Constructing a space-time code with a

small volume

Carina Alves

São Paulo State University - UNESP - Rio Claro, BRAZIL

Jean-Claude Belfiore

TELECOM-ParisTech - Comelec- Paris, FRANCE

ACCT2012 - 15 - 21 June, 2012, Pomorie, BULGARIA

Alves, Belfiore Constructing a space-time code with a small volume

Outline

- 2 Algebraic Reduction
- Tamagawa Volume Formula
- Constructing a space-time code with a small volume

5 Further research

4 B b 4 B

Introduction

Algebraic Reduction Tamagawa Volume Formula Constructing a space-time code with a small volume Further research System Model Code design criteria (Coherent case) The idea behind division algebras Codes built from quaternion algebras Decoding - Lattices

Outline

- 2 Algebraic Reduction
- Tamagawa Volume Formula
- Constructing a space-time code with a small volume

5 Further research

Alves, Belfiore Constructing a space-time code with a small volume

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	
Algebraic Reduction	
Tamagawa Volume Formula	
Constructing a space-time code with a small volume	
Further research	

- Space-Time Block Codes (STBC)
- Multiple transmit and multiple receive antennas (MIMO)

Introduction

Algebraic Reduction Tamagawa Volume Formula Constructing a space-time code with a small volume Further research

System Model

Code design criteria (Coherent case) The idea behind division algebras Codes built from quaternion algebras Decoding - Lattices

System Model

The received signal is given by

$$Y = HX + W$$

 $X, H, Y, W \in M_2(\mathbb{C}).$

Alves, Belfiore

Constructing a space-time code with a small volume

(日) (同) (三) (三)

 Introduction
 System Model

 Algebraic Reduction
 Code design criteria (Coherent case)

 Tamagawa Volume Formula
 The idea behind division algebras

 Constructing a space-time code with a small volume
 Further research

 Further research
 Decoding - Lattices

Code design criteria (Coherent case)

• The pairwise probability of error is bounded by

$$P(X o \hat{X}) \leq rac{ ext{const}}{|\det(X - \hat{X})|^{2M}},$$

where M is the number of received antennas.

We need

$$\det(X_i - X_j) \neq 0, \ \forall X_i \neq X_j, \ X_i, X_j \in C$$

called fully diverse code.

Introduction

Algebraic Reduction Tamagawa Volume Formula Constructing a space-time code with a small volume Further research System Model Code design criteria (Coherent case) The idea behind division algebras Codes built from quaternion algebras Decoding - Lattices

The idea behind division algebras

- If C is taken inside an algebra of matrices, the problem simplifies to det(X) ≠ 0, 0 ≠ X ∈ C.
- Division algebras are rings which every nonzero element has a multiplicative inverse.

Introduction

Algebraic Reduction Tamagawa Volume Formula Constructing a space-time code with a small volume Further research System Model Code design criteria (Coherent case) The idea behind division algebras Codes built from quaternion algebras Decoding - Lattices

Definition (Quaternion algebra)

Let K be a field with char $K \neq 2$, and $a, b \in K^*$. A K-algebra

admitting a presentation of the form

$$\left\langle i,j\mid i^{2}=a,j^{2}=b,\,ij=-ji
ight
angle$$

is called a **quaternion algebra** over K, we write $\left(\frac{a,b}{K}\right)$ for such an algebra.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Codes built from quaternion algebras

• Alamouti Code:
$$\mathcal{HA} = \left(\frac{-1, -1}{\mathbb{R}}\right), i^2 = j^2 = -1.$$

• Silver Code: $\mathcal{SA} = \left(\frac{-1, -1}{\mathbb{Q}(\sqrt{-7})}\right), i^2 = 7, j^2 = -1.$

• Golden Code:
$$\mathcal{GA} = \left(\frac{5, i}{\mathbb{Q}(i)}\right), i^2 = 5, j^2 = i.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	System Model
Algebraic Reduction	Code design criteria (Coherent case)
Tamagawa Volume Formula	The idea behind division algebras
Constructing a space-time code with a small volume	Codes built from quaternion algebras
Further research	Decoding - Lattices

Decoding - Lattices

- The problem of decoding linear STBC can be reformulated as
 - a lattice decoding problem.

Introduction	System Model
Algebraic Reduction	Code design criteria (Coherent case)
Tamagawa Volume Formula	The idea behind division algebras
Constructing a space-time code with a small volume	Codes built from quaternion algebras
Further research	Decoding - Lattices

Decoding - Lattices

- The problem of decoding linear STBC can be reformulated as
 - a lattice decoding problem.

Definition (Order)

Let $\mathcal{A} = \begin{pmatrix} \frac{a,b}{K} \end{pmatrix}$ be a quaternion algebra and R be a ring of K. An order \mathcal{O} in \mathcal{A} is a subring of \mathcal{A} contained 1, equivalently its a finitely generate R-module such that $\mathcal{A} = K\mathcal{O}$. An order \mathcal{O} is called **maximal**, if it is not properly contained in any other R-order in \mathcal{A} .

Example (Decoding- Lattice)

Let $\phi: M_2(\mathbb{C}) \to \mathbb{C}^4$ be the function that vectorizes matrices and

 $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ a basis of an order $\mathcal O$ as a $\mathbb Z[i]$ -module. Every

codeword X can be written as

$$X = \sum_{i=1}^{4} s_i \omega_i, \ s = (s_1, s_2, s_3, s_4)^t \in \mathbb{Z}[i]^4$$

Let Φ be the matrix whose columns are $\phi(\omega_1), \phi(\omega_2), \phi(\omega_3), \phi(\omega_3)$

 $\phi(\omega_4)$. Then the **lattice point** corresponding to X is

$$x = \phi(X) = \sum_{i=1}^{4} s_i \phi(\omega_i) = \Phi_s.$$

Alves, Belfiore Constructing a space-time code with a small volume

 $\mathcal{O} \land \mathcal{O}$

Introduction	
Algebraic Reduction	
Tamagawa Volume Formula	
Constructing a space-time code with a small volume	
Further research	Decoding - Lattices

• We are interested in finding a reduced basis for the lattice generated by the channel code matrix.

Introduction Algebraic Reduction	
Tamagawa Volume Formula	The idea behind division algebras
Constructing a space-time code with a small volume	Codes built from quaternion algebras
Further research	Decoding - Lattices

• We are interested in finding a reduced basis for the lattice generated by the channel code matrix.

Algebraic Reduction

Alves, Belfiore Constructing a space-time code with a small volume

The approximation

Outline

🗿 Tamagawa Volume Formula

Constructing a space-time code with a small volume

5 Further research

Alves, Belfiore Constructing a space-time code with a small volume

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The approximation

Algebraic Reduction

Normalization of the received signal

The channel matrix H can be rewritten as

$$H = \sqrt{\det(H)}H_1, \ H_1 \in SL_2(\mathbb{C}).$$

Therefore the received signal now is given by

$$Y_1 = \frac{Y}{\sqrt{(H)}} = H_1 X + W_1$$

Alves, Belfiore Constructing a space-time code with a small volume

The approximation

Algebraic reduction: consists in approximating the matrix H_1 with a unit U of norm 1 of a maximal order O.

Alves, Belfiore Constructing a space-time code with a small volume

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The approximation

• General Case: $H_1 = EU, E$: error

Then $E = H_1 U^{-1}$ and we require that the Frobenius norm $||E^{-1}||_F^2 = ||E||_F^2$ should be minimized:

$$\hat{U} = \operatorname*{argmin}_{U \in \mathcal{O}, \ det(U) = 1} ||UH_1^{-1}||_F^2$$

The approximation

This criterion corresponds to minimizing the trace of the covariance matrix (power) of the new noise n:

$$tr(Cov(n)) = rac{N_0}{\det(H)} ||E^{-1}||_F^2,$$

where N_0 is the variance.

4 周 ト 4 三 ト 4 三 ト

Action of the group on the hyperbolic space \mathbb{H}^4

Outline

- 2 Algebraic Reduction
- Tamagawa Volume Formula
- Constructing a space-time code with a small volume

5 Further research

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Action of the group on the hyperbolic space \mathbb{H}^3

Poincaré's theorem establishes a correspondence between a set of generators of the group and the isometries which map a facet of the polyhedron to another facet. All the polyhedra are isometric, and they cover the whole space \mathbb{H}^3 , forming a tiling.

- $\mathbb{H}^3 = \{(z, r) \mid z \in \mathbb{C}, r \in \mathbb{R}, r > 0\}$ (upper half-space model)
- \mathbb{H}^3 endowed with the hyperbolic distance ρ such that if

$$P = (z, r), P' = (z', r'),$$
$$\cosh \rho(P, P') = 1 + \frac{|z - z'|^2 + (r - r')^2}{2rr'}$$

Consider the action of $PSL_2(\mathbb{C}) = SL_2(\mathbb{C})/\{1,-1\}$ on the point

J = (0, 1)

which has the following property:

$$\forall g \in SL_2(\mathbb{C}), \ ||g||_F^2 = 2 \cosh \rho(J, g(J)).$$

Consider the action of $PSL_2(\mathbb{C}) = SL_2(\mathbb{C})/\{1,-1\}$ on the point

J = (0, 1)

which has the following property:

$$orall g \in SL_2(\mathbb{C}), \ ||g||_F^2 = 2\cosh
ho(J,g(J)).$$

•
$$g = uh_1^{-1}, h_1 \in SL_2(\mathbb{C})$$

Action of the group on the hyperbolic space \mathbb{H}^{3}

• Approach the points into \mathbb{H}^3 by the closer unit.

- \bullet Approach the points into \mathbb{H}^3 by the closer unit.
- Small volume

- Approach the points into \mathbb{H}^3 by the closer unit.
- ${\scriptstyle \bullet}\,$ Small volume \rightarrow units are closer to each other.

- \bullet Approach the points into \mathbb{H}^3 by the closer unit.
- Small volume \rightarrow units are closer to each other.
- Volume

- Approach the points into \mathbb{H}^3 by the closer unit.
- Small volume \rightarrow units are closer to each other.
- ${\scriptstyle \bullet}$ Volume \rightarrow depends on the choice of the order.

Let \mathcal{O}^1 be the group of units of the maximal order \mathcal{O} and \mathcal{P} a compact fundamental polyhedron.

Theorem 1. (Tamagawa Volume Formula)

Let \mathcal{A} be a quaternion algebra over K such that $\mathcal{A} \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{C})$. Let \mathcal{O} be a maximal order of \mathcal{A} . Then the hyperbolic volume is given by,

$$Vol(\mathcal{P}_{\mathcal{O}^1}) = \frac{1}{4\pi^2} \zeta_{\mathcal{K}}(2) |D_{\mathcal{K}}|^{3/2} \prod_{p \mid \delta_{\mathcal{O}}} (N(p) - 1).$$

マヨト イヨト イヨト

Action of the group on the hyperbolic space \mathbb{H}^3

(ロ) (部) (注) (注)

Action of the group on the hyperbolic space \mathbb{H}^{s}

bra and find a maximal order in this algebra

ch smaller than the volume of the

ng to the Golden Code algebra

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Action of the group on the hyperbolic space $\mathbb{H}^{\mathtt{3}}$

Goal

gebra and find a maximal order in this algebra

much smaller than the volume of the

nding to the Golden Code algebra.

Alves, Belfiore Constructing a space-time code with a small volume

э.

Action of the group on the hyperbolic space $\mathbb{H}^{\mathtt{3}}$

algebra and find a maximal order in this algebra

s much smaller than the volume of the

onding to the Golden Code algebra

Alves, Belfiore Constructing a space-time code with a small volume

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Action of the group on the hyperbolic space $\mathbb{H}^{\mathfrak{s}}$

on algebra and find a maximal order in this algebra

) is much smaller than the volume of the

esponding to the Golden Code algebra.

Alves, Belfiore Constructing a space-time code with a small volume

・ロト ・四ト ・ヨト ・ヨト
Action of the group on the hyperbolic space $\mathbb{H}^{\mathfrak{s}}$

nion algebra and find a maximal order in this algebra

 (\mathcal{P}) is much smaller than the volume of the

rresponding to the Golden Code algebra

Alves, Belfiore Constructing a space-time code with a small volume

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Action of the group on the hyperbolic space $\mathbb{H}^{\mathfrak{s}}$

ternion algebra and find a maximal order in this algebra

 $ol(\mathcal{P})$ is much smaller than the volume of the

corresponding to the Golden Code algebra.

Alves, Belfiore Constructing a space-time code with a small volume

(日) (四) (日) (日)

Action of the group on the hyperbolic space $\mathbb{H}^{\mathfrak{s}}$

uaternion algebra and find a maximal order in this algebra $\mathit{vol}(\mathcal{P})$ is much smaller than the volume of the on corresponding to the Golden Code algebra.

Alves, Belfiore Constructing a space-time code with a small volume

・ロト ・四ト ・ヨト ・ヨト

Action of the group on the hyperbolic space $\mathbb{H}^{\mathfrak{s}}$

quaternion algebra and find a maximal order in this algebra

at $\mathit{vol}(\mathcal{P})$ is much smaller than the volume of the

Iron corresponding to the Golden Code algebra.

Alves, Belfiore Constructing a space-time code with a small volume

a quaternion algebra and find a maximal order in this algebra

that $vol(\mathcal{P})$ is much smaller than the volume of the

edron corresponding to the Golden Code algebra.

Action of the group on the hyperbolic space $\mathbb{H}^{\mathfrak{s}}$

ild a quaternion algebra and find a maximal order in this algebra

ch that $\mathit{vol}(\mathcal{P})$ is much smaller than the volume of the

lyhedron corresponding to the Golden Code algebra.

Build a quaternion algebra and find a maximal order in this algebra such that $vol(\mathcal{P})$ is much smaller than the volume of the polyhedron corresponding to the Golden Code algebra.

Goal

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Action of the group on the hyperbolic space $\mathbb{H}^{\mathtt{3}}$

Goal

Build a quaternion algebra and find a maximal order in this algebra such that $vol(\mathcal{P})$ is much smaller than the volume of the polyhedron corresponding to the Golden Code algebra.

Alves, Belfiore Constructing a space-time code with a small volume

(日) (同) (三) (三)

<ロ> (四) (四) (三) (三)

Build a quaternion algebra and find a maximal order in this algebra such that $vol(\mathcal{P})$ is much smaller than the volume of the polyhedron corresponding to the Golden Code algebra.

Alves, Belfiore Constructing a space-time code with a small volume

Find the generators of \mathcal{O}^{1} The Algorithm: idea

Outline

圆 Tamagawa Volume Formula

Constructing a space-time code with a small volume

5 Further research

Alves, Belfiore Constructing a space-time code with a small volume

・ 同 ト ・ ヨ ト ・ ヨ ト

Find the generators of \mathcal{O}^{1} The Algorithm: idea

Constructing a space-time code with a small volume

We propose to construct a quaternion algebra

$$\mathcal{A} = \left(rac{2+\omega,-\omega}{\mathbb{Q}(\omega)}
ight),$$

• $i^2 = 2 + \omega$ • $j^2 = -\omega$ • $\omega = (-1 + \sqrt{-3})/2$

Find the generators of \mathcal{O}^{1} The Algorithm: idea

• Maximal order:

$$\mathcal{O} = \mathbb{Z}[\omega] \oplus \mathbb{Z}[\omega]\theta \oplus \mathbb{Z}[\omega]e \oplus \mathbb{Z}[\omega]\delta$$

where $\delta = \omega + (\omega + 1)\theta + (\omega + 1)e + \theta e, \quad \theta = \sqrt{2 + \omega}$
and $e = \begin{pmatrix} 0 & 1 \\ -\omega & 0 \end{pmatrix}.$

(日)

Find the generators of \mathcal{O}^{1} The Algorithm: idea

	Golden Code algebra	New algebra
ζ _κ (2)	1.50670301 · · ·	1.285190 · · ·
$ D_{K} $	4	3
$\boxed{\prod_{p \mid \delta_{\mathcal{O}}} (N(p) - 1)}$	16	6

э.

Find the generators of \mathcal{O}^1 The Algorithm: idea

	Golden Code algebra	New algebra
ζ _κ (2)	1.50670301 · · ·	1.285190 · · ·
$ D_{K} $	4	3
$\prod_{p \mid \delta_{\mathcal{O}}} (N(p) - 1)$	16	6
Vol(P _{O1})	4.885149838 · · ·	1.0338314 · · ·

э.

- $\left|\mathcal{O}^*/\mathcal{O}^1\right| = 6 \ (\mathbb{Z}_6 \cong \{1, -1, \omega, -\omega, \omega^2, -\omega^2\} \cong \mathcal{O}^*/\mathcal{O}^1).$
- #{unitary units} = 4.
- The group of unitary units stabilize J = (0, 1).
- Action of PSL₂(ℂ) on the point PJ, P ∈ SL₂(ℂ), such that the stabilizer of PJ is {1, −1}.

•
$$||uh_1||_F^2 = 2 \cosh(\rho(\underline{PuP^{-1}}, \underline{Ph_1^{-1}P^{-1}}, PJ, PJ))).$$

Find the generators of \mathcal{O}^1 The Algorithm: idea

- PJ = (0.00002, 1.00002)
- faces = 26
- edge = 72
- Generators: $\{u, g_1, g_2\}$ where

A. Page, *Computing arithmetic Kleinian groups*, Submitted, on 1Jun 2012.

http://www.eleves.ens.fr/home/page/index-en.html

(日) (同) (三) (三)

 $\omega =$

Find the generators of \mathcal{O}^1 The Algorithm: idea

$$u = \begin{pmatrix} 0 & \omega \\ -\omega^2 & 0 \end{pmatrix}$$

$$g_1 = \begin{pmatrix} -1 - \frac{\theta}{2} - \frac{\omega}{2} - \frac{\theta\omega}{2} & -\frac{1}{2} + \frac{\theta}{2} \\ -1 - \omega + \frac{\theta\omega}{2} - \frac{\omega^2}{2} & -1 + \frac{\theta}{2} - \frac{\omega}{2} + \frac{\theta\omega}{2} \end{pmatrix}$$

$$g_2 = \begin{pmatrix} -\frac{\theta}{2} - \frac{\omega}{2} - \frac{\theta\omega}{2} & \frac{1}{2} + \frac{\theta}{2} - \omega \\ -\omega + \frac{\theta\omega}{2} + \frac{\omega^2}{2} & \frac{\theta}{2} - \frac{\omega}{2} + \frac{\theta\omega}{2} \end{pmatrix}$$

$$(1 + \sqrt{-3})/2, \quad \theta = \sqrt{2 + \omega}$$

э.

Find the generators of O^1 The Algorithm: idea

The Algorithm: idea

Consider u_1, \dots, u_r the generators of \mathcal{O}^1 and their inverses. The neighboring polyhedra of \mathcal{P} are all the form $u_i(\mathcal{P}), i = 1, \dots, r$.

< ∃ >

Find the generators of O^1 The Algorithm: idea

The Algorithm: idea

h⁻¹(J)

The idea is choose the u_i such that $u_i(J)$ is closest to $h_1^{-1}(J)$.

イロト イポト イヨト イヨト

Find the generators of O^1 The Algorithm: idea

The Algorithm: idea

The idea is choose the u_i such that $u_i(J)$ is closest to $h_1^{-1}(J)$.

Alves, Belfiore Constructing a space-time code with a small volume

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Find the generators of O^1 The Algorithm: idea

The Algorithm: idea

Since u_i is an isometry of \mathbb{H}^3 , at the next step we can apply u_i^{-1}

Alves, Belfiore Constructing a space-time code with a small volume

Find the generators of O^1 The Algorithm: idea

The Algorithm: idea

Start again the search of the $u_{i'}$ that gives the closest point to $u_i^{-1}h_1^{-1}(J)$.

(日)

Find the generators of O^1 The Algorithm: idea

The Algorithm: idea

Start again the search of the $u_{i'}$ that gives the closest point to $u_i^{-1}h_1^{-1}(J)$.

(日)

Find the generators of O^1 The Algorithm: idea

Alves, Belfiore Constructing a space-time code with a small volume

Outline

- 2 Algebraic Reduction
- 📵 Tamagawa Volume Formula
- Constructing a space-time code with a small volume

5 Further research

・ 同 ト ・ ヨ ト ・ ヨ ト

Further research

- Change the center *J* of the domain of Dirichlet and performance analysis
- Show that the new algebra introduced is an algebra space-time code with good shape.

- Explicit the fundamental domain, vertices and relations.
- Generalize the algebraic reduction to higher-dimensional space-times codes based on division algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

References

[1] G.R.-B. Othman, L. Luzzi and J.-C. Belfiore.

Algebraic Reduction for the Golden Code.

Advances in Mathematics of Communications, 6, n. 1, 1–26, 2012.

[2] R. Vehkalahti, C. Hollanti, J. Lahtonen and K. Ranto.

On the Densest MIMO Lattices from Cyclic Division Algebras

IEEE Trans. Inform. Theory, 55, 3751-3780, 2009.

[3] G. Ivanyos and L. Rónyai.

On the complexity of finding maximal orders in semisimple algebras over $\mathbb{Q}.$

Advances in Mathematics of Communications, 3, 245–261, 1993

[4] A. Page

Computing arithmetic Kleinian groups

Submitted, on 1 Jun 2012.

References

[5] MAGMA Computational Algebra System.

Univ. Sydney, Sydney, Australia [Online].

Available: http://magma.maths.usyd.edu.au/

Alves, Belfiore Constructing a space-time code with a small volume

Alves, Belfiore Constructing a space-time code with a small volume

Alves, Belfiore Constructing a space-time code with a small volume

・ロト ・四ト ・ヨト ・ヨト

Alves, Belfiore Constructing a space-time code with a small volume

Thank you!

Alves, Belfiore Constructing a space-time code with a small volume

< 口 > < 同 > < 回 > < 回 > < 回 > <

Thank you!

e you!

Alves, Belfiore Constructing a space-time code with a small volume

・ロト ・四ト ・ヨト ・ヨト
hank you!

k you!

Alves, Belfiore Constructing a space-time code with a small volume

ank you!

nk you!

Alves, Belfiore Constructing a space-time code with a small volume

nk you!

rnk you!

Alves, Belfiore Constructing a space-time code with a small volume

ık you!

hank you!

Alves, Belfiore Constructing a space-time code with a small volume

hank you!

Alves, Belfiore Constructing a space-time code with a small volume

you!

Thank yo<u>u!</u>

Alves, Belfiore Constructing a space-time code with a small volume

Thank you!

Alves, Belfiore Constructing a space-time code with a small volume

Alves, Belfiore Constructing a space-time code with a small volume

Alves, Belfiore Constructing a space-time code with a small volume

(日) (同) (三) (三)

Alves, Belfiore Constructing a space-time code with a small volume

・ロト ・四ト ・ヨト ・ヨト