The score of the minimum length of cycles in generalized quasi-cyclic regular LDPC codes

F. Ivanov V. Zyablov V. Potapov

Institute for Information Transmission Problems Russian Academy of Sciences

Algebraic and Combinatorial Coding Theory ACCT2012, 20.06.12

Outline

- Code structure
- Main result
- Results of the modeling
- Conclusion

Parity check matrix of the preudo-random LDPC code

 \mathbf{H}_0 – check matrix of the parity check code n_0 . Write block diagonal matrix \mathbf{H}_{b} , with b check matrixes \mathbf{H}_0 on the main diagonal, where b is large. Size $\mathbf{H}_0 - 1 \times n_0$. \mathbf{H}_{h} = size $\mathbf{H}_{b} - b \times bn_{0}$. $\pi(\mathbf{H}_b)$ – random columns permutation \mathbf{H}_{b} . Matrix **H** consists of $\ell > 2$ such permutations as a layers. Size **H** – $\ell b \times bn_0$. **H** determines the ensemble of regular (I, n_0) random binary LDPC codes of $\mathbf{H} =$ the length $n = bn_0$, that we will define as $\mathcal{E}(I, n_0, b)$

$$\mathbf{H}_{0} = \underbrace{111...1}_{n_{0}}$$

$$= \begin{pmatrix} \mathbf{H}_{0} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_{0} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{H}_{0} \\ \hline \mathbf{J}_{b} \end{pmatrix},$$

$$= \begin{pmatrix} \mathbf{H}_{1} \\ \mathbf{H}_{2} \\ \vdots \\ \mathbf{H}_{\ell} \end{pmatrix} = \begin{pmatrix} \pi_{1}(\mathbf{H}_{b}) \\ \pi_{2}(\mathbf{H}_{b}) \\ \vdots \\ \pi_{\ell}(\mathbf{H}_{b}) \end{pmatrix},$$

Fedor Ivanov, Victor Zyablov, Vladimir Potapov The score of the minimum length of cycles in generalized quasi-c

Cycles in the parity check matrix of the LDPC code

The cycle of the length 4 can be understood as the formation in check matrix a rectangle, which vertices are ones.

Cycles of the length 4 in the parity check matrix of the (3, 10) LDPC code

Theorem

If every pairwise scalar product of all rows (or columns) of the check matrix \mathbf{H} is less than 1, than \mathbf{H} does not contain cycles of the length 4.

Structure of the check matrix of the quasi-cyclic LDPC codes

Definition

Let I – is the $m \times m$ identity matrix. Let $I_{p_{ij}}$ – a right cyclic shift on a p_{ij} of columns of a unit matrix I, $p_{ij} \in \mathbb{N}$, $0 \le p < m$, $1 \le i \le l$, $1 \le j \le n_0$, $l \le n_0$. Then the check matrix

$$\mathbf{H} = \begin{pmatrix} \mathbf{I}_{p_{11}} & \mathbf{I}_{p_{12}} & \dots & \mathbf{I}_{p_{1n_0}} \\ \mathbf{I}_{p_{21}} & \mathbf{I}_{p_{22}} & \dots & \mathbf{I}_{p_{2n_0}} \\ \dots & \dots & \dots & \dots \\ \mathbf{I}_{p_{l1}} & \mathbf{I}_{p_{l2}} & \dots & \mathbf{I}_{p_{ln_0}} \end{pmatrix}$$

determines the ensemble of regular (I, n_0) binary LDPC codes of the length $n = mn_0$, that we will define as $\mathcal{E}_{QC}(I, n_0, m)$. Elements of the ensemble $\mathcal{E}_{QC}(I, n_0, m)$ are received with the help of an equiprobable sample of $p_{ij} \in \mathbb{N}$. The arbitrary code $\mathcal{C} \in \mathcal{E}_{QC}(I, n_0, m)$ will be called quasi-cyclic LDPC code.

The condition of the absence of the cycles of the length 4 for the quasi-cyclic LDPC codes

Theorem

Let

$$\mathbf{H} = \begin{pmatrix} \mathbf{I}_{p_{11}} & \mathbf{I}_{p_{12}} & \dots & \mathbf{I}_{p_{1n_0}} \\ \mathbf{I}_{p_{21}} & \mathbf{I}_{p_{22}} & \dots & \mathbf{I}_{p_{2n_0}} \\ \dots & \dots & \dots & \dots \\ \mathbf{I}_{p_{l1}} & \mathbf{I}_{p_{l2}} & \dots & \mathbf{I}_{p_{ln_0}} \end{pmatrix}$$

is the check matrix of the quasi-cyclic LDPC code, then ${\bf H}$ does not contain cycles of the length 4 if and only if for every submatrix

$$\mathbf{H}_1 = \begin{pmatrix} \mathbf{I}_{p_{i_1 j_1}} & \mathbf{I}_{p_{i_1 j_2}} \\ \mathbf{I}_{p_{i_2 j_1}} & \mathbf{I}_{p_{i_2 j_2}} \end{pmatrix}$$

 $(1 \le i_1 < i_2 \le I, \ 1 \le j_1 < j_2 \le n_0)$ the following condition is performed:

$$p_{i_2j_1} - p_{i_1j_1} \neq p_{i_2j_2} - p_{i_1j_2}.$$

Structure of the check matrix of the generalized guasi-cyclic LDPC codes

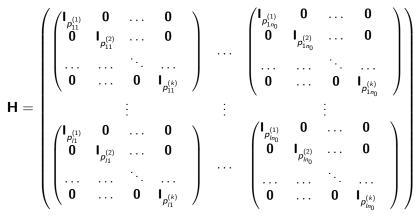
Definition

Let \mathbf{H}_1 , \mathbf{H}_2 , ..., \mathbf{H}_k , $k \ge 2$ are check matrixes of regular (l, n_0) binary quasi-cyclic LDPC codes of the lengthes $n_i = m_i n_0$:

$$\mathbf{H}_{i} = \begin{pmatrix} \mathbf{I}_{p_{11}^{(i)}} & \mathbf{I}_{p_{12}^{(i)}} & \cdots & \mathbf{I}_{p_{1n_{0}}^{(i)}} \\ \mathbf{I}_{p_{21}^{(i)}} & \mathbf{I}_{p_{21}^{(i)}} & \cdots & \mathbf{I}_{p_{2n_{0}}^{(i)}} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{I}_{p_{11}^{(i)}} & \mathbf{I}_{p_{12}^{(i)}} & \cdots & \mathbf{I}_{p_{1n_{0}}^{(i)}} \end{pmatrix}.$$

Structure of the check matrix of the generalized guasi-cyclic LDPC codes

Then the matrix



determines the ensemble of regular (I, n_0) binary LDPC codes of the length $n = n_0 \sum_{i=1}^{k} m_i = \sum_{i=1}^{k} n_i$, that we will define as $\mathcal{E}_{QQC}(I, n_0, m)$.

Fedor Ivanov, Victor Zyablov, Vladimir Potapov

The score of the minimum length of cycles in generalized quasi-cy

Structure of the check matrix of the generalized guasi-cyclic LDPC codes

Elements of the ensemble $\mathcal{E}_{QQC}(I, n_0, m)$ are received with the help of an equiprobable sample without replacement of parity matrixes $\mathbf{H}_1, \mathbf{H}_2, \ldots, \mathbf{H}_k, k \ge 2$. The arbitrary code $\mathcal{C} \in \mathcal{E}_{QQC}(I, n_0, m)$ will be called generalized quasi-cyclic LDPC code.

Theorem

If the matrix **H** of the generalized quasi-cyclic code consists of the matrices $\mathbf{H}_1, \mathbf{H}_2, \ldots, \mathbf{H}_k, k \ge 2$, then **H** does not have cycles of the length 4 if and only if $\mathbf{H}_1, \mathbf{H}_2, \ldots, \mathbf{H}_k$ do not have cycles of the length 4.

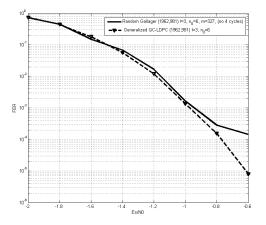
Example of the generalized guasi-cyclic LDPC code

Example

Let \mathbf{H}_1 , \mathbf{H}_2 , \mathbf{H}_3 are check matrixes of the regular (3, 6) quasi-cyclic LDPC codes with lengthes $n_1 = 6m_1 = 6 \cdot 80 = 480$, $n_2 = 6m_2 = 6 \cdot 113 = 678$, $n_3 = 6m_3 = 6 \cdot 134 = 804$. The minimum length of a cycle for every matrix \mathbf{H}_i , (i = 1, 2, 3) is 8.

The matrix **H** of the generalized quasi-cyclic LDPC code consisting of the matrices **H**₁, **H**₂, **H**₃ has has a minimum length of cycles 8. The resulting (3,6) generalized quasi-cyclic LDPC code has length $n = n_1 + n_2 + n_3 = 1962$.

Results of the modeling



The dependence between the error probability per frame (FER) and the signal-to-noise ratio (EsN0) for the random

Gallager code and code from $\mathcal{E}_{QQC}(I, n_0, m)$.

(日) (同) (三) (三)

Conclusion

- New LDPC code structure was discovered.
- For this construction the condition of the absence of the cycles of the length 4 was proved.
- Results of modeling allow us to make a conclusion that there is an opportunity of practical usage of the given code construction.

References

- R. G. Gallager, Low-Destiny Parity-Check Codes, M.I.T. Press, Massachusetts, 1963.
- M. Tanner A Recursive Approach to Low Complexity Codes, *IEEE Trans. Inform. Theory*, **27** (5), 533–547, 1981.
- E. Gabidulin, A. Moinian, B. Honary, Generalized Construction of Quasi-Cyclic Regular LDPC Codes Based on Permutation Matrices, *In Proceedings of IEEE International Symposium on Information Theory, 2006,* IEEE, 2006, 679–683.

Thank you for your attention.