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Linear codes and the Griesmer bound

Definition

A linear [n, k, d ]-code C over a finite field Fq is a k-dimensional subspace
of Fn

q, such that every two distinct vectors in C differ in at least d
positions.

Definition

The parameters n, k , d are called the length, dimension and minimum
distance of C .
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Linear codes and the Griesmer bound

A classical problem in coding theory is to find the shortest codes for a
given k and d . Several lower bounds exist, one of them is the Griesmer
bound.

Theorem (Griesmer, 1960; Solomon and Stiffler, 1965)

For every [n, k , d ]-code over Fq, one has

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

We are interested in finding and classifying families of Griesmer codes,
i.e. codes which attain equality in the Griesmer bound.
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Preliminaries

Let P be the point set of the projective space PG(t, q).

Definition

A multiset is a mapping K : P → N0 with its additive extension:

∀Q ⊆ P : K(Q) =
∑
x∈Q

K(x).

The multiplicity of a point or subset is its image under K.

Definition

A multiset is proper if at least one point has multiplicity 0.
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Minihypers

Definition

An (f ,m)-minihyper in PG(t, q) is a multiset of total multiplicity f such
that the multiplicity of each hyperplane is at least m.

To avoid trivial cases, we will always assume t ≥ 2 and f > 0.

Notation

For each i ≥ 0, we denote vi = qi−1
q−1 , the number of points in an

(i − 1)-dimensional subspace.

We will study (xvt , xvt−1)-minihypers in PG(t, q), for x ∈ N (x ≤ q).
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Motivation 1

Theorem (Hamada, 1987)

There exists a bijective correspondence between the set of all
non-equivalent [n, k , d ]q-codes meeting the Griesmer bound, and the set

of
(∑k−2

i=0 µivi+1,
∑k−2

i=0 µivi
)

-minihypers in PG(k − 1, q) with each

µi ≤ q − 1.

An interesting class of Griesmer codes arises from the special case
µ0 = µ1 = . . . = µk−3 = 0 and µk−2 6= 0: these codes have qk−2|d .
Hence, we are interested in (xvt , xvt−1)-minihypers in PG(t, q), where
x = µm−1 ≤ q − 1.
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Motivation 2

In PG(t, q), an upper bound on smallest size needed to m-block the
hyperplanes is known:

Theorem

Let F be an (f ,m)-minihyper in PG(t, q). Then
f

m
≥ vt

vt−1
.

Hence, (xvt , xvt−1)-minihypers in PG(t, q) are the parameterwise optimal
minihypers.
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Some examples

Some examples of (xvt , xvt−1)-minihypers in PG(t, q).

Example

A sum of x hyperplanes in PG(t, q) is a (xvt , xvt−1)-minihyper.

In particular, a sum of x lines in PG(2, q) is a (xv2, xv1)-minihyper.

In particular, the sum of the lines in a dual hyperoval in PG(2, q), q
even, is a ((q + 2)v2, (q + 2)v1)-minihyper.

All point multiplicities in the above minihyper are even. Dividing
them by 2 yields a ( q+2

2 v2,
q+2
2 v1)-minihyper in PG(2, q), q even,

which cannot be obtained as a sum of lines.
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Previous classification results

Several strong results on (xvt , xvt−1)-minihypers in PG(t, q) are known.

Theorem (Hill and Ward, 2007; Herdt, 2008)

Let F be an (xvt , xvt−1)-minihyper in PG(t, q), with x ≤ q − pf for some
nonnegative integer f . Then F(π) ≡ xvt−1 (mod pf+1qt−2) for every
hyperplane π in PG(t, q).

Corollary

If x ≤ q − q
p , the minihyper consists of a sum of x hyperplanes.
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A linear algebraic point of view

Definition

The characteristic vector of a multiset K of PG(t, q) is the vector

w = (K(P))P∈P ∈ NP0 ⊂ QP .

Clearly, every such vector uniquely corresponds to a multiset in PG(t, q).
Often, we will identify multisets with their characteristic vectors.

Remark

Addition and scalar multiplication on multisets are defined by the
corresponding operations on these vectors.
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Why linear algebra?

Not all (xv2, xv1)-minihypers in PG(2, q) with x < q are a sum of lines.
However, the following holds.

Theorem (Landjev and Storme, 2009)

Let F be an (xv2, xv1)-minihyper in PG(2, q) and let L be the lines of
PG(2, q). Then exist nonnegative rational coefficients (r`)`∈L such that
F =

∑
`∈L r`χ`.

This brings up a natural question: which (multi)sets in PG(t, q) can be
written as a nonnegative rational sum of hyperplanes?
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A useful characterisation

We have been able to solve this problem:

Theorem

Let H be the set of hyperplanes of PG(t, q), let K be an arbitrary
multiset in PG(t, q) and let w be its characteristic vector. Then:

w can be written uniquely as a rational sum of hyperplanes:
w =

∑
H∈H rHχH ;

rH ≥ 0 for each H ∈ H if and only if w is an (f ,m)-minihyper with
m ≥ vt−1

vt
f ;

if the multiset is proper, rH ≥ 0 for each H ∈ H if and only if K is
an (xvt , xvt−1)-minihyper for some x.

Whenever we write rH , we mean the unique rational coefficients of the
minihyper.
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On the rational denominator

First we make an additional remark: all denominators divide qt−1.

Theorem

For any proper (xvt , xvt−1)-minihyper F =
∑

H∈H rHχH in PG(t, q), the
smallest positive integer c for which crH ∈ N0 for all H ∈ H, is a power
of p, and a divisor of qt−1.

Corollary

c = 1 if and only if the minihyper is a sum of hyperplanes.

Whenever we write c , we mean the number from the above theorem.
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An improvement to the congruence result & lower bound

Theorem

Let F be a proper (xvt , xvt−1)-minihyper in PG(t, q). Then

F(H) ≡ xvt−1 (mod qt−1

c ) for every hyperplane H in PG(t, q).

When x ≤ q − pf+1, it can be shown that F is proper, and that the term
pf+1 divides q

c , which makes this result stronger than the result from [Hill
and Ward, 2007; Herdt, 2008].

Corollary

Let F be an (xvt , xvt−1)-minihyper in PG(t, q) with x < q. Then
x > q − q

c or, equivalently, c < q
q−x .

For x ≤ q − q
p , this yields c < p and hence c = 1. Hence, this bound

generalizes the previous bound.
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On (in)decomposability

Definition

An (xvt , xvt−1)-minihyper is (in)decomposable if it is (not) the sum of
two nonempty minihypers (x1vt , x1vt−1) and (x2vt , x2vt−1). It is
hyperplane-(in)decomposable if this can(not) be done with x2 = 1.

Remark

When x < 2(q − q
p + 1), both concepts are equivalent.

The size of the largest hyperplane-indecomposable
(xvt , xvt−1)-minihyper is qt − q, the size of the second largest is
qt − 2q + q/p − 1. This generalizes earlier results by [Landjev and
Storme, 2009].

The size of the largest indecomposable (xvt , xvt−1) minihyper in
PG(t, q) is not known.
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A new correspondence result

Let Zn be the ring of integers mod n and let Fc be the set of
hyperplane-indecomposable minihypers in PG(t, q) with rational
denominator c .

Definition

For a given integer n, the linear code C⊥n (t, q) is the set of mappings
H → Zn, with the additional property that for each point u,

∑
H3u rH is

an integer.

Theorem

Each minihyper in Fc corresponds uniquely to a codeword in C⊥c (t, q).
This yields a natural bijective correspondence between Fc and the
projective space code over the ring Zc .
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A new construction technique

This correspondence yields several new construction techniques.

Lemma (Ball’s construction)

Let B be a set of points in PG(t, q) and let e be the largest nonnegative
integer such that B meets each hyperplane in 0 modulo pe points. Then

there exists an
(
|B|
pe vt ,

|B|
pe vt−1

)
-minihyper in PG(t, q) with c = pe .

Lemma

Let A and B be sets of points in PG(t, q) and let e be the largest
nonnegative integer such that A and B both meet each hyperplane in 1
modulo pe points. Then there exists an (xvt , xvt−1)-minihyper F in

PG(t, q) with c = pe and x = |B \ A|+ λ |A|−|B|pe , for any

λ ∈ {1, 2, . . . , pe − 1}.
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A new construction

Example

Let q = ph and let e be a divisor of h. Let π be a plane in PG(t, q), let µ
be the line X0 = 0 and let

B = {(1, z , zpe

)|z ∈ Fq} ∪ {(0, z , zpe

)|z ∈ F∗q}

be a Rédei-type blocking set in π. Then applying the previous lemma to
B and µ, one obtains an (xvt , xvt−1)-minihyper in PG(t, q), with
x = q − q

pe + 1 = q − q
c + 1.

This shows the sharpness of our lower bound x ≥ q − q
pe + 1 when e|h.

Previously, such minihypers were only known for p = 2. If p 6= 2 and
e - h, this sharpness is an open problem.
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A surprisingly related conjecture

Definition

Let dS(C ) = min
c∈C∗

∑
H∈H

cH with c ∈ {0, 1, . . . , c − 1}H.

Corollary

dS(C⊥p (2, q)) = (q − q
p + 1)p, i.e. every proper line-indecomposable

(xv2, xv1)-minihyper with c = p in PG(2, q), is a sum of at least
(q − q

p + 1)p lines (with coefficient 1
p ).

Conjecture

dH(C⊥p (t, q)) = 2q − q−p
p−1 , i.e. ... sum of at least 2q − q−p

p−1 different lines

(with coefficient a multiple of 1
p ).

Moreover, the dS -smallest and dH -smallest known code words coincide.
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Thank you for your attention!
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