$\left(x v_{t}, x v_{t-1}\right)$-minihypers in $\operatorname{PG}(t, q)$

Peter Vandendriessche
(joint work with Ivan Landjev)

June 16, 2012

Linear codes and the Griesmer bound

Definition

A linear $[n, k, d]$-code C over a finite field \mathbb{F}_{q} is a k-dimensional subspace of \mathbb{F}_{q}^{n}, such that every two distinct vectors in C differ in at least d positions.

Definition

The parameters n, k, d are called the length, dimension and minimum distance of C.

Linear codes and the Griesmer bound

A classical problem in coding theory is to find the shortest codes for a given k and d. Several lower bounds exist, one of them is the Griesmer bound.

Theorem (Griesmer, 1960; Solomon and Stiffler, 1965)
For every $[n, k, d]$-code over \mathbb{F}_{q}, one has

$$
n \geq \sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

We are interested in finding and classifying families of Griesmer codes, i.e. codes which attain equality in the Griesmer bound.

Preliminaries

Let \mathcal{P} be the point set of the projective space $\operatorname{PG}(t, q)$.

Definition

A multiset is a mapping $\mathfrak{K}: \mathcal{P} \rightarrow \mathbb{N}_{0}$ with its additive extension:

$$
\forall \mathcal{Q} \subseteq \mathcal{P}: \mathfrak{K}(\mathcal{Q})=\sum_{x \in \mathcal{Q}} \mathfrak{K}(x) .
$$

The multiplicity of a point or subset is its image under \mathfrak{K}.

Definition

A multiset is proper if at least one point has multiplicity 0 .

Minihypers

Definition

An (f, m)-minihyper in $\mathrm{PG}(t, q)$ is a multiset of total multiplicity f such that the multiplicity of each hyperplane is at least m.

To avoid trivial cases, we will always assume $t \geq 2$ and $f>0$.

Notation

For each $i \geq 0$, we denote $v_{i}=\frac{q^{i}-1}{q-1}$, the number of points in an ($i-1$)-dimensional subspace.

We will study $\left(x v_{t}, x v_{t-1}\right)$-minihypers in $\mathrm{PG}(t, q)$, for $x \in \mathbb{N}(x \leq q)$.

Motivation 1

Theorem (Hamada, 1987)

There exists a bijective correspondence between the set of all non-equivalent $[n, k, d]_{q}$-codes meeting the Griesmer bound, and the set of $\left(\sum_{i=0}^{k-2} \mu_{i} v_{i+1}, \sum_{i=0}^{k-2} \mu_{i} v_{i}\right)$-minihypers in $\mathrm{PG}(k-1, q)$ with each $\mu_{i} \leq q-1$.

An interesting class of Griesmer codes arises from the special case $\mu_{0}=\mu_{1}=\ldots=\mu_{k-3}=0$ and $\mu_{k-2} \neq 0$: these codes have $q^{k-2} \mid d$. Hence, we are interested in $\left(x v_{t}, x v_{t-1}\right)$-minihypers in $\operatorname{PG}(t, q)$, where $x=\mu_{m-1} \leq q-1$.

Motivation 2

In $\mathrm{PG}(t, q)$, an upper bound on smallest size needed to m-block the hyperplanes is known:

Theorem

Let \mathfrak{F} be an (f, m)-minihyper in $\mathrm{PG}(t, q)$. Then $\frac{f}{m} \geq \frac{v_{t}}{v_{t-1}}$.
Hence, $\left(x v_{t}, x v_{t-1}\right)$-minihypers in $\mathrm{PG}(t, q)$ are the parameterwise optimal minihypers.

Some examples

Some examples of $\left(x v_{t}, x v_{t-1}\right)$-minihypers in $\operatorname{PG}(t, q)$.

Example

- A sum of x hyperplanes in $\operatorname{PG}(t, q)$ is a $\left(x v_{t}, x v_{t-1}\right)$-minihyper.
- In particular, a sum of x lines in $\operatorname{PG}(2, q)$ is a $\left(x v_{2}, x v_{1}\right)$-minihyper.
- In particular, the sum of the lines in a dual hyperoval in $\operatorname{PG}(2, q), q$ even, is a $\left((q+2) v_{2},(q+2) v_{1}\right)$-minihyper.
- All point multiplicities in the above minihyper are even. Dividing them by 2 yields a $\left(\frac{q+2}{2} v_{2}, \frac{q+2}{2} v_{1}\right)$-minihyper in $\operatorname{PG}(2, q), q$ even, which cannot be obtained as a sum of lines.

Previous classification results

Several strong results on $\left(x v_{t}, x v_{t-1}\right)$-minihypers in $\operatorname{PG}(t, q)$ are known.

Theorem (Hill and Ward, 2007; Herdt, 2008)

Let \mathfrak{F} be an $\left(x v_{t}, x v_{t-1}\right)$-minihyper in $\mathrm{PG}(t, q)$, with $x \leq q-p^{f}$ for some nonnegative integer f. Then $\mathfrak{F}(\pi) \equiv x v_{t-1}\left(\bmod p^{f+1} q^{t-2}\right)$ for every hyperplane π in $\mathrm{PG}(t, q)$.

Corollary
If $x \leq q-\frac{q}{p}$, the minihyper consists of a sum of x hyperplanes.

A linear algebraic point of view

Definition

The characteristic vector of a multiset \mathfrak{K} of $\operatorname{PG}(t, q)$ is the vector

$$
w=(\mathfrak{K}(P))_{P \in \mathcal{P}} \in \mathbb{N}_{0}^{\mathcal{P}} \subset \mathbb{Q}^{\mathcal{P}} .
$$

Clearly, every such vector uniquely corresponds to a multiset in $\operatorname{PG}(t, q)$. Often, we will identify multisets with their characteristic vectors.

Remark

Addition and scalar multiplication on multisets are defined by the corresponding operations on these vectors.

Why linear algebra?

Not all $\left(x v_{2}, x v_{1}\right)$-minihypers in $\operatorname{PG}(2, q)$ with $x<q$ are a sum of lines. However, the following holds.

Theorem (Landjev and Storme, 2009)

Let \mathfrak{F} be an $\left(x v_{2}, x v_{1}\right)$-minihyper in $\mathrm{PG}(2, q)$ and let \mathcal{L} be the lines of $\mathrm{PG}(2, q)$. Then exist nonnegative rational coefficients $\left(r_{\ell}\right)_{\ell \in \mathcal{L}}$ such that $\mathfrak{F}=\sum_{\ell \in \mathcal{L}} r_{\ell} \chi_{\ell}$.

This brings up a natural question: which (multi)sets in $\mathrm{PG}(t, q)$ can be written as a nonnegative rational sum of hyperplanes?

A useful characterisation

We have been able to solve this problem:

Theorem

Let \mathcal{H} be the set of hyperplanes of $\operatorname{PG}(t, q)$, let \mathfrak{K} be an arbitrary multiset in $\mathrm{PG}(t, q)$ and let w be its characteristic vector. Then:

- w can be written uniquely as a rational sum of hyperplanes: $w=\sum_{H \in \mathcal{H}} r_{H} \chi_{H} ;$
- $r_{H} \geq 0$ for each $H \in \mathcal{H}$ if and only if w is an (f, m)-minihyper with $m \geq \frac{v_{t-1}}{v_{t}} f$;
- if the multiset is proper, $r_{H} \geq 0$ for each $H \in \mathcal{H}$ if and only if \mathfrak{K} is an ($x v_{t}, x v_{t-1}$)-minihyper for some x.

Whenever we write r_{H}, we mean the unique rational coefficients of the minihyper.

On the rational denominator

First we make an additional remark: all denominators divide q^{t-1}.

Theorem

For any proper $\left(x v_{t}, x v_{t-1}\right)$-minihyper $\mathfrak{F}=\sum_{H \in \mathcal{H}} r_{H} \chi_{H}$ in $\mathrm{PG}(t, q)$, the smallest positive integer c for which $\mathrm{cr}_{H} \in \mathbb{N}_{0}$ for all $H \in \mathcal{H}$, is a power of p, and a divisor of q^{t-1}.

Corollary

$c=1$ if and only if the minihyper is a sum of hyperplanes.
Whenever we write c, we mean the number from the above theorem.

An improvement to the congruence result \& lower bound

Theorem

Let \mathfrak{F} be a proper $\left(x v_{t}, x v_{t-1}\right)$-minihyper in $\mathrm{PG}(t, q)$. Then $\mathfrak{F}(H) \equiv x v_{t-1}\left(\bmod \frac{q^{t-1}}{c}\right)$ for every hyperplane H in $\operatorname{PG}(t, q)$.

When $x \leq q-p^{f+1}$, it can be shown that \mathfrak{F} is proper, and that the term p^{f+1} divides $\frac{q}{c}$, which makes this result stronger than the result from [Hill and Ward, 2007; Herdt, 2008].

Corollary

Let \mathfrak{F} be an $\left(x v_{t}, x v_{t-1}\right)$-minihyper in $\mathrm{PG}(t, q)$ with $x<q$. Then $x>q-\frac{q}{c}$ or, equivalently, $c<\frac{q}{q-x}$.

For $x \leq q-\frac{q}{p}$, this yields $c<p$ and hence $c=1$. Hence, this bound generalizes the previous bound.

On (in)decomposability

Definition

An ($x v_{t}, x v_{t-1}$)-minihyper is (in)decomposable if it is (not) the sum of two nonempty minihypers $\left(x_{1} v_{t}, x_{1} v_{t-1}\right)$ and $\left(x_{2} v_{t}, x_{2} v_{t-1}\right)$. It is hyperplane-(in)decomposable if this can(not) be done with $x_{2}=1$.

Remark

- When $x<2\left(q-\frac{q}{p}+1\right)$, both concepts are equivalent.
- The size of the largest hyperplane-indecomposable $\left(x v_{t}, x v_{t-1}\right)$-minihyper is $q^{t}-q$, the size of the second largest is $q^{t}-2 q+q / p-1$. This generalizes earlier results by [Landjev and Storme, 2009].
- The size of the largest indecomposable $\left(x v_{t}, x v_{t-1}\right)$ minihyper in $\mathrm{PG}(t, q)$ is not known.

A new correspondence result

Let \mathbb{Z}_{n} be the ring of integers $\bmod n$ and let \mathcal{F}_{c} be the set of hyperplane-indecomposable minihypers in $\mathrm{PG}(t, q)$ with rational denominator c.

Definition

For a given integer n, the linear code $C_{n}^{\perp}(t, q)$ is the set of mappings $\mathcal{H} \rightarrow \mathbb{Z}_{n}$, with the additional property that for each point $u, \sum_{H \ni u} r_{H}$ is an integer.

Theorem

Each minihyper in \mathcal{F}_{c} corresponds uniquely to a codeword in $C_{c}^{\perp}(t, q)$. This yields a natural bijective correspondence between \mathcal{F}_{c} and the projective space code over the ring \mathbb{Z}_{c}.

A new construction technique

This correspondence yields several new construction techniques.

Lemma (Ball's construction)

Let B be a set of points in $\mathrm{PG}(t, q)$ and let e be the largest nonnegative integer such that B meets each hyperplane in 0 modulo p^{e} points. Then there exists an $\left(\frac{|B|}{p^{e}} v_{t}, \frac{|B|}{p^{e}} v_{t-1}\right)$-minihyper in $\mathrm{PG}(t, q)$ with $c=p^{e}$.

Lemma

Let A and B be sets of points in $\mathrm{PG}(t, q)$ and let e be the largest nonnegative integer such that A and B both meet each hyperplane in 1 modulo p^{e} points. Then there exists an $\left(x v_{t}, x v_{t-1}\right)$-minihyper \mathfrak{F} in $\mathrm{PG}(t, q)$ with $c=p^{e}$ and $x=|B \backslash A|+\lambda \frac{|A|-|B|}{p^{e}}$, for any $\lambda \in\left\{1,2, \ldots, p^{e}-1\right\}$.

Example

Let $q=p^{h}$ and let e be a divisor of h. Let π be a plane in $\operatorname{PG}(t, q)$, let μ be the line $X_{0}=0$ and let

$$
B=\left\{\left(1, z, z^{p^{e}}\right) \mid z \in \mathbb{F}_{q}\right\} \cup\left\{\left(0, z, z^{p^{e}}\right) \mid z \in \mathbb{F}_{q}^{*}\right\}
$$

be a Rédei-type blocking set in π. Then applying the previous lemma to B and μ, one obtains an ($x v_{t}, x v_{t-1}$)-minihyper in $\operatorname{PG}(t, q)$, with $x=q-\frac{q}{p^{e}}+1=q-\frac{q}{c}+1$.

This shows the sharpness of our lower bound $x \geq q-\frac{q}{p^{e}}+1$ when $e \mid h$. Previously, such minihypers were only known for $p=2$. If $p \neq 2$ and $e \nmid h$, this sharpness is an open problem.

A surprisingly related conjecture

Definition

Let $d_{S}(C)=\min _{c \in C^{*}} \sum_{H \in \mathcal{H}} c_{H}$ with $c \in\{0,1, \ldots, c-1\}^{\mathcal{H}}$.

Corollary

$d_{S}\left(C_{p}^{\perp}(2, q)\right)=\left(q-\frac{q}{p}+1\right) p$, i.e. every proper line-indecomposable $\left(x v_{2}, x v_{1}\right)$-minihyper with $c=p$ in $\mathrm{PG}(2, q)$, is a sum of at least $\left(q-\frac{q}{p}+1\right) p$ lines (with coefficient $\frac{1}{p}$).

Conjecture

$d_{H}\left(C_{p}^{\perp}(t, q)\right)=2 q-\frac{q-p}{p-1}$, i.e. \ldots sum of at least $2 q-\frac{q-p}{p-1}$ different lines (with coefficient a multiple of $\frac{1}{p}$).

Moreover, the d_{s}-smallest and d_{H}-smallest known code words coincide.

Thank you for your attention!

