
List decoding of Reed-Muller codes
with linear complexity up to the Johnson bound

Rafaël Fourquet

Univ. Paris 8, France

ACCT 2012

Definitions

Description of the algorithm

Experimental results

Binary Reed-Muller Codes

I Boolean function in m-variables:

Bm = {f : Fm
2 7−→ F2}

I Truth table of f : the list of its values (an order in Fm
2 is fixed)

f = (f (0), f (1), . . . , f (2m − 1) ∈ F2m

2

I Algebraic Normal Form:

Bm ' F2[x1, . . . , xm]/(x2
i − xi)

I Reed-Muller code of order r in m variables:

RM(r ,m) = {polynomials of degrees ≤ r} ⊂ F2m

2

−→ Linear code of length n = 2m, dimension
∑r

i=0
(m

i

)
and

minimal distance 2m−r .

List decoding

Let f ∈ Bm be a received vector, ε ∈]0, 1]. A deterministic list
decoding algorithm for the RM(r ,m) code outputs the list

Lε(f) =
{
q ∈ RM(r ,m) : d(f , q) ≤ 2m−1(1− ε)

}
.

where d(f , q) is the Hamming distance between f and q.

Definitions

Description of the algorithm

Experimental results

Sums Algorithm

I Sums algorithm in RM(1,m) (Kabatiansky-Tavernier,
ACCT’04)

I Goldreich-Levin algorithm: coefficients of the solutions are
constructed one by one

I Fast Fourier Transform (FFT): efficient use of the recursive
structure of RM(1,m)

I proposed algorithm: extension of the sums algorithm to any
order

Representation of a Boolean function

I coefficients of a Boolean function q ∈ RM(r ,m) of degree r :

q(x1, . . . , xm) = x1T1(x2, . . . , xm)

+ x2T2(x3, . . . , xm)

+ · · ·
+ xm−1Tm−1(xm)

+ xmTm

with Ti (xi+1, . . . , xm) ∈ RM(r − 1,m − i)
I Definition: the i-prefix qi of q:

qi = x1T1(x2, . . . , xm) + · · ·+ xiTi (xi+1, . . . , xm) ∈ RM(r ,m)

I At the i-th step of the algorithm, determine a list Li of
potential i-prefix of the solutions

Representation of a Boolean function

Example:

q = x1x3 + x2x3 + x2x4 + x3x4

= x1 (x3)︸︷︷︸
T1

+x2 (x3 + x4)︸ ︷︷ ︸
T2

+x3 (x4)︸︷︷︸
T3

q1 = x1(x3)

q2 = x1(x3) + x2(x3 + x4)

q2 = x1(x3) + x2(x3 + x4) + x3(x4)

The sums metric

q ∈ Lε(f) ⇐⇒
∑
x∈Fm

2

(−1)f (x)+q(x) = n − 2d(f , q) ≥ nε (n = 2m)

Lemma
Let 1 ≤ i ≤ m. For all fixed α ∈ Fm−i

2 , we have

qm(x , α) = qi (x , α) + q(0, . . . , 0, α)

Hence:∑
x∈Fm

2

(−1)f (x)+qm(x) =
∑

α∈Fm−i
2

(−1)q(0,...,0,α)
∑
x∈Fi

2

(−1)f (x ,α)+qi (x ,α)

q ∈ Lε(f)⇒ Γi (q) :=
∑

α∈Fm−i
2

∣∣∣ ∑
x∈Fi

2

(−1)f (x ,α)+qi (x ,α)
∣∣∣ ≥ nε

Li =
{
qi : Γi (qi) ≥ nε

}

Computing the criterion Γi

Fi (α) :=
∑

x∈Fi
2
(−1)f (x ,α)+qi (x ,α)

Γi (qi) =
∑

α∈Fm−i
2
|Fi (α)|

Let qi = qi−1 + xiTi . For x ∈ Fi−1
2 , α ∈ Fm−i

2 :

qi (x , 0, α) = qi−1(x , 0, α)

qi (x , 1, α) = qi−1(x , 1, α) + Ti (α)

Hence:

Fi (α) = Fi−1((0, α)) + (−1)Ti (α)Fi−1((1, α))

−→ Fi−1 was computed at the previous step.

A recursive algorithm

Problem: given qi−1 ∈ Li−1, how to compute the list
T (qi−1) :=

{
Ti ∈ RM(r − 1,m − i) : qi−1 + xiTi ∈ Li} of

successors of qi−1?
−→ it is a list decoding problem in RM(r − 1,m − i)!

Algorithm: given qi−1 ∈ Li−1 and Fi−1:
I compute T (qi−1) using Fi−1

I ∀Ti ∈ T (qi−1):
I qi ← qi−1 + xiTi
I compute Fi from Fi−1 and Ti
I apply recursively the algorithm to qi and Fi

Computing T (qi−1)
Let

V (0, α) = |Fi−1((0, α)) + Fi−1((1, α))|
V (1, α) = |Fi−1((0, α))− Fi−1((1, α))|

Then we have by definition:

Γi (qi−1 + xiTi) =
∑

α∈Fm−i
2

|Fi (α)| =
∑

α∈Fm−i
2

V (Ti (α), α)

Let

S(α) = (V (0, α) + V (1, α))/2
D(α) = (V (0, α)− V (1, α))/2

Then:
V (Ti (α), α) = S(α) + (−1)Ti (α)D(α).

We deduce:

Ti ∈ T (qi−1)⇔
∑
α

(−1)Ti (α)D(α) ≥ nε−
∑
α

S(α)

Size of the lists and complexity
Theorem (Johnson bound)
If ε >

√
1− 21−r , then

|Lε(f)| ≤ 21−r

ε2 − 1 + 21−r

Lemma
The Johnson bound applies to the intermediate lists Li .

Theorem
For fixed r and ε >

√
1− 21−r , the algorithm has linear complexity.

Proof.

θ(r ,m) =
m∑

i=1

∣∣Li−1∣∣× (θ(r − 1,m − i)︸ ︷︷ ︸
computing T (qi−1)

+ O(2m−i+1)︸ ︷︷ ︸
computing Fi−1

)

Definitions

Description of the algorithm

Experimental results

Size of the lists in the BSC for RM(2, 9)

0 1 2 3 4 5 6 7 8 9
i-th decoding step

20

22

24

26

28

210

212

214

216

218

220

|L
i|

ε=0.707 d=75

ε=0.648 d=90

ε=0.594 d=104

ε=0.547 d=116

ε=0.500 d=128

ε=0.457 d=139

ε=0.422 d=148

ε=0.387 d=157

ε=0.355 d=165

ε=0.324 d=173

Non-linearity profile

Non-linearity of order r of a Boolean function f :

nlr (f) = min
q∈RM(r ,m)

d(f , q)

Non-linearity profile of the “inverse” function tr(x−1) : F28 → F2

r 1 2 3 4 5 6 7 8
nlr 112 82 48 22 8 2 0 0
dimRM(r , 8) 9 37 93 163 219 247 255 256

Thank you

	Definitions
	Description of the algorithm
	Experimental results

