Asymptotic behaviour of constant rate random codes in rank metric

Pierre Loidreau

DGA and IRMAR, Université de Rennes 1

June 17th, 2012

Outline of the talk

- Definition of rank metric
- 2 Bounds in rank metric
- 3 Asymptotic behaviour of Random codes
 - General case
 - Linear case

Introduction

- Correcting criss-cross errors
- Related to the measure of diversity in MIMO channels
- Metric used in random network coding
- Used in cryptographic applications

Goal: Study properties of the metric

Definition of rank metric

Definition

- $\gamma_1, \ldots, \gamma_m$, a basis of $\mathbb{F}_{a^m}/\mathbb{F}_a$,
- \bullet $\mathbf{e} = (e_1, \ldots, e_n) \in (\mathbb{F}_{a^m})^n, e_i \mapsto (e_{i1}, \ldots, e_{in}),$

$$orall \mathbf{e} \in \mathbb{F}_{q^m}, \quad \mathsf{Rk}(\mathbf{e}) \stackrel{\mathit{def}}{=} \mathsf{Rk} \left(egin{array}{ccc} e_{11} & \cdots & e_{1n} \ dots & \ddots & dots \ e_{m1} & \cdots & e_{mn} \end{array}
ight)$$

Definition

$$\mathcal{C} \subset \mathbb{F}_{a^m}^n$$
 is a $(n,M,d)_r$ -code if

- \bullet $M = |\mathcal{C}|$
- Min. rank distance: $d = \min_{\mathbf{c}_1 \neq \mathbf{c}_2 \in \mathcal{C}} \mathsf{Rk}(\mathbf{c}_1 \mathbf{c}_2)$

Topology of rank metric

Bounds on spheres and balls:

- Volume of sphere: $q^{(m+n-1)t-t^2} \leq \mathcal{S}_t < q^{(m+n)t-t^2+\sigma(q)}$
- ullet Volume of ball: $q^{(m+n)t-t^2} \leq \mathcal{B}_t \leq q^{(m+n)t-t^2+\sigma(q)}$

GV-like bound

Definition

The $(n, M, d)_r$ code C reaches the GV-bound if

$$(M-1) \times \mathcal{B}_{d-1} < q^{mn} \leq M \times \mathcal{B}_{d-1},$$

Let $\mathcal F$ a family of $(n,M_n=q^{\alpha n^2R},d_n)_r$ codes over $\mathbb F_{q^{\alpha n}}$ reaching GV-bound

$$\lim_{n\to\infty} d_n/n = \frac{\alpha+1}{2} - \sqrt{(\alpha-1)^2/4 + \alpha R}.$$
 (1)

Outline of the talk

- 1 Definition of rank metric
- 2 Bounds in rank metric
- 3 Asymptotic behaviour of Random codes
 - General case
 - Linear case

Sampling space

- Parameters :
 - 0 < R < 1.
 - $m = \alpha n$
 - $M = q^{\alpha R n^2}$
- Construct $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_M\}$, such that

$$\forall j \in [1..M], \quad \mathbf{c}_j \stackrel{U}{\leftarrow} \mathbb{F}_{q^{\alpha n}}^n$$

Therefore, for all $j \in [1..M]$ and all $0 \le i \le n$

$$\forall \ \mathbf{y} \in \mathbb{F}_{q^{\alpha n}}^n \Pr(\mathsf{Rk}(\mathbf{c}_j - \mathbf{y}) \leq i) = \frac{\mathcal{B}_i}{q^{\alpha n^2}} \leq q^{(\alpha+1)ni - i^2 - \alpha n^2 + \sigma(q)},$$

Random variable - (1)

Definition

$$\mathcal{D}_i = \sum_{u=1}^M \sum_{v=1}^{u-1} \mathbf{1}_{\mathsf{Rk}(\mathbf{c}_u - \mathbf{c}_v) \leq i},$$

- Upper bound on minimum rank distance
 - $d < i \Rightarrow \mathcal{D}_i > 1$
 - Therefore $\Pr(d \leq i) \leq \Pr(\mathcal{D}_i \geq 1)$

Random variable (II)

Lower bound on the minimum rank distance

$$\bullet \ d \geq \ell \Rightarrow \mathcal{D}_{\ell-1} = 0 \ \text{or} \ \left\{ \begin{array}{l} \mathcal{D}_{\ell-1} \geq 1 \\ \mathbf{c}_u = \mathbf{c}_v, \ \text{for some} \ u, \ v \end{array} \right.$$

• Therefore
$$\Pr(d \geq \ell) \leq \Pr(\mathcal{D}_{\ell-1} = 0) + \Pr(\exists u < v \mid \mathbf{c}_u = \mathbf{c}_v)$$

Birthday Paradox
$$\Rightarrow \Pr(\exists u < v \mid \mathbf{c}_u = \mathbf{c}_v) = \frac{\binom{M}{2}}{q^{\alpha n^2}} \leq \frac{M^2}{2q^{\alpha n^2}}.$$

• Hence
$$\Pr(d \ge \ell) \le \Pr(\mathcal{D}_{i-1} = 0) + \frac{M^2}{2a^{\alpha n^2}}$$

Asymptotic equivalent

• Let
$$\Delta=\frac{\alpha+1}{2}-\sqrt{(\alpha-1)^2/4+2\alpha R}$$
, (Recall $\Delta_{GV}=\frac{\alpha+1}{2}-\sqrt{(\alpha-1)^2/4+\alpha R}$)

Proposition

Proposition

- For ϵ not too small and 0 < R < 1, $\Pr(d/n \le \Delta \epsilon) \stackrel{n \to \infty}{\to} 0$
- For ϵ small enough and 0 < R < 1/2, $\Pr(d/n \ge \Delta + \epsilon) \stackrel{n \to \infty}{\to} 0$

Sketch of proof

• From before with $i = n(\Delta - \epsilon)$ and $\ell = n(\Delta + \epsilon)$ we have

$$\Pr(d/n \le \Delta - \epsilon) \le \Pr(\mathcal{D}_i \ge 1)$$

 $\Pr(d/n \ge \Delta + \epsilon) \le \Pr(\mathcal{D}_{\ell-1} = 0) + \frac{M^2}{2q^{\alpha n^2}}.$

- Let $f(x) = -x^2 + (\alpha + 1)nx (1 2R)\alpha n^2$, thus $f(n\Delta) = 0$
- We can show that

•
$$\Pr(\mathcal{D}_i \ge 1) = {M \choose 2} \Pr(\mathsf{Rk}(\mathbf{c}_u - \mathbf{c}_v) \le i) \le 0.5q^{f(i) + \sigma(q)}$$

$$\text{Pr}(\mathcal{D}_{\ell-1}=0) = \left(1-\frac{\mathcal{B}_{\ell-1}}{q^{\alpha n^2}}\right)^{\binom{M}{2}} \leq \lambda e^{-q^{f(\ell-1)}}$$

$$\text{Since } M=q^{\alpha Rn^2}, \text{ then } \frac{M^2}{2q^{\alpha n^2}} \leq q^{(2R-1)\alpha n^2}/2$$

• Since
$$M=q^{\alpha Rn^2}$$
, then $\frac{M^2}{2q^{\alpha n^2}} \leq q^{(2R-1)\alpha n^2}/2$

illear case

Outline of the talk

- Definition of rank metric
- 2 Bounds in rank metric
- 3 Asymptotic behaviour of Random codes
 - General case
 - Linear case

Sampling space

- Parameters : 0 < R < 1, $\alpha > 0$, $M = q^{\alpha n^2 R}$
- Pick up $\mathbf{G} \stackrel{U}{\leftarrow} \mathbb{F}_{q^{\alpha n}}^{nR \times R}$
- Construct $C = \{x_1G, \dots, x_MG\}$, where
 - \mathbf{x}_j describles $\mathbb{F}_{a^{\alpha n}}^{nR}$
 - $x_1 = 0$

Therefore, for all $j \in [2..M]$ and all $0 \le i \le n$

$$\Pr(\mathsf{Rk}(\mathsf{x}_{j}\mathsf{G}) \leq i) = \frac{\mathcal{B}_{i}}{q^{\alpha n^{2}}} \leq q^{(\alpha+1)ni-i^{2}-\alpha n^{2}+\sigma(q)},$$

Random variable - (1)

Definition

$$\mathcal{D}_i = \sum_{j=2}^M \mathbf{1}_{\mathsf{Rk}(\mathbf{x}_j \mathbf{G}) \leq i}$$

- Upper bound on minimum rank distance
 - $d \leq i \Rightarrow \mathcal{D}_i \geq 1$
 - Therefore $\Pr(d \leq i) \leq \Pr(\mathcal{D}_i \geq 1)$

Random variable (II)

Lower bound on the minimum rank distance

$$\bullet \ d \geq \ell \Rightarrow \mathcal{D}_{\ell-1} = 0 \text{ or } \left\{ \begin{array}{l} \mathcal{D}_{\ell-1} \geq 1 \\ \mathbf{x}_u \mathbf{G} = \mathbf{0}, \text{ for some } u \geq 2 \end{array} \right.$$

- Therefore $\Pr(d \ge \ell) \le \Pr(\mathcal{D}_{\ell-1} = 0) + \Pr(\operatorname{Rk}(\mathbf{G}) < nR)$
- Hence $\Pr(d \ge \ell) \le \Pr(\mathcal{D}_{\ell-1} = 0) + q^{\alpha n^2(R-1)}$

Asymptotic equivalent

• Le
$$\Delta_{GV}=rac{lpha+1}{2}-\sqrt{(lpha-1)^2/4+lpha R})$$

Proposition

Proposition

- For ϵ not too small, $\Pr(d/n \leq \Delta_{GV} \epsilon) \stackrel{n \to \infty}{\to} 0$
- For ϵ small enough, $\Pr(d/n \geq \Delta_{GV} + \epsilon) \stackrel{n \to \infty}{\to} 0$

Sketch of proof

ullet From before with $i=\mathit{n}(\Delta-\epsilon)$ and $\ell=\mathit{n}(\Delta+\epsilon)$ we have

$$\Pr(d/n \le \Delta_{GV} - \epsilon) \le \Pr(\mathcal{D}_i \ge 1)$$

 $\Pr(d/n \ge \Delta_{GV} + \epsilon) \le \Pr(\mathcal{D}_{\ell-1} = 0) + q^{\alpha n^2(R-1)}$

- Let $g(x) = -x^2 + (\alpha + 1)nx (1 R)\alpha n^2$, thus $g(n\Delta_{GV}) = 0$
- We can show that

•
$$\Pr(\mathcal{D}_i \ge 1) = (M-1)\Pr(\mathsf{Rk}(\mathbf{xG}) \le i) \le 0.5 q^{g(i)+\sigma(q)}$$

•
$$\Pr(\mathcal{D}_{\ell-1} = 0) = \left(1 - \frac{\mathcal{B}_{\ell-1}}{q^{\alpha n^2}}\right)^{M-1} \le \lambda e^{-q^{g(\ell-1)}}$$

Conclusion

- Exact asymptotic behaviour of random codes in rank metric
- If $\alpha = 1$, similar to Johnson bound