(xv_t, xv_{t-1}) -minihypers in PG(t, q)

Peter Vandendriessche (joint work with Ivan Landjev)

June 16, 2012

ヨト イヨト

Peter Vandendriessche (joint work with Ivan Landjev) (xv_t, xv_{t-1}) -minihypers in PG(t, q)

A linear [n, k, d]-code C over a finite field \mathbb{F}_q is a k-dimensional subspace of \mathbb{F}_q^n , such that every two distinct vectors in C differ in at least d positions.

Definition

The parameters n, k, d are called the *length*, *dimension* and *minimum distance* of C.

- ∢ ≣ ▶

A classical problem in coding theory is to find the shortest codes for a given k and d. Several lower bounds exist, one of them is the Griesmer bound.

Theorem (Griesmer, 1960; Solomon and Stiffler, 1965)

For every [n, k, d]-code over \mathbb{F}_q , one has

$$p \geq \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil.$$

We are interested in finding and classifying families of Griesmer codes, i.e. codes which attain equality in the Griesmer bound.

Let \mathcal{P} be the point set of the projective space PG(t, q).

Definition

A multiset is a mapping $\mathfrak{K}:\mathcal{P}\to\mathbb{N}_0$ with its additive extension:

$$orall \mathcal{Q} \subseteq \mathcal{P}: \mathfrak{K}(\mathcal{Q}) = \sum_{x \in \mathcal{Q}} \mathfrak{K}(x).$$

The *multiplicity* of a point or subset is its image under \Re .

Definition

A multiset is proper if at least one point has multiplicity 0.

(Ξ) + (Ξ) +

An (f, m)-minihyper in PG(t, q) is a multiset of total multiplicity f such that the multiplicity of each hyperplane is at least m.

To avoid trivial cases, we will always assume $t \ge 2$ and f > 0.

Notation

For each $i \ge 0$, we denote $v_i = \frac{q^i-1}{q-1}$, the number of points in an (i-1)-dimensional subspace.

We will study (xv_t, xv_{t-1}) -minihypers in $\mathsf{PG}(t, q)$, for $x \in \mathbb{N}$ $(x \leq q)$.

E > < E >

Theorem (Hamada, 1987)

There exists a bijective correspondence between the set of all non-equivalent $[n, k, d]_q$ -codes meeting the Griesmer bound, and the set of $\left(\sum_{i=0}^{k-2} \mu_i v_{i+1}, \sum_{i=0}^{k-2} \mu_i v_i\right)$ -minihypers in PG(k-1, q) with each $\mu_i \leq q-1$.

An interesting class of Griesmer codes arises from the special case $\mu_0 = \mu_1 = \ldots = \mu_{k-3} = 0$ and $\mu_{k-2} \neq 0$: these codes have $q^{k-2}|d$. Hence, we are interested in (xv_t, xv_{t-1}) -minihypers in PG(t, q), where $x = \mu_{m-1} \leq q - 1$.

In PG(t, q), an upper bound on smallest size needed to *m*-block the hyperplanes is known:

Theorem

Let
$$\mathfrak{F}$$
 be an (f, m) -minihyper in $\mathsf{PG}(t, q)$. Then $\frac{f}{m} \ge \frac{v_t}{v_{t-1}}$.

Hence, (xv_t, xv_{t-1}) -minihypers in PG(t, q) are the parameterwise optimal minihypers.

< 注入 < 注入 →

э

Some examples of (xv_t, xv_{t-1}) -minihypers in PG(t, q).

Example

- A sum of x hyperplanes in PG(t, q) is a (xv_t, xv_{t-1}) -minihyper.
- In particular, a sum of x lines in PG(2, q) is a (xv_2, xv_1) -minihyper.
- In particular, the sum of the lines in a dual hyperoval in PG(2, q), q even, is a $((q+2)v_2, (q+2)v_1)$ -minihyper.
- All point multiplicities in the above minihyper are even. Dividing them by 2 yields a $(\frac{q+2}{2}v_2, \frac{q+2}{2}v_1)$ -minihyper in PG(2, q), q even, which cannot be obtained as a sum of lines.

(* E) * E)

Several strong results on (xv_t, xv_{t-1}) -minihypers in PG(t, q) are known.

Theorem (Hill and Ward, 2007; Herdt, 2008)

Let \mathfrak{F} be an (xv_t, xv_{t-1}) -minihyper in PG(t, q), with $x \leq q - p^f$ for some nonnegative integer f. Then $\mathfrak{F}(\pi) \equiv xv_{t-1} \pmod{p^{f+1}q^{t-2}}$ for every hyperplane π in PG(t, q).

Corollary

If $x \leq q - \frac{q}{p}$, the minihyper consists of a sum of x hyperplanes.

(* (E)) * (E) * (

The *characteristic vector* of a multiset \Re of PG(t, q) is the vector

$$w = (\mathfrak{K}(P))_{P \in \mathcal{P}} \in \mathbb{N}_0^{\mathcal{P}} \subset \mathbb{Q}^{\mathcal{P}}.$$

Clearly, every such vector uniquely corresponds to a multiset in PG(t, q). Often, we will identify multisets with their characteristic vectors.

Remark

Addition and scalar multiplication on multisets are defined by the corresponding operations on these vectors.

- ∢ ≣ →

Not all (xv_2, xv_1) -minihypers in PG(2, q) with x < q are a sum of lines. However, the following holds.

Theorem (Landjev and Storme, 2009)

Let \mathfrak{F} be an (xv_2, xv_1) -minihyper in PG(2, q) and let \mathcal{L} be the lines of PG(2, q). Then exist nonnegative rational coefficients $(r_\ell)_{\ell \in \mathcal{L}}$ such that $\mathfrak{F} = \sum_{\ell \in \mathcal{L}} r_\ell \chi_\ell$.

This brings up a natural question: which (multi)sets in PG(t, q) can be written as a nonnegative rational sum of hyperplanes?

< 三ト < 三ト

We have been able to solve this problem:

Theorem

Let \mathcal{H} be the set of hyperplanes of PG(t, q), let \mathfrak{K} be an arbitrary multiset in PG(t, q) and let w be its characteristic vector. Then:

- w can be written uniquely as a rational sum of hyperplanes: $w = \sum_{H \in \mathcal{H}} r_H \chi_H;$
- $r_H \ge 0$ for each $H \in \mathcal{H}$ if and only if w is an (f, m)-minihyper with $m \ge \frac{v_{t-1}}{v_t} f$;
- if the multiset is proper, $r_H \ge 0$ for each $H \in \mathcal{H}$ if and only if \mathfrak{K} is an (xv_t, xv_{t-1}) -minihyper for some x.

Whenever we write r_H , we mean the unique rational coefficients of the minihyper.

< 注 > < 注 >

First we make an additional remark: all denominators divide q^{t-1} .

Theorem

For any proper (xv_t, xv_{t-1}) -minihyper $\mathfrak{F} = \sum_{H \in \mathcal{H}} r_H \chi_H$ in PG(t,q), the smallest positive integer c for which $cr_H \in \mathbb{N}_0$ for all $H \in \mathcal{H}$, is a power of p, and a divisor of q^{t-1} .

Corollary

c = 1 if and only if the minihyper is a sum of hyperplanes.

Whenever we write c, we mean the number from the above theorem.

Theorem

Let
$$\mathfrak{F}$$
 be a proper (xv_t, xv_{t-1}) -minihyper in $PG(t, q)$. Then $\mathfrak{F}(H) \equiv xv_{t-1} \pmod{\frac{q^{t-1}}{c}}$ for every hyperplane H in $PG(t, q)$.

When $x \leq q - p^{f+1}$, it can be shown that \mathfrak{F} is proper, and that the term p^{f+1} divides $\frac{q}{c}$, which makes this result stronger than the result from [Hill and Ward, 2007; Herdt, 2008].

Corollary

Let
$$\mathfrak{F}$$
 be an (xv_t, xv_{t-1}) -minihyper in $PG(t, q)$ with $x < q$. Then $x > q - \frac{q}{c}$ or, equivalently, $c < \frac{q}{q-x}$.

For $x \leq q - \frac{q}{p}$, this yields c < p and hence c = 1. Hence, this bound generalizes the previous bound.

(E) < E)</p>

An (xv_t, xv_{t-1}) -minihyper is (in)decomposable if it is (not) the sum of two nonempty minihypers (x_1v_t, x_1v_{t-1}) and (x_2v_t, x_2v_{t-1}) . It is hyperplane-(in)decomposable if this can(not) be done with $x_2 = 1$.

Remark

- When $x < 2(q \frac{q}{p} + 1)$, both concepts are equivalent.
- The size of the largest hyperplane-indecomposable (xv_t, xv_{t-1}) -minihyper is $q^t q$, the size of the second largest is $q^t 2q + q/p 1$. This generalizes earlier results by [Landjev and Storme, 2009].
- The size of the largest indecomposable (xv_t, xv_{t-1}) minihyper in PG(t, q) is not known.

留 と く き と く き とう

Let \mathbb{Z}_n be the ring of integers mod n and let \mathcal{F}_c be the set of hyperplane-indecomposable minihypers in PG(t, q) with rational denominator c.

Definition

For a given integer *n*, the linear code $C_n^{\perp}(t, q)$ is the set of mappings $\mathcal{H} \to \mathbb{Z}_n$, with the additional property that for each point *u*, $\sum_{H \ni u} r_H$ is an integer.

Theorem

Each minihyper in \mathcal{F}_c corresponds uniquely to a codeword in $C_c^{\perp}(t,q)$. This yields a natural bijective correspondence between \mathcal{F}_c and the projective space code over the ring \mathbb{Z}_c .

< 注 → < 注 →

This correspondence yields several new construction techniques.

Lemma (Ball's construction)

Let B be a set of points in PG(t, q) and let e be the largest nonnegative integer such that B meets each hyperplane in 0 modulo p^e points. Then there exists an $\left(\frac{|B|}{p^e}v_t, \frac{|B|}{p^e}v_{t-1}\right)$ -minihyper in PG(t, q) with $c = p^e$.

Lemma

Let A and B be sets of points in PG(t, q) and let e be the largest nonnegative integer such that A and B both meet each hyperplane in 1 modulo p^e points. Then there exists an (xv_t, xv_{t-1}) -minihyper \mathfrak{F} in PG(t, q) with $c = p^e$ and $x = |B \setminus A| + \lambda \frac{|A| - |B|}{p^e}$, for any $\lambda \in \{1, 2, \dots, p^e - 1\}$.

Example

Let $q = p^h$ and let e be a divisor of h. Let π be a plane in PG(t, q), let μ be the line $X_0 = 0$ and let

$${\sf B}=\{(1,z,z^{p^{e}})|z\in {\mathbb F}_{q}\}\cup\{(0,z,z^{p^{e}})|z\in {\mathbb F}_{q}^{*}\}$$

be a Rédei-type blocking set in π . Then applying the previous lemma to B and μ , one obtains an (xv_t, xv_{t-1}) -minihyper in PG(t, q), with $x = q - \frac{q}{p^e} + 1 = q - \frac{q}{c} + 1$.

This shows the sharpness of our lower bound $x \ge q - \frac{q}{p^e} + 1$ when e|h. Previously, such minihypers were only known for p = 2. If $p \ne 2$ and $e \nmid h$, this sharpness is an open problem.

< 注 > < 注 >

Let
$$d_{\mathcal{S}}(C) = \min_{c \in C^*} \sum_{H \in \mathcal{H}} c_H$$
 with $c \in \{0, 1, \dots, c-1\}^{\mathcal{H}}$.

Corollary

 $d_{S}(C_{p}^{\perp}(2,q)) = (q - \frac{q}{p} + 1)p$, i.e. every proper line-indecomposable (xv_{2}, xv_{1}) -minihyper with c = p in PG(2, q), is a sum of at least $(q - \frac{q}{p} + 1)p$ lines (with coefficient $\frac{1}{p}$).

Conjecture

 $d_H(C_p^{\perp}(t,q)) = 2q - \frac{q-p}{p-1}$, i.e. ... sum of at least $2q - \frac{q-p}{p-1}$ different lines (with coefficient a multiple of $\frac{1}{p}$).

Moreover, the d_S -smallest and d_H -smallest known code words coincide.

個人 くさん くさん しき

Thank you for your attention!

(注) → (注) →

э