Proper integers for search with a lie

Search problem

1. Set A
2. An unknown element $x \in A$
3. A collection \mathcal{B} of subsets of A which is called question set.
4. Questions of the type: Is x in $B \in \mathcal{B}$?

Adaptive and nonadaptive search

Without a lie or with at most one lie

Let $A=\left\{1,2,3, \ldots, 2^{k}\right\}$

Let S be positive integer. Question set \mathcal{B} consists of all subsets of A such that the sum of elements of B equals S.

We allow at most one lie in the answers received.
S is proper if one can find x by minimum possible questions using nonadaptive search.

A vector $v_{1}, v_{2}, \ldots, v_{2^{k}}$ is a characteristic vector for a subset B of A if $v_{i}=1$ when $i \in B$ and $v_{i}=0$ otherwise.

An $n \times 2^{k}$ matrix G is called characteristic matrix for a collection $B_{1}, B_{2}, \ldots, B_{n}$ if the rows of G are all characteristic vectors of $B_{1}, B_{2}, \ldots, B_{n}$.

If x can be found by the question set $B_{1}, B_{2}, \ldots, B_{n}$ then the columns of the corresponding characteristic matrix form a binary one error-correcting code.

It is easy to see that if S is a proper integer then

$$
G\left(123 \ldots 2^{k}\right)=S(11 \ldots 1)^{t} .
$$

Consider one error-correcting cyclic code of length n having 2^{k} codewords. All codewords split into orbit matrices with respect to cyclic shift. Also if $C_{w, l}$ is an orbit matrix of length l and weigh w (each column is of weight w) then the matrix $\overline{C_{w, l}}$ is also an orbit matrix.

Lemma 1. Let $C_{1}, C_{2}, \ldots C_{m}$ be all orbit matrices such that for any $i, 1 \leq i \leq m, \overline{C_{i}}$ is also from this collection. Then the matrix $G=C_{1} C_{2} \ldots C_{m}$ is proper one.

Sketch proof. We have to show that $C_{w, l}$ and $\overline{C_{w, l}}$ add one and the same amount in the scalar product of every row of G with $\left(1,2, \ldots, 2^{k}\right)$

It follows that the maximum value $S_{\max }$ of proper integer S is obtained when orbit matrices are in increasing order of their weights.
$S_{\text {min }}$ is obtained when orbit matrices are in decreasing order of their weights.

Are all integers in the interval $\left[S_{\text {min }}, S_{\text {max }}\right]$ proper?

For the binary Hamming code of length $n=2^{t}-1$ for t even, all integers in the interval $\left[S_{\min }, S_{\max }\right]$ are proper once.

Consider proper matrix G and let $C_{p, t}$ and $C_{q, h}$ be neighboring orbit matrices in G. Then $G_{1}=G\left(C_{p, t} C_{q, h} \rightarrow C_{q, h} C_{p, t}\right)$ is a proper matrix of weight $w t(G)=w t(G)+\frac{t h(p-q)}{n}$.

