On a class of binary cyclic codes with an increasing gap between the BCH bound and the van Lint–Wilson bound

Valeriy Lomakov <vl@guap.ru>

Saint Petersburg State University of Aerospace Instrumentation

Algebraic and Combinatorial Coding Theory ACCT2012 June 15-21, 2012, Pomorie, Bulgaria

Overview

We define and study a family of binary cyclic codes of

- ▶ length $n = 2^{2(\ell+1)} 1$
- ▶ and dimension $k = 2^{\ell+2}(2^{\ell} 1)$

with

- ▶ the Bose–Ray-Chaudhuri–Hocquenghem bound $\delta_{BCH} = 4$,
- ▶ and the van Lint–Wilson bound $\delta_{LW} \geq 2(\ell+1)$.

These codes can be decoded up to the designed distance $2(\ell+1)$.

The binary number system

Every nonnegative integer can be written by a string of 1's and 0's

$$\forall v \ge 0: \ v = \nu_0 + \nu_1 2 + \nu_2 2^2 + \nu_3 2^3 + \dots$$

The binary representation defines a number uniquely, e.g.

$$477 = 1 + 0 \cdot 2 + 1 \cdot 2^{2} + 1 \cdot 2^{3} + 1 \cdot 2^{4} + 0 \cdot 2^{5} + 1 \cdot 2^{6} + 1 \cdot 2^{7} + 1 \cdot 2^{8} + \dots \Leftrightarrow \blacksquare \square \blacksquare \blacksquare \blacksquare \square \blacksquare \blacksquare \blacksquare \dots$$

And

Integers in base four

Let W be the infinite set of all nonnegative integers which are the sum of distinct powers of 4, i.e.

$$\forall w \in W : \ w = \omega_0 + \omega_2 4 + \omega_4 4^2 + \omega_6 4^3 + \dots$$

The first few elements of W are

First integers in base four

The base four representation defines a number $\it uniquely$ and $\it W$ with the usual definition of $\it <$ is a $\it strict$ total $\it ordered$ $\it set$:

$$0 < 1 < 4 < 5 < 16 < 17 < 20 < 21 < 64 < 65 < 68 < 69 < 80 < 81 < \dots$$

Definition

For each $\ell \geq 0$, let W_{ℓ} be the first $2^{\ell+1}$ elements of W, i.e.

ℓ	W_ℓ	w	$B_{\ell}(w)$
0	{0}	0	
1	$\{0, 1, 4, 5\}$	5	
2	$\{0, 1, 4, 5, 16, 17, 20, 21\}$	21	
3	$ \begin{cases} 0, 1, 4, 5, 16, 17, 20, 21 \\ 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85 \end{cases} $	85	

and $w < 2^{2(\ell+1)}$.

A class of binary cyclic codes

A binary cyclic code has

- \blacktriangleright blocklength n,
- \blacktriangleright dimension k,
- ▶ generator polynomial $g(x) \in GF(2)[x]$,
- ► minimum distance d,
- \blacktriangleright defining set $R \subset \{0, 1, 2, \dots, n-1\}$,
- ▶ complete defining set $Z \subseteq R$.

Definition

For $\ell \geq 1$, consider a cyclic code of length $n=2^{2(\ell+1)}-1$ over GF(2) whose defining set $R=W_\ell.$

Roots of the (binary) code

Consider the sets W_{ℓ} and $2W_{\ell}$, e.g.

w	$B_{\ell}(w)$	2w	$B_{\ell}(2w)$
0		0	
1		2	
4		8	
5		10	
16		32	
17		34	
20		40	
21		42	

Then $W_{\ell} \leftrightarrow 2W_{\ell}$, and $|W_{\ell}| = |2W_{\ell}|$, and $W_{\ell} \cap 2W_{\ell} = \{0\}$.

The maximal elements

Consider the strict total ordered sets W_{ℓ} :

$$0 < 1 < 4 < 5 < 16 < 17 < 20 < 21 < 64 < 65 < \cdots < w^*$$

and $2W_{\ell}$:

$$0 < 2 < 8 < 10 < 32 < 34 < 40 < 42 < 128 < 130 < \dots < 2w^*$$

with the maximal elements:

Then $w^* = \frac{1}{3}n$, and $2w^* = \frac{2}{3}n$, and $\forall w \in (W_\ell \cup 2W_\ell) : w < n$.

Cyclotomic cosets

For bynary codes a cyclotomic coset containing \boldsymbol{w} consists of

$$w \to 2w \pmod{n} \to 2^2w \pmod{n} \to 2^3w \pmod{n} \to \cdots \to w$$

or

$$\cdots \to \in W_{\ell} \to \in 2W_{\ell} \to \in W_{\ell} \to \in 2W_{\ell} \to \in 2W_{\ell} \to \cdots$$

For $W_2=\{0,1,4,5,16,17,20,21\}$ and $2W_2=\{\underline{0},\underline{2},\underline{8},\underline{10},\underline{32},\underline{34},\underline{40},\underline{42}\}$, e.g.

$$C_0 = \{0\},\$$

$$C_1 = \{1, \underline{2}, 4, \underline{8}, 16, \underline{32}\},\$$

$$C_5 = \{5, \underline{10}, 20, \underline{40}, 17, \underline{34}\},\$$

$$C_{21} = \{21, \underline{42}\}.$$

The complete defining set and the dimension

Lemma

The code has the complete defining set $Z = W_{\ell} \cup 2W_{\ell}$.

Theorem

The dimension of the code is $k = 2^{\ell+2}(2^{\ell} - 1)$.

Proof.

$$k = n - |Z| = (2^{2(\ell+1)} - 1) - (2 \cdot 2^{\ell+1} - 1) = 2^{\ell+1}(2^{\ell} - 1).$$

E.g.

n	1	
15	8	$\{0, 1, 2, 4, 5, 8, 10\}$
63	48	$\{0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, 34, 40, 42\}$
255	224	$\{0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, 34, 40, 42, 64, 65, \dots, 170\}$

The BCH bound

For some nonnegative integers a and c, where gcd(c, n) = 1, the set

$$S = \{a + ic \pmod{n} \mid 0 \le i \le \delta_{BCH} - 2\}$$

is a subset or equal to Z and $|S| = \delta_{BCH} - 1$.

Lemma

The BCH bound of the code is $\delta_{BCH} \geq 4$.

Proof.

$$S = \{0, 1, 2\} \subset (W_1 \cup 2W_1) \subset (W_2 \cup 2W_2) \subset (W_3 \cup 2W_3) \subset \dots$$

If $\delta_{BCH} \geq 5$, then

$$S = \{a, a + c \pmod{n}, a + 2c \pmod{n}, a + 3c \pmod{n}\} = \{a, b, v, w\} \subseteq Z$$

where $w = 3b - 2a \pmod{n}$ and $a, b \in Z$.

The generating function

Consider the generating function

$$P(z) = \underbrace{F(z) + F(z^2) - 1}_{Z}$$

where $F(z) = (1+z)(1+z^4)(1+z^{16})(1+z^{64})\dots$ and

$$W(z) = \underbrace{P(z^3)P(z^{-2}) \pmod{z^n - 1}}_{w = 3b - 2a \pmod{n}} = \sum_{i=0}^{n-1} w_i z^i.$$

For $W_2=\{0,1,4,5,16,17,20,21\}$ and $2W_2=\{0,2,8,10,32,34,40,42\}$, e.g.

$$P(z) = z^{42} + z^{40} + z^{34} + z^{32} + z^{21} + z^{20} + z^{17} + z^{16} + z^{10} + z^{8} + z^{5} + z^{4} + z^{2} + z + 1$$

The number of representations

And

$$\begin{array}{c|c} \ell & w_i \in Z \\ \hline 1 & [3,3,3^1),3,\underline{5},3,\underline{5}^2) \\ 2 & [3,3,3,3,3,3,3,3,3^3),3,\underline{3},3,3,3,3,3 \\ 3 & [3,3,3,\ldots,3,\underline{5},3,\ldots,3,\underline{5}] \\ 4 & [3,3,3,\ldots,3,\underline{5},3,\ldots,3,\underline{5}] \\ 5 & [3,3,3,\ldots,3,\underline{5},3,\ldots,3,\underline{5}] \\ \cdots & \cdots \end{array}$$

where

$${}^{1)}2 = 3 \cdot \underbrace{2}_{b} - 2 \cdot \underbrace{2}_{a} = 3 \cdot \underbrace{4}_{b} - 2 \cdot \underbrace{5}_{a} = 3 \cdot \underbrace{1}_{b} - 2 \cdot \underbrace{8}_{a} \pmod{15}$$

$${}^{2)}10 = 3 \cdot 4 - 2 \cdot 1 = 3 \cdot 1 - 2 \cdot 4 = 3 \cdot 0 - 2 \cdot 10 = 3 \cdot 5 - 2 \cdot 10 = 3 \cdot 10 - 2 \cdot 10 \pmod{15}$$

$${}^{3)}17 = 3 \cdot 32 - 2 \cdot 8 = 3 \cdot 17 - 2 \cdot 17 = 3 \cdot 40 - 2 \cdot 20 \pmod{63}$$

Four consecutive roots

For $\ell=2$, e.g.

S	Case	S	Case
$\{0,0,0,0\}$	$\{a, a, a, a\}$	$\{0, 21, 42, 0\}$	$\{0,\frac{1}{3}n,\frac{2}{3}n,0\}$
$\{0, 42, 21, 0\}$	$\{0, \frac{2}{3}n, \frac{1}{3}n, 0\}$	$\{17, 17, 17, 17\}$	$\{a, a, a, a\}$
${34, 34, 34, 34}$	$\{a, a, a, a\}$	$\{1, 1, 1, 1\}$	$\{a, a, a, a\}$
$\{2, 2, 2, 2\}$	$\{a, a, a, a\}$	$\{20, 20, 20, 20\}$	$\{a, a, a, a\}$
$\{4, 4, 4, 4\}$	$\{a, a, a, a\}$	$\{21, 0, 42, 21\}$	$\{\frac{1}{3}n, 0, \frac{2}{3}n, \frac{1}{3}n\}$
$\{21, 21, 21, 21\}$	$\{a, a, a, a\}$	$\{21, 42, 0, 21\}$	$\left\{\frac{1}{3}n, \frac{2}{3}n, 0, \frac{1}{3}n\right\}$
$\{5, 5, 5, 5\}$	$\{a, a, a, a\}$	${40, 40, 40, 40}$	$\{a, a, a, a\}$
$\{8, 8, 8, 8, 8\}$	$\{a, a, a, a\}$	$\{42, 0, 21, 42\}$	$\{\frac{2}{3}n, 0, \frac{1}{3}n, \frac{2}{3}n\}$
$\{42, 21, 0, 42\}$	$\left\{\frac{2}{3}n, \frac{1}{3}n, 0, \frac{2}{3}n\right\}$	$\{42, 42, 42, 42\}$	$\{a, a, a, a\}$
$\{10, 10, 10, 10\}$	$\{a, a, a, a\}$	${32, 32, 32, 32}$	$\{a, a, a, a\}$
$\{16, 16, 16, 16\}$	$\{a, a, a, a\}$		

In all cases (7), $a = a + 3c \pmod{n}$ and $\delta_{BCH} < 5$.

The BCH bound of the code

Theorem

The BCH bound of the code is $\delta_{BCH} = 4$.

Proof.

$$\delta_{BCH} \geq 4$$
 and $\delta_{BCH} < 5$.

E.g.

n	k	δ_{BCH}
15	8	4
63	48	4
255	224	4

The van Lint-Wilson bound

- ► The empty set is independent with respect to *S*;
- ▶ If A is independent with respect to S, and $A \subseteq S$, and $b \notin S$, then $A \cup \{b\}$ is independent with respect to S;
- ▶ If A is independent with respect to S and 0 < c < n, then $\{c + a \mid a \in A\}$ is independent with respect to S.

 δ_{LW} is the maximal size of a set which is independent with respect to Z. Since

$$a_0 = 0, b_0 = 3 : A_1 = \{\underline{3}\},$$

 $a_1 = 14, b_1 = 3 : A_2 = \{2, \underline{3}\},$
 $a_2 = 14, b_2 = 3 : A_3 = \{1, 2, \underline{3}\},$
 $a_3 = 14, b_3 = 3 : A_4 = \{0, 1, 2, \underline{3}\},$

then $\delta_{LW} \geq \delta_{BCH}$ (for $\ell=1$).

The van Lint-Wilson bound of the code

$\ell = 2 (n = 63)$		$\ell = 3 (n = 255)$	
$a_0 = 0, b_0 = 3$:	$A_1 = \{3\},$	$a_0 = 0, b_0 = 3$:	$A_1 = \{\underline{3}\},$
$a_1 = 62, b_1 = 18$:	$A_2 = \{2, \underline{18}\},$	$a_1 = 254, b_1 = 66$:	$A_2 = \{2, \underline{66}\},$
$a_2 = 3, b_2 = 6$:	$A_3 = \{5, 21, \underline{6}\},\$	$a_2 = 15, b_2 = 33$:	$A_3 = \{17, 81, \underline{33}\},\$
$a_3 = 59, b_3 = 18$:	$A_4 = \{1, 17, 2, \underline{18}\},\$	$a_3 = 243, b_3 = 6$:	$A_4 = \{5, 69, 21, \underline{6}\},\$
$a_4 = 3, b_4 = 6$:	$A_5 = \{4, 20, 5, 21, \underline{6}\},\$	$a_4 = 251, b_4 = 66$:	$A_5 = \{1, 65, 17, 2, \underline{66}\},\$
$a_5 = 59, b_5 = 3$:	$A_6 = \{0, 16, 1, 17, 2, \underline{3}\}.$	$a_5 = 15, b_5 = 33$:	$A_6 = \{16, 80, 32, 17, 81, \underline{33}\},\$
		$a_6 = 243, b_6 = 6$:	$A_7 = \{4, 68, 20, 5, 69, 21, \underline{6}\},\$
		$a_7 = 251, b_7 = 3$:	$A_8 = \{0, 64, 16, 1, 65, 17, 2, \underline{3}\}.$
$\delta_{LW} \ge 6$		$\delta_{LW} \geq 8$	

Theorem

The van Lint–Wilson bound of the code is $\delta_{LW} \geq 2(\ell+1)$.

E.g.

n	k	δ_{BCH}	δ_{LW}
15	8	4	4
63	48	4	6
255	224	4	8

Decoding

Consider the $2(\ell+1) \times 2(\ell+1)$ submatrix of the syndrome matrix:

- $lacksquare 2^a+2^b\in Z$ and $2^a+2^b+2^c\in Z$ if a,b,c are even;
- $ightharpoonup 2^a \in Z;$
- ▶ $2^a + 2^c \notin Z$ if a is odd and c is even.