Classification of the (12,19,1,2) and (12,20,1,2) superimposed codes

Mladen Manev Department of Mathematics, Technical University of Gabrovo, Gabrovo, Bulgaria

Definition 1

A binary $N \times T$ matrix C is called an (N, T, w, r) superimposed code (SIC)of length N and size T if for any pair of subsets $W, R \subset \{1, 2, ..., T\}$ such that |W| = w, |R| = r and $W \cap R = \emptyset$, there exists a row $i \in \{1, 2, ..., N\}$ such that $c_{ij} = 1$ for all $j \in W$ and $c_{ij} = 0$ for all $j \in R$.

Example: (9, 12, 1, 2) SIC

0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	1	1	1	0	0	0	1
0	0	0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	0	0	1	0	0
0	1	0	0	1	1	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1
1	0	0	1	0	0	1	0	1	0	0	0
1	0	1	0	0	1	0	0	0	0	1	0
1	1	0	0	0	0	0	1	0	1	0	0

Introduction

Introduction

The main problems in the theory of the superimposed codes:

- find the minimum length N(T, w, r) for which an (N, T, w, r) SIC exists;
- find the maximum size T(N, w, r) for which an (N, T, w, r) SIC exists.

Values of N(T, 1, 2) for $T \leq 21$

Т	3	4	5	6	7	8	9 - 12	13	14 - 17	18 - 20	21
N(T, 1, 2)	3	4	5	6	7	8	9	10	11	12	≥ 12

Definition 2 Two (N, T, w, r) superimposed codes are equivalent if one of them can be transformed into the other by a permutation of the rows and a permutation of the columns.

Number of nonequivalent classes of optimal (N(T, 1, 2), T, 1, 2) superimposed codes for $T \le 17$

T	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
#	1	1	1	1	2	4	25	4	1	1	5	2705	278	21	2

Number of nonequivalent classes of optimal (N(T, 1, 2), T, 1, 2) superimposed codes for $T \le 20$

T	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
#	1	1	1	1	2	4	25	4	1	1	5	2705	278	21	2

T	18	19	20
#	?	594	5

Values of N(T, 1, 2) for $T \leq 21$

Т	3	4	5	6	7	8	9 - 12	13	14 - 17	18 - 20	21
N(T, 1, 2)	3	4	5	6	7	8	9	10	11	12	13

The results have been obtained using:

- an exhaustive computer search for the generation of (N, T, 1, 1) and (N, T, 1, 2) superimposed codes;
- the program *Q*-extension (Bouyukliev) for code equivalence testing.

Theorem 3 (Sperner Theorem)
$$T(N, 1, 1) = \begin{pmatrix} N \\ \lfloor N/2 \rfloor \end{pmatrix}$$
.

Definition 4 The residual code Res(C, x = v) of a superimposed code C with respect to value v in column x is a code obtained by taking all the rows in which C has value v in column x and deleting the x^{th} entry in the selected rows.

Preliminaries

Preliminaries

```
X
      0
         0
            0
               0
                  1
                     1
      0
         0
            0
               1
                  0
                      1
      0
         0
           0
               1
                  1
                      0
                 0
            1
      0
         0
               0
                     1
                    0 = Res(C, x = 0)
                 1
         0
            1
               0
      0
      0
         0
            1
               1
                  0
                      0
                 0
        1
            0
      0
               0
                     1
       1
C =
     0
           0
              0
                  1
                      0
         1
            0
               1
      0
                  0
                      0
         1
            1
               0
                  0
      0
                     0
      1
         0
            0
               0
                  0
                     1
      1
         0
            0
               0
                  1
                      0
      1
               1
         0
            0
                  0
                      0
      1
         0
            1
               0
                  0
                     0
      1
         1
            0
               0
                  0
                      0
```

Preliminaries

```
X
    0
       0
          0
            0
              1 1
     0
       0
         0
           1 0
                 1
       0
         0 1 1 0
     0
       0 1 0 0 1
     0
         1 0 1 0 = Res(C, x = 0)
       0
    0
    0
       0
         1 \quad 1 \quad 0
                 0
      1 0
           0 0
    0
                 1
    0 1 0 0 1 0
C =
      1 0
           1 0
    0
                 0
     0
       1
         1
            0
              0
                 0
     1
         0
            0 0
       0
                 1
     1
       0
         0
            0
              1 0
         0
           1 0 0 = Res(C, x = 1)
     1
       0
     1
         1 0 0 0
       0
              0
     1
          0
       1
            0
                 0
```

 S_x – the characteristic set of column x.

 L_p – the characteristic set of row p.

Lemma 5 Let C be an (N, T, 1, 2) superimposed code and x be a column of C. Then Res(C, x = 0) is an $(N - |S_x|, T - 1, 1, 1)$ superimposed code.

Lemma 6 Let C be an (N, T, w, r) superimposed code and x be a column of C. The matrix $C' = C \setminus \{x\}$ is an (N, T - 1, w, r) superimposed code.

Lemma 7 Suppose C is an (N, T, 1, 2) superimposed code and x is a column such that $|S_x| \le 2$. Then there exists a row p for which $c_{px} = 1$ and $|L_p| = 1$.

Lemma 8 Suppose C is an (N, T, 1, 2) superimposed code and p is a row such that $|L_p| = 1$. Then there exists an (N - 1, T - 1, 1, 2) superimposed code.

Lemma 9 $N(T-1, 1, 2) \le N(T, 1, 2) \le N(T-1, 1, 2) + 1.$

Lemma 10 Suppose C is a (12, 19, 1, 2) superimposed code and x and y are two different columns of C. Then $|S_x \cap \overline{S_y}| \ge 2$.

Lemma 11 Suppose C is a (12, 19, 1, 2) superimposed code and x is a column of C. Then $3 \le |S_x| \le 6$.

Lemma 12 Let C be a (12, 19, 1, 2) superimposed code. Then there is no column x of C for which $|S_x| = 6$.

Lemma 12 Let C be a (12, 19, 1, 2) superimposed code. Then there is no column x of C for which $|S_x| = 6$.

Proof

- C₀ is (6, 18, 1, 1) SIC;
- the rows and the columns of the matrix C_0 are sorted lexicographically;
- the rows of the matrix X are sorted lexicographically;
- all columns of *C* have weight between 3 and 6;
- $|S_y \cap \overline{S_z}| \ge 2$ for every two columns y and z of C.

Lemma 12 Let C be a (12, 19, 1, 2) superimposed code. Then there is no column x of C for which $|S_x| = 6$.

Proof

- C₀ is (6, 18, 1, 1) SIC;
- the rows and the columns of the matrix C_0 are sorted lexicographically;
- the rows of the matrix X are sorted lexicographically;
- all columns of *C* have weight between 3 and 6;
- $|S_y \cap \overline{S_z}| \ge 2$ for every two columns y and z of C.

There are exactly 3 inequivalent possibilities for C_0 . The extension is impossible.

Lemma 13 Let C be a (12, 19, 1, 2) superimposed code. Then there is a row p of C for which $|L_p| \le 7$.

Theorem 14 There are exactly 594 inequivalent (12, 19, 1, 2) superimposed codes.

Theorem 14 There are exactly 594 inequivalent (12, 19, 1, 2) superimposed codes.

Proof

((000000000000000000000000000000000000	$C_{1,13} C_{1,14} C_{1,15} C_{1,16} C_{1,17} C_{1,18} C_{1,19}$
	A	
l		
)	\mathbf{N}	/

- A is an (11, 12, 1, 2) superimposed code;
- the rows and the columns of A are sorted lexicographically;
- the last 7 columns of C are sorted lexicographically;
- all columns of *C* have weight between 3 and 5;
- $|S_y \cap \overline{S_z}| \ge 2$ for every two columns y and z of C.

Theorem 14 There are exactly 594 inequivalent (12, 19, 1, 2) superimposed codes.

Proof

/	00000	0000	000	<i>C</i> _{1,13}	<i>C</i> _{1,14}	<i>C</i> _{1,15}	$C_{1,16}$	$C_{1,17}$	C _{1,18}	<i>C</i> _{1,19}	
		A									
l											
	N Contraction of the second se										/

- A is an (11, 12, 1, 2) superimposed code;
- the rows and the columns of A are sorted lexicographically;
- the last 7 columns of C are sorted lexicographically;
- all columns of *C* have weight between 3 and 5;
- $|S_y \cap \overline{S_z}| \ge 2$ for every two columns y and z of C.

There are exactly 239232 inequivalent possibilities for A. There are exactly 594 inequivalent (12, 19, 1, 2) superimposed codes.

(12,20,1,2) SIC

(12,20,1,2) SIC (12,19,1,2) SIC

Theorem 15 There are exactly 5 inequivalent (12, 20, 1, 2) superimposed codes.

The representatives of all inequivalent (12, 20, 1, 2) superimposed codes

The representatives of all inequivalent (12, 20, 1, 2) superimposed codes

? (12,21,1,2) SIC

There is no (12, 21, 1, 2) SIC.

There is no (12, 21, 1, 2) SIC.

Theorem 16 T(12, 1, 2) = 20.

There is no (12, 21, 1, 2) SIC.

Theorem 16 T(12, 1, 2) = 20.

Theorem 17 N(21, 1, 2) = 13.