

Theorem 4 (Hill-Lizak, 1999)

$$\mathcal{C} : [n, k, d]_q \text{ code , } gcd(d, q) = 1, \sum_{\substack{i \not\equiv n, n-d \pmod{q}}} a_i = 0$$

$$\Rightarrow \mathcal{C} \text{ is extendable.}$$

The nonexistence of $[658, 4, 575]_8$ codes (Thm 2) is proved applying Thm 4.

3. Nonexistence of $[658, 4, 575]_8$ codes.

Note n - d = 83 for $[658, 4, 575]_8$.

Lemma 5

The spectrum of a $[83, 3, 72]_8$ code satisfies $a_i = 0$ for all $i \notin \{3, 5, 7, 9, 11\}$.

An $[n, k, d]_q$ code is called *m*-divisible if all codewords have weights divisible by an integer m > 1.

Theorem (Ward, 2001)

 \mathcal{C} : a Griesmer $[n, k, d]_8$ code. If 8|d, then \mathcal{C} is 2-divisible.

Lemma 6

There exists no $[659, 4, 576]_8$ code.

Proof. C_0 : a [659, 4, 576]₈ code.

• $a_i = 0$ for all $i \notin \{67, 69, 71, 73, 83\}$.

•
$$a_{73} = a_{71} = a_{69} = 0.$$

•
$$(a_{67}, a_{83}) = (28, 557).$$

 δ : 67-plane.

• δ gives a projective Griesmer [67, 3, 58]₈ code.

 δ has a 8-line, say ℓ . x = # of 67-planes through ℓ . Then (67 - 8)x + (83 - 8)(9 - x) + 8 = 659, i.e., y = 15/2, a contradiction.

Proof of Theorem 2.

- C: a [658, 4, 575]₈ code.
- $a_i = 0$ for all $i \notin \{66, 67, 68, 69, 70, 71, 72, 73, 82, 83\}$.
- $a_i = 0$ for $67 \le i \le 72$.
- $a_{73} = 0$.
- $a_i = 0$ for all $i \notin \{66, 82, 83\}$, which implies that
- C is extendable by Thm 4 (Hill-Lizak).

This contradicts Lemma 6.

Open cases

 $n_8(4,d) = g_8(4,d)$ or $g_8(4,d) + 1$ for $569 \le d \le 574$.

4. Constructing new codes

An $[n, k, d]_q$ code is called *m*-divisible if all codewords have weights divisible by an integer m > 1.

Lemma 7. C: *m*-divisible $[n, k, d]_q$ code, $q = p^h$, p prime, $m = p^r$, $1 \le r < h(k-2)$, $\lambda_0 > 0$, with spec.

$$a_{n-d-im} = \alpha_i$$
 for $0 \le i \le w - 1$.

 $\Rightarrow \exists \mathcal{C}^*: t \text{-divisible } [n^*, k, d^*]_q \text{ code with } t = q^{k-2}/m, \\ n^* = \sum_{j=0}^{w-1} j\alpha_j = ntq - \frac{d}{m}\theta_{k-1}, d^* = ((n-d)q - n)t, \\ \text{whose spectrum is}$

$$a_{n^*-d^*-it} = \lambda_i$$
 for $0 \le i \le \gamma_0$

where $\lambda_i = |C_i|$ (# of *i*-points for C).

\mathcal{C}^* is called a projective dual of \mathcal{C} , see

A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, *Des. Codes Cryptogr.* 11 (1997) 261–266.

Let
$$\mathbb{F}_8 = \{0, 1, \alpha, \alpha^2, \cdots, \alpha^6\}$$
, with $\alpha^3 = \alpha + 1$.
We denote $\alpha, \alpha^2, \cdots, \alpha^6$ by $2, 3, \cdots, 7$ so that $\mathbb{F}_8 = \{0, 1, 2, 3, \cdots, 7\}$.

Lemma 8. C_0 : [21, 4, 16]₈ with generator matrix

As a projective dual of C_0 , we obtain a 2⁵-divisible [696, 4, 608]₈ code C, which is new.

Cor. There exists a $[696, 4, 608]_8$ code with spec. $(a_{56}, a_{88}) = (21, 564).$

Remark. The code in the previous lemma is from the A. Kohnert's database:

http://www.algorithm.uni-bayreuth.de/en/ research/Coding_Theory/Linear_Codes_BKW/

A 4-divisible $[76, 4, 64]_8$ code and a 2-divisible $[28, 4, 22]_8$ code in the database also give new codes with parameters $[368, 4, 320]_8$ and $[733, 4, 640]_8$.

Note: C is a $[696 = g_8(4, d), 4, d = 608]_8$ code.

To show $\exists [g_8(4,d), 4, d]_3$ codes for $581 \le d \le 608$, it suffices to construct $[g_8(4,d), 4, d]_8$ codes for d = 584, 592, 600, 608 since

$$\exists [n,k,d]_q \Rightarrow \exists [n-1,k,d-1]_q.$$

We construct codes with parameters

$$[687 = g_8(4, d), 6, d = 600]_8$$

$$[678 = g_8(4, d), 6, d = 592]_8$$

$$[669 = g_8(4, d), 6, d = 584]_8$$

applying the following lemma.

Lemma 9.

$$\begin{array}{l} \mathcal{C}: \ [n,k,d]_q \ \text{code, } \Sigma = \mathsf{PG}(k-1,q), \ 0 \leq t \leq k-2 \\ \cup_{i=0}^{\gamma_0} C_i: \ \text{the partition of } \Sigma \ \text{obtained from } \mathcal{C}. \\ \text{If } \cup_{i\geq 1} C_i \supset \Delta: \ t\text{-flat s.t.} \ (C_1 \setminus \Delta) \cup (\cup_{i\geq 2} C_i) \ \text{spans } \Sigma \\ \Rightarrow \quad \exists \mathcal{C}': \ [n-\theta_t,k,d-q^t]_q \ \text{code} \end{array}$$

Proof. Define a new partition $\Sigma = \cup_i C'_i$ by

$$C'_i = (C_i \setminus \Delta) \cup (C_{i+1} \cap \Delta)$$
 for all i

which gives an $[n' = n - \theta_t, k, d']_q$ code C'. For $\forall H \in \mathcal{F}_{k-2}$, $H \cap \Delta = \theta_{t-1}$ or θ_t . So, $m_{\mathcal{C}'}(H) \leq n' - d' \leq n - d - \theta_{t-1}$, giving $d' \geq d - q^t$.

Lemma 9.

$$\begin{array}{l} \mathcal{C}: \ [n,k,d]_q \ \text{code, } \Sigma = \mathsf{PG}(k-1,q), \ 0 \leq t \leq k-2 \\ \cup_{i=0}^{\gamma_0} C_i: \ \text{the partition of } \Sigma \ \text{obtained from } \mathcal{C}. \\ \text{If } \cup_{i\geq 1} C_i \supset \Delta: \ t\text{-flat s.t.} \ (C_1 \setminus \Delta) \cup (\cup_{i\geq 2} C_i) \ \text{spans } \Sigma \\ \Rightarrow \quad \exists \mathcal{C}': \ [n-\theta_t,k,d-q^t]_q \ \text{code} \end{array}$$

Example.

- C: simplex $[\theta_{k-1}, k, q^{k-1}]_q$ code Δ : a hp of Σ
 - \Rightarrow \mathcal{C}' : Griesmer $[q^{k-1}, k, q^{k-1} q^{k-2}]_q$ code

Lemma 9.

 $\begin{array}{l} \mathcal{C}: \ [n,k,d]_q \ \text{code}, \ \Sigma = \mathsf{PG}(k-1,q), \ 0 \leq t \leq k-2 \\ \cup_{i=0}^{\gamma_0} C_i: \ \text{the partition of } \Sigma \ \text{obtained from } \mathcal{C}. \\ \text{If } \cup_{i\geq 1} C_i \supset \Delta: \ t\text{-flat s.t.} \ (C_1 \setminus \Delta) \cup (\cup_{i\geq 2} C_i) \ \text{spans } \Sigma \\ \Rightarrow \quad \exists \mathcal{C}': \ [n-\theta_t,k,d-q^t]_q \ \text{code} \end{array}$

Note.

The converse of Lemma 9 holds if $\exists \Delta$: *t*-flat s.t. $m_{\mathcal{C}}(H) \leq n - d - \theta_t$ for all hp $H \supset \Delta$. C: $[696, 4, 608]_8$ with spec. $(a_{56}, a_{88}) = (21, 564)$ found as a projective dual of the $[21, 4, 16]_8$ code C_0 . $C_0 \cup C_1 \cup C_2$: the partition of $\Sigma = PG(4, 8)$ obtained from C. Then we have

 $(\lambda_0, \lambda_1, \lambda_2) = (228, 240, 117)$, where $\lambda_i = |C_i|$.

The sets C_i for C are given from G_0 in Lemma 8 as follows for $0 \le i \le 2$:

 $C_i = \{ \mathbf{P}(p_0, \cdots, p_3) \in \Sigma \mid wt(p_0g_0 + \cdots + p_3g_3) = 16 + 2i \},\$

where g_i is the (i + 1)-th row of G_0 for $0 \le i \le 3$.

It can be checked with the aid of a computer that the set $C_1 \cup C_2$ contains three skew lines

 $l_1 = \langle 1523, 0152 \rangle$, $l_2 = \langle 2342, 7220 \rangle$, $l_3 = \langle 3545, 5352 \rangle$,

where $x_0x_1x_2x_3$ stands for the point $\mathbf{P}(x_0, \cdots, x_3)$ of Σ .

Applying Lem 9 with $\Pi = l_1$ to C gives a $[687, 4, 600]_8$ code C_1 with spec. $(a_{55}, a_{79}, a_{87}) = (21, 9, 555)$.

Applying Lem 9 with $\Pi = l_2$ to C_1 gives a [678, 4, 592]₈ code C_2 with spec. $(a_{54}, a_{78}, a_{86}) = (21, 18, 546)$.

Applying Lem 9 with $\Pi = l_3$ to C_2 gives a [669, 4, 584]₈ code with spec. $(a_{53}, a_{77}, a_{85}) = (21, 27, 537)$.

Lemma 9 can be generalized as follows.

Lemma 10 (Geometric Puncturing). $C: [n, k, d]_q \text{ code, } \Sigma = PG(k - 1, q), \ 0 \le t \le k - 2$ $\cup_{i=0}^{\gamma_0} C_i$: the partition of Σ obtained from C. If $\cup_{i\ge 1} C_i \supset \mathcal{F}$: $\{f, m; k - 1, q\}$ -minihyper s.t. $(C_1 \setminus \mathcal{F}) \cup (\cup_{i\ge 2} C_i)$ spans Σ $\Rightarrow \exists C': [n - f, k, d + m - f]_q$ code

An f-set F in PG(r,q) is an $\{f,m;r,q\}$ -minihyper if

$$m = \min\{|F \cap \pi| \mid \pi \in \mathcal{F}_{r-1}\}.$$

Ex. A line is a $\{q + 1, 1; r, q\}$ -minihyper. A blocking *b*-set in some plane is a $\{b, 1; r, q\}$ -minihyper. Next, we construct $[436, 4, 380]_8$ from $[449, 4, 392]_8$ by projective puncturing.

Let $\mathcal{H} = V(x_0x_1 + x_2x_3)$ be a hyperbolic quadric in $\Sigma = PG(3, 8)$.

Take $P(0010) \in \mathcal{H}$ and $\pi = V(x_3)$.

 $(\pi \text{ is the tangent plane at } P.)$

Putting $C_0 = (\mathcal{H} \cup \pi) \setminus \{P\}$ and $C_1 = \Sigma \setminus C_0$,

one can get a Griesmer $[449, 4, 392]_8$ code, say C.

Note that there is no line in C_1 , for $\gamma_1 = 8$.

Instead, we take a blocking 13-set \mathcal{B} in some plane through P as \mathcal{F} in Lemma 10.

Let $\delta = V(x_0 + x_1)$ and take a blocking 13-set in δ :

$\mathcal{B} = \{ P = 0010, 0011, 0012, 0014, 0017, 1101, 1121, \\1161, 1171, 1112, 1132, 1142, 1152 \}.$

Then $\mathcal{B} \subset C_1$. Applying Lemma 10 with \mathcal{B} to \mathcal{F} gives a [436, 4, 380]₈ code with spectrum

 $(a_0, a_{44}, a_{46}, a_{48}, a_{52}, a_{54}, a_{56}) = (1, 1, 10, 54, 24, 118, 377).$

This completes the proof of Theorem 1.

Note: A projective triad of side 5 is a blocking 13-set in PG(2,8), see

J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford (1998).

A projective triad of side 5 in PG(2,8)

Let $\delta = V(x_0 + x_1)$ and take a blocking 13-set in δ :

$\mathcal{B} = \{ P = 0010, 0011, 0012, 0014, 0017, 1101, 1121, \\1161, 1171, 1112, 1132, 1142, 1152 \}.$

Then $\mathcal{B} \subset C_1$. Applying Lemma 10 with \mathcal{B} to \mathcal{F} gives a [436, 4, 380]₈ code with spectrum

 $(a_0, a_{44}, a_{46}, a_{48}, a_{52}, a_{54}, a_{56}) = (1, 1, 10, 54, 24, 118, 377).$

This completes the proof of Theorem 1.

Note: A projective triad of side 5 is a blocking 13-set in PG(2,8), see

J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford (1998).

Thank you for your attention!