Ratated D_{n}-latitices uia $\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right), p$ privse

Grasiele C. Jorge - Unicamp-Brazil
 Sueli I. R. Costa - Unicamp-Brazil

Algebraic and Cambinatarial Coding Theary ACPT 2012

- To present a family of rotated D_{n}-lattices with full diversity via \mathbb{Z}-modules of $\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$, p prime;
- To show that it is impossible to construct these lattices via ideals of $\mathbb{Z}\left[\zeta_{p}+\zeta_{p}^{-1}\right]$.

Sattices in \mathbb{R}^{n}

- Let $\left\{v_{1}, \cdots, v_{m}\right\}, m \leq n$, be a set of linearly independent vectors in \mathbb{R}^{n}. The set

$$
\Lambda=\left\{\sum_{i=1}^{m} a_{i} v_{i}, \text { where } a_{i} \in \mathbb{Z}, \quad i=1, \cdots, m\right\}
$$

is called lattice.

- The set $\left\{v_{1}, \cdots, v_{m}\right\}$ is called a basis of Λ.

Determinant

- A matrix M whose rows are these m vectors is said to be a generator matrix of Λ.
- The associated Gram matrix is $G=M M^{t}$.
- The determinant of Λ is $\operatorname{det}(\Lambda)=\operatorname{det}(G)$.

D_{n}-lattice

The D_{n}-lattice is defined as

$$
D_{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}: x_{1}+\cdots+x_{n} \text { is even }\right\}
$$

Packing density

The packing density of a lattice Λ is the proportion of the space \mathbb{R}^{n} covered by congruent disjoint spheres of maximum radius

$$
\rho=\frac{1}{2} \min \{d(x, \mathbf{0}) ; \boldsymbol{x} \in \Lambda, x \neq \mathbf{0}\} .
$$

Dicersity

Given $\Lambda \subseteq \mathbb{R}^{n}$ a lattice and $x=\left(x_{1}, \ldots, x_{n}\right) \in \Lambda$.

- The diversity of x is the number of $x_{i} s$ nonzero.
- The diversity of Λ is $\operatorname{div}(\Lambda)=\min \{\operatorname{div}(\boldsymbol{x}) ; \boldsymbol{x} \in \Lambda, \boldsymbol{x} \neq \mathbf{0}\}$.
- A full diversity lattice is a lattice such that $\operatorname{div}(\Lambda)=n$.

Mivimecun product distance

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full diversity lattice and $x \in \Lambda$.

- The product distance of x is $d_{p}(x)=\prod_{i=1}^{n}\left|x_{i}\right|$.
- The minimum product distance of Λ is

$$
d_{p, \min }(\Lambda)=\min \left\{d_{p}(x) \mid x \in \Lambda, x \neq 0\right\}
$$

- The relative minimum product distance of Λ, denoted by
$d_{p, \text { rel }}(\Lambda)$, is the minimum product distance of a scaled version of Λ with minimum Euclidean norm equal to one.

Signal constelattions having structure of lattices can be used for signal transmission over both Gaussian and Rayleigh fading channels.

- Gaussian channel \Longrightarrow high packing density.
- Rayleigh fading channel \Longrightarrow full diversity and high minimum product distance.

In this work we attempt to consider lattices which are feasible for both channels by constructing full diversity rotated D_{n}-lattices.

- E.B. Fluckiger, F. Oggier, E. Viterbo, "New algebraic constructions of rotated \mathbb{Z}^{n}-lattice constellations for the Rayleigh fading channel"
- J. Boutros, E. Viterbo, C. Rastello, J.C. Belfiori, "Good lattice constellations for both Rayleigh fading and Gaussian channels"

First Goal

To construct a family of rotated D_{n}-lattices via free \mathbb{Z}-modules $I \subseteq \mathcal{O}_{\mathbb{K}}$ of rank $n=[\mathbb{K}: \mathbb{Q}], \mathbb{K}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$.

Nacuber Fields

- A number field \mathbb{K} is a finite extension of \mathbb{Q}.
- If $[\mathbb{K}: \mathbb{Q}]=n$, then there are n distinct \mathbb{Q}-homomorphisms $\left\{\sigma_{i}: \mathbb{K} \longrightarrow \mathbb{C}\right\}_{i=1}^{n}$.
- If $\sigma_{i}(\mathbb{K}) \subseteq \mathbb{R}$ for all $i=1, \cdots, n$ the number field \mathbb{K} is said totally real.

Touisted hamamorphison

Let \mathbb{K} be a totally real number field of degree n and $\alpha \in \mathbb{K}$ such that $\alpha_{i}=\sigma_{i}(\alpha) \in \mathbb{R}$ and $\sigma_{i}(\alpha)>0$ for all $i=1, \cdots, n$. The twisted homomorphism is the map

$$
\begin{gathered}
\sigma_{\alpha}: \mathbb{K} \longrightarrow \mathbb{R}^{n} \\
\sigma_{\alpha}(x)=\left(\sqrt{\alpha_{1}} \sigma_{1}(x), \ldots, \sqrt{\alpha_{n}} \sigma_{n}(x)\right)
\end{gathered}
$$

If $[\mathbb{K}: \mathbb{Q}]=n$ and $I \subseteq \mathbb{K}$ is a free \mathbb{Z}-module with rank n and \mathbb{Z}-basis $\left\{v_{1}, \ldots, v_{n}\right\}$, then the image $\sigma_{\alpha}(I)$ is a lattice in \mathbb{R}^{n} with basis $\left\{\sigma_{\alpha}\left(v_{1}\right), \ldots, \sigma_{\alpha}\left(v_{n}\right)\right\}$.

Determicrant

If $I \subseteq \mathcal{O}_{\mathbb{K}}$ is a free \mathbb{Z}-module of rank n and $\Lambda=\sigma_{\alpha}(I)$, then

$$
\operatorname{det}(\Lambda)=N(I)^{2} N_{\mathbb{K} \mid \mathbb{Q}}(\alpha) d_{\mathbb{K}}
$$

where $N(I)=\left|\mathcal{O}_{\mathbb{K}} / I\right|, N_{\mathbb{K} \mid \mathbb{Q}}(\alpha)=\prod_{i=1}^{n} \sigma_{i}(\alpha)$ and $d_{\mathbb{K}}$ is the discriminant of $\mathbb{K} \mid \mathbb{Q}$.

If \mathbb{K} is a totally real number field, then:

- $\Lambda=\sigma_{\alpha}(I) \subseteq \mathbb{R}^{n}$ has full diversity n.
- The minimum product distance of $\Lambda=\sigma_{\alpha}(I)$ is

$$
d_{p, \min }(\Lambda)=\sqrt{N_{\mathbb{K} \mid \odot}(\alpha)} \min _{0 \neq y \in I}\left|N_{\mathbb{K} \mid \odot}(y)\right|,
$$

where $N_{\mathbb{K} \mid \mathbb{Q}}(y)=\prod_{i=1}^{n} \sigma_{\alpha}(y)$ for all $x \in \mathbb{K}$.

Cuclatamic Fields

- Let $\zeta=\zeta_{m}=e^{\frac{2 \pi i}{m}}$
- The field $\mathbb{K}=\mathbb{Q}(\zeta)$ is called cyclotomic field.
- The subfield $\mathbb{L}=\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \subseteq \mathbb{Q}(\zeta)$ is called maximal real subfield of $\mathbb{Q}(\zeta)$ and it is a totally real number field.

Ratated \mathbb{Z}^{n}-lattices, $n=\frac{p-1}{2}, p$ prime

$$
\text { Let } \zeta=\zeta_{p}, p \text { prime, } p \geq 5, \mathbb{K}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}{ }^{-1}\right) \text { and } e_{i}=\zeta^{i}+\zeta^{-i}
$$

Proposition

If $I=\mathcal{O}_{\mathbb{K}}$ and $\alpha=2-e_{1}$, then the lattice $\frac{1}{\sqrt{p}} \sigma_{\alpha}\left(\mathcal{O}_{\mathbb{K}}\right) \subseteq \mathbb{R}^{\frac{p-1}{2}}$ is a rotated $\mathbb{Z}^{\frac{p-1}{2}}$-lattice.

- E.B. Fluckiger, F. Oggier, E. Viterbo, "New algebraic constructions of rotated \mathbb{Z}^{n}-lattice constellations for the Rayleigh fading channel"

Ratated D_{n}-latitices, $n=\frac{p-1}{2}$, p prime

Let p prime, $p \geq 7, \zeta=\zeta_{p}, \mathbb{K}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ and $e_{i}=\zeta^{i}+\zeta^{-i}$.

Proposition

If $I \subseteq \mathcal{O}_{\mathbb{K}}$ is a free \mathbb{Z}-module with \mathbb{Z}-basis

$$
\left\{-e_{1}-2 e_{2}-\cdots-2 e_{n}, e_{1}, e_{2}, \cdots, e_{n-1}\right\}
$$

and $\alpha=2-e_{1}$, then the lattice $\frac{1}{\sqrt{p}} \sigma_{\alpha}(I)$ is a rotated D_{n}-lattice.

We have that $D_{n} \subseteq \mathbb{Z}^{n}$
Let B be the generator matrix for D_{n}

$$
B=\left(\begin{array}{ccccccc}
-1 & -1 & 0 & 0 & \cdots & 0 & 0 \\
1 & -1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -1
\end{array}\right)
$$

Ratated \mathbb{Z}^{n}-lattices, $n=\frac{p-1}{2}, p$ prime

$$
\text { Let } \zeta=\zeta_{p}, p \text { prime, } p \geq 5, \mathbb{K}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}{ }^{-1}\right) \text { and } e_{i}=\zeta^{i}+\zeta^{-i}
$$

Proposition

If $I=\mathcal{O}_{\mathbb{K}}$ and $\alpha=2-e_{1}$, then the lattice $\frac{1}{\sqrt{p}} \sigma_{\alpha}\left(\mathcal{O}_{\mathbb{K}}\right) \subseteq \mathbb{R}^{\frac{p-1}{2}}$ is a rotated $\mathbb{Z}^{\frac{p-1}{2}}$-lattice.

- E.B. Fluckiger, F. Oggier, E. Viterbo, "New algebraic constructions of rotated \mathbb{Z}^{n}-lattice constellations for the Rayleigh fading channel"

Using the generator matrix M of $\frac{1}{\sqrt{p}} \sigma_{\alpha}\left(\mathcal{O}_{\mathbb{K}}\right)$ such that $M M^{t}=I_{n \times n}$, we have that $B M$ is a generator matrix for a rotated D_{n}-lattice. Using homomorphism properties we prove that this rotated D_{n}-lattice is $\frac{1}{\sqrt{p}} \sigma_{\alpha}(I)$.

Ratated D_{n}-lattices, $n=\frac{p-1}{2}, p$ prime

Proposition

If $\Lambda=\frac{1}{\sqrt{p}} \sigma_{\alpha}(I)$, then

$$
d_{p, r e l}(\Lambda)=2^{\frac{1-p}{4}} p^{\frac{3-p}{4}}
$$

For $\Lambda=\frac{1}{\sqrt{p}}\left(\sigma_{\alpha}(I)\right) \subseteq \mathbb{R}^{\frac{p-1}{2}}$ and p prime:

$$
\lim _{n \longrightarrow \infty} \frac{\sqrt[n]{d_{p, \text { rel }}\left(\mathbb{Z}^{n}\right)}}{\sqrt[n]{d_{p, \text { rel }}\left(D_{n}\right)}}=\sqrt{2} \text { e } \lim _{n \longrightarrow \infty} \frac{\delta\left(\mathbb{Z}^{n}\right)}{\delta\left(D_{n}\right)}=0
$$

Proposition

The \mathbb{Z}-module $I \subseteq \mathcal{O}_{\mathbb{K}}$ is not an ideal of $\mathcal{O}_{\mathbb{K}}$.

- If it was possible to construct these rotated D_{n}-lattices via ideals of $\mathcal{O}_{\mathbb{K}}$ we would have a greater relative minimum product distance than the one obtained in our construction.
- This motivated our study on the existence of such rotated D_{n}-lattices via ideals of $\mathcal{O}_{\mathbb{K}}$, for $\mathbb{K}=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right), p$ prime.

Secand Gaal

Proposition

Let p be a prime number and $\mathbb{K} \subseteq \mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ such that $\mathbb{K} \mid \mathbb{Q}$ is a Galois extension and $[\mathbb{K}: \mathbb{Q}] \notin\{1,2,4\}$. It is impossible to construct rotated D_{n}-lattices via the twisted homomorphism applied to ideals of $\mathcal{O}_{\mathbb{K}}$ and $\alpha \in \mathcal{O}_{\mathbb{K}}$.

A necessary condition to construct a rotated D_{n}-lattice, scaled by \sqrt{c} with $c \in \mathbb{Z}$, via ideals of $\mathcal{O}_{\mathbb{K}}$, is the existence of an ideal $I \subseteq \mathcal{O}_{\mathbb{K}}$ and an element totally positive $\alpha \in \mathcal{O}_{\mathbb{K}}$ such that

$$
4 c^{n}=N_{\text {K } \mid \mathbb{Q}}(\alpha) N(I)^{2} d_{\mathrm{K}} .
$$

Since p is odd prime, we have that $2 \nmid d_{\mathbb{K}}$, what implies that

```
either 2 divides N(\alpha) or 2 divides N(I).
```

We can prove that if $A \subseteq \mathcal{O}_{\mathbb{K}}$ is an ideal and $N(A)$ is even, then

$$
N(A)=\left(2^{f}\right)^{a} b, a \geq 1, b \text { odd }
$$

where f is the residual degree of 2 .
We may write:

- $N(I)=\left(2^{f}\right)^{a_{1}} b_{1}, a_{1} \geq 0, b_{1}$ odd.
- $N_{\mathbb{K} \mid \mathbb{Q}}(\alpha)=\left(2^{f}\right)^{a_{2}} b_{2}, a_{2} \geq 0, b_{2}$ odd.
- $c=2^{a} b, a \geq 0, b$ odd.

We have

$$
4\left(2^{a} b\right)^{n}=\left(2^{f}\right)^{a_{2}} b_{2}\left(\left(2^{f}\right)^{a_{1}} b_{1}\right)^{2} d_{\mathbb{K}}
$$

and the powers of 2 are equal in the equality iff
$2+\operatorname{aefg}=2+a n=f a_{2}+2 f a_{1}=f\left(a_{2}+2 a_{1}\right)$, i.e.,

$$
2=f\left(a_{2}+2 a_{1}-a g\right)
$$

Since $d_{\mathbb{K}}$ is odd and $[\mathbb{K}: \mathbb{Q}] \notin\{1,2,4\}$ we can prove that $f \neq 1$ and $f \neq 2$. Then, it is impossible to obtain this equality.

Rotated D_{3} and D_{5}-lattices

Proposition

It is impossible to construct rotated D_{3} and D_{5}-lattices via ideals of \mathcal{O}_{K}.
E. E.B. Fluckiger, F. Oggier, E. Viterbo, New algebraic constructions of rotated \mathbb{Z}^{n}-lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory, v.50, n.4, p.702-714, 2004.

E-B. Fluckiger, G. Nebe, "On the Euclidean minimum of some real number fields", Journal de theorie des nombres de Bordeaux, 17 no.

2, p. 437-454, 2005.
嗇 J. Boutros, E. Viterbo, C. Rastello, J.C. Belfiori, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory, v.42, n.2, p.502-517, 1996.
© J.H. Conway and N.J.A. Sloane. "Sphere Packings, Lattices and Groups'". Springer-Verlag, New York (1999).

Thacer you!

