Steiner triple (quadruple) systems of small ranks embedded into perfect (extended perfect) binary codes

Darya Kovalevskaya, Faina Solov'eva, Elena Filimonova

Sobolev Institute of Mathematics
Novosibirsk State University, Russia
e-mails: daryik@rambler.ru, sol@math.nsc.ru, FilimonovaES@yandex.ru

16 June 2012

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, ACCT2012

Outline

(1) Introduction

- Definitions
- Constructions
(2) Steiner triple systems
- Construction of Steiner triple systems
- The number of Steiner triple systems of small ranks embedded into perfect codes
(3) Steiner quadruple systems

4 Futher research
(5) Conclusion

Definitions

F^{n} - the n-dimensional metric space over the Galois field $G F(2)$.

Definitions

F^{n} - the n-dimensional metric space over the Galois field $G F(2)$.
C - a perfect code of length $n=2^{r}-1, r \geq 2$.

Definitions

F^{n} - the n-dimensional metric space over the Galois field $G F(2)$.
C - a perfect code of length $n=2^{r}-1, r \geq 2$.
\bar{C} - any extended perfect code of length $N=n+1=2^{r}$, obtained from C by parity checking.

Definitions

A t-($v, k, 1)$-design - a family of k-element subsets (blocks) of the set $V,|V|=v$, such that every t-element subset is contained in exactly one block.

Definitions

A t-($v, k, 1)$-design - a family of k-element subsets (blocks) of the set $V,|V|=v$, such that every t-element subset is contained in exactly one block.

Steiner triple system STS(n) of order n - 2-(n,3,1)-design, $n \equiv 1,3(\bmod 6)$.

Definitions

A t-($v, k, 1)$-design - a family of k-element subsets (blocks) of the set $V,|V|=v$, such that every t-element subset is contained in exactly one block.

Steiner triple system STS(n) of order n - 2-($n, 3,1$)-design, $n \equiv 1,3(\bmod 6)$.

Steiner quadruple system $\operatorname{SQS}(N)$ of order N - 3-($N, 4,1$)-design, $N \equiv 2,4(\bmod 6)$.

Definitions

The set of all vectors of weight 3 in C of length n defines a Steiner triple system of order n.

Definitions

The set of all vectors of weight 3 in C of length n defines a Steiner triple system of order n.

A Steiner triple system of order n corresponding to a binary Hamming code \mathcal{H}^{n}, is called Hamming Steiner triple system STS (\mathcal{H}^{n}).

Definitions

The set of all vectors of weight 3 in C of length n defines a Steiner triple system of order n.

A Steiner triple system of order n corresponding to a binary Hamming code \mathcal{H}^{n}, is called Hamming Steiner triple system STS (\mathcal{H}^{n}).

The set of all vectors of weight 4 in \bar{C} defines a Steiner quadruple system of order N.

Definitions

The set of all vectors of weight 3 in C of length n defines a Steiner triple system of order n.

A Steiner triple system of order n corresponding to a binary Hamming code \mathcal{H}^{n}, is called Hamming Steiner triple system STS (\mathcal{H}^{n}).

The set of all vectors of weight 4 in \bar{C} defines a Steiner quadruple system of order N.

A Steiner quadruple system of order N, corresponding to a binary extended Hamming code \mathcal{H}^{N}, is called Hamming Steiner quadruple system $\operatorname{SQS}\left(\mathcal{H}^{N}\right)$.

Definitions

> A code $C^{\prime}=(C \backslash M) \cup M^{\prime}$ is obtained by a switching of some set M with a set M^{\prime} in a binary code C if the code C^{\prime} has the same parameters as C.

Definitions

A code $C^{\prime}=(C \backslash M) \cup M^{\prime}$ is obtained by a switching of some set M with a set M^{\prime} in a binary code C if the code C^{\prime} has the same parameters as C.

M - component of C.

Definitions

A code $C^{\prime}=(C \backslash M) \cup M^{\prime}$ is obtained by a switching of some set M with a set M^{\prime} in a binary code C if the code C^{\prime} has the same parameters as C.
M - component of C.

If $M^{\prime}=M \oplus e_{i}$ for some $i \in\{1,2, \ldots, n\}$, where $e_{i}=\left(0^{i-1} 10^{n-i}\right)$, then $M-i$-component of C of length n.

Definitions

A code $C^{\prime}=(C \backslash M) \cup M^{\prime}$ is obtained by a switching of some set M with a set M^{\prime} in a binary code C if the code C^{\prime} has the same parameters as C.

M - component of C.

If $M^{\prime}=M \oplus e_{i}$ for some $i \in\{1,2, \ldots, n\}$, where $e_{i}=\left(0^{i-1} 10^{n-i}\right)$, then $M-i$-component of C of length n.

The set M - ijk-component of C, if M is an i-component, j-component and k-component.

Definitions

Two sets R and R^{\prime}, composed of k-element subsets of the set V, $|V|=v$, are balanced with each other, if every t-element unordered set from the k-element subsets of R can also be found in the k-element subsets of R^{\prime}.

Definitions

Two sets R and R^{\prime}, composed of k-element subsets of the set V, $|V|=v$, are balanced with each other, if every t-element unordered set from the k-element subsets of R can also be found in the k-element subsets of R^{\prime}.

A t-($v, k, 1)$-design $A^{\prime}=(A \backslash R) \cup R^{\prime}$ is obtained by a switching of a block set R with a block set R^{\prime} in a $t-(v, k, 1)$-design A, if R and R^{\prime} are balanced with each other.

Definitions

Two sets R and R^{\prime}, composed of k-element subsets of the set V, $|V|=v$, are balanced with each other, if every t-element unordered set from the k-element subsets of R can also be found in the k-element subsets of R^{\prime}.

A t-($v, k, 1)$-design $A^{\prime}=(A \backslash R) \cup R^{\prime}$ is obtained by a switching of a block set R with a block set R^{\prime} in a $t-(v, k, 1)$-design A, if R and R^{\prime} are balanced with each other.

The set R (and R^{\prime}) is also called a component.

Definitions

Two sets R and R^{\prime}, composed of k-element subsets of the set V, $|V|=v$, are balanced with each other, if every t-element unordered set from the k-element subsets of R can also be found in the k-element subsets of R^{\prime}.

A t-($v, k, 1)$-design $A^{\prime}=(A \backslash R) \cup R^{\prime}$ is obtained by a switching of a block set R with a block set R^{\prime} in a $t-(v, k, 1)$-design A, if R and R^{\prime} are balanced with each other.

The set R (and R^{\prime}) is also called a component.

The rank of a code C in the vector space F^{n} - the dimension of the subspace $\langle C\rangle$ spanned by vectors from C.

Definitions

A Pasch configuration - a collection of 4 triples of a Steiner triple system, isomorphic to $(a, b, c),(a, y, z),(x, b, z)$ and (x, y, c).

Definitions

A Pasch configuration - a collection of 4 triples of a Steiner triple system, isomorphic to $(a, b, c),(a, y, z),(x, b, z)$ and (x, y, c).

Switchings:

$$
a \leftrightarrow x, b \leftrightarrow y, c \leftrightarrow z .
$$

Definitions

A Pasch configuration - a collection of 4 triples of a Steiner triple system, isomorphic to $(a, b, c),(a, y, z),(x, b, z)$ and (x, y, c).

Switchings:

$$
a \leftrightarrow x, b \leftrightarrow y, c \leftrightarrow z .
$$

$$
\{(a, b, c),(a, y, z),(x, b, z),(x, y, c)\}
$$

Definitions

A Pasch configuration - a collection of 4 triples of a Steiner triple system, isomorphic to $(a, b, c),(a, y, z),(x, b, z)$ and (x, y, c).

Switchings:

$$
\begin{gathered}
a \leftrightarrow x, b \leftrightarrow y, c \leftrightarrow z \\
\{(a, b, c),(a, y, z),(x, b, z),(x, y, c)\} \\
\Downarrow a \leftrightarrow x
\end{gathered}
$$

Definitions

A Pasch configuration - a collection of 4 triples of a Steiner triple system, isomorphic to $(a, b, c),(a, y, z),(x, b, z)$ and (x, y, c).

Switchings:

$$
\begin{gathered}
a \leftrightarrow x, b \leftrightarrow y, c \leftrightarrow z \\
\{(a, b, c),(a, y, z),(x, b, z),(x, y, c)\} \\
\Downarrow a \leftrightarrow x \\
\{(x, b, c),(x, y, z),(a, b, z),(a, y, c)\}
\end{gathered}
$$

Introduction

Well-known constructions

Well-known constructions

Vasil'ev construction of perfect codes:

Well-known constructions

Vasil'ev construction of perfect codes:

$$
V^{n}=\left\{(x,|x|+\lambda(y), x+y) \left\lvert\, x \in F^{\frac{n-1}{2}}\right., y \in \mathcal{H}^{\frac{n-1}{2}}, \lambda: \mathcal{H}^{\frac{n-1}{2}} \rightarrow\{0,1\}\right\}
$$

Well-known constructions

Vasil'ev construction of perfect codes:

$$
V^{n}=\left\{(x,|x|+\lambda(y), x+y) \left\lvert\, x \in F^{\frac{n-1}{2}}\right., y \in \mathcal{H}^{\frac{n-1}{2}}, \lambda: \mathcal{H}^{\frac{n-1}{2}} \rightarrow\{0,1\}\right\}
$$

Method of ijk-components:

Well-known constructions

Vasil'ev construction of perfect codes:

$$
V^{n}=\left\{(x,|x|+\lambda(y), x+y) \left\lvert\, x \in F^{\frac{n-1}{2}}\right., y \in \mathcal{H}^{\frac{n-1}{2}}, \lambda: \mathcal{H}^{\frac{n-1}{2}} \rightarrow\{0,1\}\right\}
$$

Method of ijk-components:

Theorem*

(S. V. Avgustinovich, F.I. Solov'eva) Every binary Hamming code of length n can be presented as a union of disjoint ijkcomponents $R_{i j k}^{t}$. Each of them can be represented as a union of disjoint i-components $R_{i}^{p t}$:

$$
\begin{aligned}
& \mathcal{H}^{n}=\bigcup_{t=1}^{N_{2}} R_{i j k}^{t}=\bigcup_{t=1}^{N_{2}} \bigcup_{p=1}^{N_{1}} R_{i}^{p t}, \text { where } N_{1}=2^{(n-3) / 4} \\
& N_{2}=2^{(n+5) / 4-\log (n+1)} .
\end{aligned}
$$

Ranks of codes

The Hamming code $\mathcal{H}^{n}: \quad$ rank $=n-\log (n+1)$.

A perfect binary code of length n given by Vasil'ev construction from $\mathcal{H}^{\frac{n-1}{2}}$:

$$
\text { rank }=n-\log (n+1)+1
$$

A perfect binary code of length n constructed by switchings of $i j k$-components from \mathcal{H}^{n} :

$$
\text { rank }=n-\log (n+1)+2
$$

Construction

$M=\{1,2,3, \ldots, m\}, m \equiv 1,3(\bmod 6), n=4 m+3>7$
$\{i, j, k\} \cap M=\emptyset$

$\mathbf{S}(\mathbf{T}, \mathbf{n}), T=$| i | i_{1} | i_{2} | \ldots | i_{a} | i_{b} | i_{c} | \ldots | i_{m} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| j | j_{1} | j_{2} | \ldots | j_{a} | j_{b} | j_{c} | \ldots | j_{m} |
| k | k_{1} | k_{2} | \ldots | k_{a} | k_{b} | k_{c} | \ldots | k_{m} |

1. (i, j, k)
2. $\forall a \in M:\left(i, j_{a}, k_{a}\right)\left(i, a, i_{a}\right)\left(j, a, j_{a}\right)\left(j, i_{a}, k_{a}\right)\left(k, i_{a}, j_{a}\right)\left(k, a, k_{a}\right)$
3. $\forall(a, b, c) \in S T S(m)$:

$$
\begin{align*}
& (a, b, c)\left(a, j_{b}, j_{c}\right)\left(j_{a}, j_{b}, c\right)\left(j_{a}, b, j_{c}\right) \\
& \left(a, i_{b}, i_{c}\right)\left(a, k_{b}, k_{c}\right)\left(j_{a}, k_{b}, i_{c}\right)\left(j_{a}, i_{b}, k_{c}\right) \\
& \left(i_{a}, b, i_{c}\right)\left(i_{a}, j_{b}, k_{c}\right)\left(k_{a}, j_{b}, i_{c}\right)\left(k_{a}, b, k_{c}\right) \tag{1}\\
& \left(i_{a}, i_{b}, c\right)\left(i_{a}, k_{b}, j_{c}\right)\left(k_{a}, k_{b}, c\right)\left(k_{a}, i_{b}, j_{c}\right)
\end{align*}
$$

Theorem 1.

The set $S(T, n)$ is a Steiner triple system of order $n=4 m+3$.

Theorem 1.

The set $S(T, n)$ is a Steiner triple system of order $n=4 m+3$.

Corollary.

Let $S T S(m)$ be the Hamming Steiner triple system of order m. Then $S(T, n)$ is the Hamming Steiner triple system of order $n=4 m+3$.

Switchings of the construction

A. $\forall a \in M$

$$
\left\{\left(i, j_{a}, k_{a}\right),\left(i, a, i_{a}\right),\left(j, a, j_{a}\right),\left(j, i_{a}, k_{a}\right),\left(k, i_{a}, j_{a}\right),\left(k, a, k_{a}\right)\right\}
$$

Three Pasch configurations:

$$
\begin{aligned}
\left\{\left(i, j_{a}, k_{a}\right),\left(i, a, i_{a}\right),\left(j, a, j_{a}\right),\left(j, i_{a}, k_{a}\right)\right\} & i \leftrightarrow j \\
\left\{\left(i, j_{a}, k_{a}\right),\left(i, a, i_{a}\right),\left(k, i_{a}, j_{a}\right),\left(k, a, k_{a}\right)\right\} & i \leftrightarrow k \\
\left\{\left(j, a, j_{a}\right),\left(j, i_{a}, k_{a}\right),\left(k, i_{a}, j_{a}\right),\left(k, a, k_{a}\right)\right\} & j \leftrightarrow k
\end{aligned}
$$

B. $\forall(a, b, c) \in S T S(m)$
i - columns from (1): $\quad a \leftrightarrow i_{a} \quad a \leftrightarrow i_{a} \quad j_{a} \leftrightarrow k_{a} \quad j_{a} \leftrightarrow k_{a}$
j - rows from (1): $\quad a \leftrightarrow j_{a} \quad a \leftrightarrow j_{a} \quad i_{a} \leftrightarrow k_{a} \quad i_{a} \leftrightarrow k_{a}$
k - transversals from (1): $\quad a \leftrightarrow k_{a} \quad a \leftrightarrow k_{a} \quad j_{a} \leftrightarrow i_{a} \quad j_{a} \leftrightarrow i_{a}$
B1. i or j, or k
B2. $i+j(k)$ or $j+i(k)$ or $k+i(j)$

Theorem 2.

The class of Steiner triple systems of order $n=4 m+3$, obtained by the switching construction of Theorem 1 using the Hamming Steiner triple system $\operatorname{STS}\left(\mathcal{H}^{m}\right)$ of order m, coincides with the class of Steiner triple systems of order $n=4 m+3$, embedded into the class of perfect binary codes, constructed by the method of $i j k$-components from the binary Hamming code of length n.

$$
\left|\operatorname{Sym}\left(\mathcal{H}^{n}\right)\right|=|G L(\log (n+1), 2)|
$$

Theorem 3.

Any $\operatorname{STS}(n)$ of rank $n-\log (n+1)+1$ is embedded in some perfect code of length n and the same rank, the code is given by Vasil'ev construction from the Hamming code of length $(n-1) / 2$. The number of such different $\operatorname{STS}(n)$ equals to $\left(2^{\mid S T S}\left(\frac{n-1}{2}\right) \left\lvert\,-\frac{n-1}{2}-\frac{2}{n+1}\right.\right) \cdot n!/\left|\operatorname{Sym}\left(\mathcal{H}^{\frac{n-1}{2}}\right)\right|$.

$$
R(H, n)=n!/\left|\operatorname{Sym}\left(\mathcal{H}^{n}\right)\right|
$$

Theorem 4.

The number $R_{2}(n)$ of different Steiner triple systems of order $n=4 m+3$ of rank not more than $n-\log (n+1)+2$, embedded into perfect binary codes of the same rank, satisfies the following inequalities:
$4^{(n-3) / 4} \cdot 130^{(n-3)(n-7) / 3 \cdot 2^{5}} \cdot n(n-1) / 6 \cdot R(\mathcal{H},(n-3) / 4) \leq$ $\leq R_{2}(n) \leq 4^{(n-3) / 4} \cdot 130^{(n-3)(n-7) / 3 \cdot 2^{5}} \cdot n(n-1) / 6 \cdot R(\mathcal{H}, n)$.

Theorem 5.

The number $R(n)$ of different Steiner triple systems $\operatorname{STS}(n)$ of order $n=4 m+3$, obtained from the all switchings of the construction, is at least

$$
\left((n+1) \cdot 4^{(n-7) / 4}+n-3\right) \cdot 310^{(n-3)(n-7) / 3 \cdot 2^{5}} \cdot n(n-1) / 6 \cdot R((n-3) / 4) .
$$

Theorem 5.

The number $R(n)$ of different Steiner triple systems $\operatorname{STS}(n)$ of order $n=4 m+3$, obtained from the all switchings of the construction, is at least

$$
\left((n+1) \cdot 4^{(n-7) / 4}+n-3\right) \cdot 310^{(n-3)(n-7) / 3 \cdot 2^{5}} \cdot n(n-1) / 6 \cdot R((n-3) / 4)
$$

Theorem 6.

The number $R^{\prime}(n)$ of different Steiner triple systems $S T S(n)$ of order $n=4 m+3, m \geq 255$, which are not embedded into perfect binary codes constructed by the method of ijk-components from the binary Hamming code, is at least
$R^{\prime}(n) \geq\left((n+1) \cdot 4^{(n-7) / 4}+n-3\right) \cdot 310^{(n-3)(n-7) / 3 \cdot 2^{5}} \cdot n(n-1) / 6$. $R((n-3) / 4)-4^{(n-3) / 4} \cdot 130^{(n-3)(n-7) / 3 \cdot 2^{5}} \cdot n(n-1) / 6 \cdot R(\mathcal{H}, n)$, where $R((n-3) / 4)$ is the number of different $S T S((n-3) / 4)$.

Theorem 7.

The number of different Steiner triple systems of order $n=2^{r}-1$, $r \geq 4$, of rank not more than $n-\log (n+1)+2$, is at most $2^{(4 n-7)(n-3) / 6} \cdot R(\mathcal{H}, n)$.

Theorem 8.

The class of Steiner quadruple systems, constructed by the switching method of ijkl-components from the Hamming Steiner quadruple system $\operatorname{SQS}\left(\mathcal{H}^{N}\right)$, coincides with the class of Steiner quadruple systems of order N, embedded into extended perfect binary code, constructed by the method of ijkl-components from the extended binary Hamming code.

Theorem 9.

Any $\operatorname{SQS}(N)$ of rank $N-\log N$ is embedded in some extended perfect code of length N and the same rank, the code is given by extended Vasil'ev construction from the Hamming code of length $N / 2-1$. The number of such different $\operatorname{SQS}(n)$ equals to $\left(2^{\mid S Q S}\left(\frac{N}{2}\right) \left\lvert\,-\frac{N}{2}-\frac{1}{N}\right.\right) \cdot N!/\left|\operatorname{Sym}\left(\overline{\mathcal{H}}^{\frac{N}{2}}\right)\right|$.

Theorem 9.

Any $\operatorname{SQS}(N)$ of rank $N-\log N$ is embedded in some extended perfect code of length N and the same rank, the code is given by extended Vasil'ev construction from the Hamming code of length $N / 2-1$. The number of such different $\operatorname{SQS}(n)$ equals to $\left(2^{\mid S Q S}\left(\frac{N}{2}\right) \left\lvert\,-\frac{N}{2}-\frac{1}{N}\right.\right) \cdot N!/\left|\operatorname{Sym}\left(\overline{\mathcal{H}}^{\frac{N}{2}}\right)\right|$.
$R(H, N / 4)=(N / 4)!/\left((N / 4-1)(N / 4-2)\left(N / 4-2^{2}\right) \cdot \ldots \cdot(N / 4) / 2\right)$

Theorem 10.

The number of different Steiner quadruple systems $\operatorname{SQS}(N)$ of order N of rank not more than $N-\log N+1$, embedded into perfect extended binary codes of the same rank, constructed by the method of ijkl-components from \mathcal{H}^{N}, is at least

$$
\left(3^{2} \cdot 2^{8}-8\right)^{N(N-4)(N-8) /\left(3 \cdot 2^{9}\right)} \cdot\left(2^{N(N-4) / 2^{5}}-1\right) \cdot \frac{N(N-1)(N-2)}{2^{3}}
$$

Futher research

- An exact estimation for the number of $\operatorname{STS}(n)$ of rank $n-\log (n+1)+2$, embedded into perfect codes of the same rank.
- An exact estimation for the number of $\operatorname{SQS}(N)$ of rank $N-\log N+1$, embedded into extended perfect codes of the same rank.

Conclusion

- Classification of $\operatorname{STS}(n)$ of rank $n-\log (n+1)+1$ and $n-\log (n+1)+2$, embedded into perfect codes of the same rank:
- construction
- the number of $\operatorname{STS}(n)$ of rank $n-\log (n+1)+1$
- the bounds of the number of $\operatorname{STS}(n)$ of rank $n-\log (n+1)+2$ $+$
- the upper bound of the whole number of $\operatorname{STS}(n)$ of rank $n-\log (n+1)+2$
- Classification of $\operatorname{SQS}(N)$ of rank $N-\log N$ and $N-\log N+1$, embedded into extended perfect codes of the same rank:
- construction
- the number of $\operatorname{SQS}(N)$ of rank $N-\log N$
- the bound of the number of $\operatorname{SQS}(n)$ of rank $N-\log N+1$

Thank you for your attention!

