Rotated D_n -lattices via $\mathbb{Q}(\zeta_p+\zeta_p^{-1})$, p prime

Grasiele C. Jorge - Unicamp-Brazil Sueli I. R. Costa - Unicamp-Brazil

Algebraic and Combinatorial Coding Theory ACCT 2012 • To present a family of rotated D_n -lattices with full diversity via \mathbb{Z} -modules of $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$, p prime;

• To show that it is impossible to construct these lattices via ideals of $\mathbb{Z}[\zeta_p + \zeta_p^{-1}]$.

Lattices in \mathbb{R}^n

Let {v₁, · · · , v_m}, m ≤ n, be a set of linearly independent vectors in ℝⁿ. The set

$$\Lambda = \left\{ \sum_{i=1}^m a_i v_i, \text{ where } a_i \in \mathbb{Z}, i = 1, \cdots, m \right\}$$

is called lattice .

• The set $\{v_1, \dots, v_m\}$ is called a basis of Λ .

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ■ りんの

The D_n -lattice is defined as $D_n = \{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n : x_1 + \dots + x_n \text{ is even} \}$

伺 と く ヨ と く ヨ と

The packing density of a lattice Λ is the proportion of the space \mathbb{R}^n covered by congruent disjoint spheres of maximum radius

$$\rho = \frac{1}{2} \min\{d(\mathbf{x}, \mathbf{0}); \mathbf{x} \in \Lambda, \mathbf{x} \neq \mathbf{0}\}.$$

Given
$$\Lambda \subseteq \mathbb{R}^n$$
 a lattice and $\boldsymbol{x} = (x_1, \dots, x_n) \in \Lambda$.

- The **diversity** of *x* is the number of *x*; *s* nonzero.
- The diversity of Λ is $div(\Lambda) = min\{div(x); x \in \Lambda, x \neq 0\}$.
- A full diversity lattice is a lattice such that $div(\Lambda) = n$.

Let $\Lambda \subseteq \mathbb{R}^n$ be a full diversity lattice and $x \in \Lambda$.

- The product distance of x is $d_p(x) = \prod_{i=1} |x_i|$.
- The minimum product distance of Λ is

$$d_{p,min}(\Lambda) = min\{d_p(\mathbf{x}) \mid \mathbf{x} \in \Lambda, \mathbf{x} \neq \mathbf{0}\}.$$

• The relative minimum product distance of Λ , denoted by $d_{p,rel}(\Lambda)$, is the minimum product distance of a scaled version of Λ with minimum Euclidean norm equal to one.

Signal constelations having structure of lattices can be used for signal transmission over both Gaussian and Rayleigh fading channels.

• Gaussian channel \implies high packing density.

 Rayleigh fading channel => full diversity and high minimum product distance. In this work we attempt to consider lattices which are feasible for both channels by constructing full diversity rotated D_n -lattices.

- E.B. Fluckiger, F. Oggier, E. Viterbo, "New algebraic constructions of rotated Zⁿ-lattice constellations for the Rayleigh fading channel"
- J. Boutros, E. Viterbo, C. Rastello, J.C. Belfiori, "Good lattice constellations for both Rayleigh fading and Gaussian channels"

First Goal

To construct a family of rotated D_n -lattices via free \mathbb{Z} -modules $I \subseteq \mathcal{O}_{\mathbb{K}}$ of rank $n = [\mathbb{K} : \mathbb{Q}], \mathbb{K} = \mathbb{Q}(\zeta_p + \zeta_p^{-1}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Number Fields

- A number field \mathbb{K} is a finite extension of \mathbb{Q} .
- If $[\mathbb{K} : \mathbb{Q}] = n$, then there are *n* distinct \mathbb{Q} -homomorphisms $\{\sigma_i : \mathbb{K} \longrightarrow \mathbb{C}\}_{i=1}^n$.
- If σ_i(K) ⊆ R for all i = 1, · · · , n the number field K is said totally real.

(*) *) *) *) *)

Let \mathbb{K} be a totally real number field of degree n and $\alpha \in \mathbb{K}$ such that $\alpha_i = \sigma_i(\alpha) \in \mathbb{R}$ and $\sigma_i(\alpha) > 0$ for all $i = 1, \dots, n$. The twisted homomorphism is the map $\sigma_\alpha : \mathbb{K} \longrightarrow \mathbb{R}^n$ $\sigma_\alpha(x) = (\sqrt{\alpha_1}\sigma_1(x), \dots, \sqrt{\alpha_n}\sigma_n(x))$ If $[\mathbb{K} : \mathbb{Q}] = n$ and $I \subseteq \mathbb{K}$ is a free \mathbb{Z} -module with rank n and \mathbb{Z} -basis $\{v_1, \ldots, v_n\}$, then the image $\sigma_{\alpha}(I)$ is a lattice in \mathbb{R}^n with basis $\{\sigma_{\alpha}(v_1), \ldots, \sigma_{\alpha}(v_n)\}$.

If $I \subseteq \mathcal{O}_{\mathbb{K}}$ is a free \mathbb{Z} -module of rank n and $\Lambda = \sigma_{\alpha}(I)$, then

$${\it det}(\Lambda)={\it N}({\it I})^2{\it N}_{{\Bbb K}|{\Bbb Q}}(lpha){\it d}_{{\Bbb K}}$$

where $N(I) = |\mathcal{O}_{\mathbb{K}}/I|$, $N_{\mathbb{K}|\mathbb{Q}}(\alpha) = \prod_{i=1}^{n} \sigma_{i}(\alpha)$ and $d_{\mathbb{K}}$ is the discriminant of $\mathbb{K}|\mathbb{Q}$.

(日) 《聞》 《臣》 《臣》 『臣』 わえの

If $\mathbb K$ is a totally real number field, then:

•
$$\Lambda = \sigma_{\alpha}(I) \subseteq \mathbb{R}^n$$
 has full diversity *n*.

• The minimum product distance of $\Lambda = \sigma_{\alpha}(I)$ is

$$d_{p,\textit{min}}(\Lambda) = \sqrt{N_{\mathbb{K}|\mathbb{Q}}(lpha)\textit{min}_{0
eq y \in I}|N_{\mathbb{K}|\mathbb{Q}}(y)|}$$

where $N_{\mathbb{K}|\mathbb{Q}}(y) = \prod_{i=1}^{n} \sigma_{\alpha}(y)$ for all $x \in \mathbb{K}$.

Cyclotomic Fields

• Let
$$\zeta = \zeta_m = e^{\frac{2\pi i}{m}}$$

- The field $\mathbb{K} = \mathbb{Q}(\zeta)$ is called cyclotomic field.
- The subfield L = Q(ζ + ζ⁻¹) ⊆ Q(ζ) is called maximal real subfield of Q(ζ) and it is a totally real number field.

Rotated \mathbb{Z}^n -lattices, $n = \frac{p-1}{2}$, p prime

Let
$$\zeta = \zeta_p$$
, p prime, $p \ge 5$, $\mathbb{K} = \mathbb{Q}(\zeta_p + {\zeta_p}^{-1})$ and $e_i = \zeta^i + \zeta^{-i}$.

Proposition

If
$$I = \mathcal{O}_{\mathbb{K}}$$
 and $\alpha = 2 - e_1$, then the lattice $\frac{1}{\sqrt{p}}\sigma_{\alpha}(\mathcal{O}_{\mathbb{K}}) \subseteq \mathbb{R}^{\frac{p-1}{2}}$ is a rotated $\mathbb{Z}^{\frac{p-1}{2}}$ -lattice.

 E.B. Fluckiger, F. Oggier, E. Viterbo, "New algebraic constructions of rotated Zⁿ-lattice constellations for the Rayleigh fading channel"

Let
$$p$$
 prime, $p \geq 7$, $\zeta = \zeta_p$, $\mathbb{K} = \mathbb{Q}(\zeta_p + {\zeta_p}^{-1})$ and $e_i = \zeta^i + \zeta^{-i}$.

If $I \subseteq \mathcal{O}_{\mathbb{K}}$ is a free \mathbb{Z} -module with \mathbb{Z} -basis

$$\{-e_1-2e_2-\cdots-2e_n, e_1, e_2, \cdots, e_{n-1}\}$$

and $\alpha = 2 - e_1$, then the lattice $\frac{1}{\sqrt{\rho}}\sigma_{\alpha}(I)$ is a rotated D_n -lattice.

We have that $D_n \subseteq \mathbb{Z}^n$

Let B be the generator matrix for D_n

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 日 ▼

Rotated \mathbb{Z}^n -lattices, $n = \frac{p-1}{2}$, p prime

Let
$$\zeta = \zeta_p$$
, p prime, $p \ge 5$, $\mathbb{K} = \mathbb{Q}(\zeta_p + {\zeta_p}^{-1})$ and $e_i = \zeta^i + \zeta^{-i}$.

Proposition

If
$$I = \mathcal{O}_{\mathbb{K}}$$
 and $\alpha = 2 - e_1$, then the lattice $\frac{1}{\sqrt{p}}\sigma_{\alpha}(\mathcal{O}_{\mathbb{K}}) \subseteq \mathbb{R}^{\frac{p-1}{2}}$ is a rotated $\mathbb{Z}^{\frac{p-1}{2}}$ -lattice.

 E.B. Fluckiger, F. Oggier, E. Viterbo, "New algebraic constructions of rotated Zⁿ-lattice constellations for the Rayleigh fading channel" Using the generator matrix M of $\frac{1}{\sqrt{p}}\sigma_{\alpha}(\mathcal{O}_{\mathbb{K}})$ such that $MM^t = I_{n \times n}$, we have that BM is a generator matrix for a rotated D_n -lattice. Using homomorphism properties we prove that this rotated D_n -lattice is $\frac{1}{\sqrt{p}}\sigma_{\alpha}(I)$.

Rotated
$$D_n$$
-lattices, $n = \frac{p-1}{2}$, p prime

If
$$\Lambda=rac{1}{\sqrt{p}}\sigma_{lpha}(I)$$
, then $d_{
ho,rel}(\Lambda)=2^{rac{1-p}{4}}p^{rac{3-p}{4}}.$

For
$$\Lambda = rac{1}{\sqrt{p}}(\sigma_lpha(I)) \subseteq \mathbb{R}^{rac{p-1}{2}}$$
 and p prime:

$$\lim_{n\longrightarrow\infty} \frac{\sqrt[n]{d_{p,rel}(\mathbb{Z}^n)}}{\sqrt[n]{d_{p,rel}(D_n)}} = \sqrt{2} \text{ e } \lim_{n\longrightarrow\infty} \frac{\delta(\mathbb{Z}^n)}{\delta(D_n)} = 0.$$

◆□ > ◆母 > ◆母 > ◆母 > ◆日 > ◆ ○ > ◆

The \mathbb{Z} -module $I \subseteq \mathcal{O}_{\mathbb{K}}$ is not an ideal of $\mathcal{O}_{\mathbb{K}}$.

- If it was possible to construct these rotated D_n -lattices via ideals of $\mathcal{O}_{\mathbb{K}}$ we would have a greater relative minimum product distance than the one obtained in our construction.
- This motivated our study on the existence of such rotated D_n -lattices via ideals of $\mathcal{O}_{\mathbb{K}}$, for $\mathbb{K} = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$, p prime.

Let p be a prime number and $\mathbb{K} \subseteq \mathbb{Q}(\zeta_p + \zeta_p^{-1})$ such that $\mathbb{K}|\mathbb{Q}$ is a Galois extension and $[\mathbb{K} : \mathbb{Q}] \not\in \{1, 2, 4\}$. It is impossible to construct rotated D_n -lattices via the twisted homomorphism applied to ideals of $\mathcal{O}_{\mathbb{K}}$ and $\alpha \in \mathcal{O}_{\mathbb{K}}$.

A necessary condition to construct a rotated D_n -lattice, scaled by \sqrt{c} with $c \in \mathbb{Z}$, via ideals of $\mathcal{O}_{\mathbb{K}}$, is the existence of an ideal $I \subseteq \mathcal{O}_{\mathbb{K}}$ and an element totally positive $\alpha \in \mathcal{O}_{\mathbb{K}}$ such that

$$4c^n = N_{\mathbb{K}|\mathbb{Q}}(\alpha)N(I)^2d_{\mathbb{K}}.$$

Since p is odd prime, we have that $2 \nmid d_{\mathbb{K}}$, what implies that

either 2 divides
$$N(\alpha)$$
 or 2 divides $N(I)$.

・ロト ・母 ・ ・ 由 ・ ・ 由 ・ うらの

We can prove that if $A \subseteq \mathcal{O}_{\mathbb{K}}$ is an ideal and N(A) is even, then

$$N(A) = (2^f)^a b, a \ge 1, b \text{ odd}$$

where f is the residual degree of 2.

We may write:

•
$$N(I) = (2^f)^{a_1} b_1$$
, $a_1 \ge 0$, b_1 odd.

•
$$N_{\mathbb{K}|\mathbb{Q}}(\alpha) = (2^f)^{a_2} b_2, \ a_2 \ge 0, \ b_2 \text{ odd.}$$

•
$$c = 2^a b$$
, $a \ge 0$, b odd.

We have

$$4(2^{a}b)^{n} = (2^{f})^{a_{2}}b_{2}((2^{f})^{a_{1}}b_{1})^{2}d_{\mathbb{K}}$$

and the powers of 2 are equal in the equality iff $2 + aefg = 2 + an = fa_2 + 2fa_1 = f(a_2 + 2a_1)$, i.e., $2 = f(a_2 + 2a_1 - ag)$

Since $d_{\mathbb{K}}$ is odd and $[\mathbb{K} : \mathbb{Q}] \notin \{1, 2, 4\}$ we can prove that $f \neq 1$ and $f \neq 2$. Then, it is impossible to obtain this equality.

Rotated D_3 and D_5 -lattices

Proposition

It is impossible to construct rotated D_3 and D_5 -lattices via ideals of

 $\mathcal{O}_{\mathbb{K}}.$

- E.B. Fluckiger, F. Oggier, E. Viterbo, New algebraic constructions of rotated Zⁿ-lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory, v.50, n.4, p.702-714, 2004.
- E.B. Fluckiger, G. Nebe, "On the Euclidean minimum of some real number fields", Journal de theorie des nombres de Bordeaux, 17 no.
 2, p. 437-454, 2005.
- J. Boutros, E. Viterbo, C. Rastello, J.C. Belfiori, *Good lattice constellations for both Rayleigh fading and Gaussian channels*, IEEE Trans. Inform. Theory, v.42, n.2, p.502-517, 1996.

J.H. Conway and N.J.A. Sloane. "Sphere Packings, Lattices and Groups". Springer-Verlag, New York (1999).

· < ∃ > < ∃ >

