List decoding of Reed-Muller codes with linear complexity up to the Johnson bound

Rafaël Fourquet
Univ. Paris 8, France

ACCT 2012

Definitions

Description of the algorithm

Experimental results

Binary Reed-Muller Codes

- Boolean function in m-variables:

$$
\mathcal{B}_{m}=\left\{f: \mathbb{F}_{2}^{m} \longmapsto \mathbb{F}_{2}\right\}
$$

- Truth table of f : the list of its values (an order in \mathbb{F}_{2}^{m} is fixed)

$$
f=\left(f(0), f(1), \ldots, f\left(2^{m}-1\right) \in \mathbb{F}_{2}^{2^{m}}\right.
$$

- Algebraic Normal Form:

$$
\mathcal{B}_{m} \simeq \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right] /\left(x_{i}^{2}-x_{i}\right)
$$

- Reed-Muller code of order r in m variables:

$$
\mathrm{RM}(r, m)=\{\text { polynomials of degrees } \leq r\} \subset \mathbb{F}_{2}^{2^{m}}
$$

\longrightarrow Linear code of length $n=2^{m}$, dimension $\sum_{i=0}^{r}\binom{m}{i}$ and minimal distance 2^{m-r}.

List decoding

Let $f \in \mathcal{B}_{m}$ be a received vector, $\left.\left.\varepsilon \in\right] 0,1\right]$. A deterministic list decoding algorithm for the $\operatorname{RM}(r, m)$ code outputs the list

$$
L_{\varepsilon}(f)=\left\{q \in \operatorname{RM}(r, m): \mathrm{d}(f, q) \leq 2^{m-1}(1-\varepsilon)\right\}
$$

where $\mathrm{d}(f, q)$ is the Hamming distance between f and q.

Definitions

Description of the algorithm

Experimental results

Sums Algorithm

- Sums algorithm in $\mathrm{RM}(1, m)$ (Kabatiansky-Tavernier, ACCT'04)
- Goldreich-Levin algorithm: coefficients of the solutions are constructed one by one
- Fast Fourier Transform (FFT): efficient use of the recursive structure of $\mathrm{RM}(1, m)$
- proposed algorithm: extension of the sums algorithm to any order

Representation of a Boolean function

- coefficients of a Boolean function $q \in \operatorname{RM}(r, m)$ of degree r :

$$
\begin{aligned}
q\left(x_{1}, \ldots, x_{m}\right) & =x_{1} T_{1}\left(x_{2}, \ldots, x_{m}\right) \\
& +x_{2} T_{2}\left(x_{3}, \ldots, x_{m}\right) \\
& +\cdots \\
& +x_{m-1} T_{m-1}\left(x_{m}\right) \\
& +x_{m} T_{m}
\end{aligned}
$$

with $T_{i}\left(x_{i+1}, \ldots, x_{m}\right) \in \operatorname{RM}(r-1, m-i)$

- Definition: the i-prefix q^{i} of q :
$q^{i}=x_{1} T_{1}\left(x_{2}, \ldots, x_{m}\right)+\cdots+x_{i} T_{i}\left(x_{i+1}, \ldots, x_{m}\right) \in \operatorname{RM}(r, m)$
- At the i-th step of the algorithm, determine a list L^{i} of potential i-prefix of the solutions

Representation of a Boolean function

Example:

$$
\begin{aligned}
q & =x_{1} x_{3}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \\
& =x_{1} \underbrace{\left(x_{3}\right)}_{T_{1}}+x_{2} \underbrace{\left(x_{3}+x_{4}\right)}_{T_{2}}+x_{3} \underbrace{\left(x_{4}\right)}_{T_{3}} \\
q^{1} & =x_{1}\left(x_{3}\right) \\
q^{2} & =x_{1}\left(x_{3}\right)+x_{2}\left(x_{3}+x_{4}\right) \\
q^{2} & =x_{1}\left(x_{3}\right)+x_{2}\left(x_{3}+x_{4}\right)+x_{3}\left(x_{4}\right)
\end{aligned}
$$

The sums metric

$$
q \in L_{\varepsilon}(f) \Longleftrightarrow \sum_{x \in \mathbb{F}_{2}^{m}}(-1)^{f(x)+q(x)}=n-2 \mathrm{~d}(f, q) \geq n \varepsilon \quad\left(n=2^{m}\right)
$$

Lemma
Let $1 \leq i \leq m$. For all fixed $\alpha \in \mathbb{F}_{2}^{m-i}$, we have

$$
q^{m}(x, \alpha)=q^{i}(x, \alpha)+q(0, \ldots, 0, \alpha)
$$

Hence:

$$
\begin{aligned}
& \sum_{x \in \mathbb{F}_{2}^{m}}(-1)^{f(x)+q^{m}(x)}= \sum_{\alpha \in \mathbb{F}_{2}^{m-i}}(-1)^{q(0, \ldots, 0, \alpha)} \sum_{x \in \mathbb{F}_{2}^{i}}(-1)^{f(x, \alpha)+q^{i}(x, \alpha)} \\
& q \in L_{\varepsilon}(f) \Rightarrow \Gamma^{i}(q):=\sum_{\alpha \in \mathbb{F}_{2}^{m-i}}\left|\sum_{x \in \mathbb{F}_{2}^{i}}(-1)^{f(x, \alpha)+q^{i}(x, \alpha)}\right| \geq n \varepsilon \\
& L^{i}=\left\{q^{i}: \Gamma^{i}\left(q^{i}\right) \geq n \varepsilon\right\}
\end{aligned}
$$

Computing the criterion Γ^{i}

$$
\begin{aligned}
& F_{i}(\alpha):=\sum_{x \in \mathbb{F}_{2}^{i}}(-1)^{f(x, \alpha)+q^{i}(x, \alpha)} \\
& \Gamma^{i}\left(q^{i}\right)=\sum_{\alpha \in \mathbb{F}_{2}^{m-i}}\left|F_{i}(\alpha)\right| \\
& \text { Let } q^{i}=q^{i-1}+x_{i} T_{i} . \text { For } x \in \mathbb{F}_{2}^{i-1}, \alpha \in \mathbb{F}_{2}^{m-i}: \\
& \qquad q^{i}(x, 0, \alpha)=q^{i-1}(x, 0, \alpha) \\
& \qquad q^{i}(x, 1, \alpha)=q^{i-1}(x, 1, \alpha)+T_{i}(\alpha)
\end{aligned}
$$

Hence:

$$
F_{i}(\alpha)=F_{i-1}((0, \alpha))+(-1)^{T_{i}(\alpha)} F_{i-1}((1, \alpha))
$$

$\longrightarrow F_{i-1}$ was computed at the previous step.

A recursive algorithm

Problem: given $q^{i-1} \in L^{i-1}$, how to compute the list
$T\left(q^{i-1}\right):=\left\{T_{i} \in \operatorname{RM}(r-1, m-i): q^{i-1}+x_{i} T_{i} \in L^{i}\right\}$ of successors of q^{i-1} ?
\longrightarrow it is a list decoding problem in $\operatorname{RM}(r-1, m-i)$!
Algorithm: given $q^{i-1} \in L^{i-1}$ and F_{i-1} :

- compute $T\left(q^{i-1}\right)$ using F_{i-1}
- $\forall T_{i} \in T\left(q^{i-1}\right)$:
- $q^{i} \leftarrow q^{i-1}+x_{i} T_{i}$
- compute F_{i} from F_{i-1} and T_{i}
- apply recursively the algorithm to q^{i} and F_{i}

Computing $T\left(q^{i-1}\right)$

Let

$$
\begin{aligned}
& V(0, \alpha)=\left|F_{i-1}((0, \alpha))+F_{i-1}((1, \alpha))\right| \\
& V(1, \alpha)=\left|F_{i-1}((0, \alpha))-F_{i-1}((1, \alpha))\right|
\end{aligned}
$$

Then we have by definition:

$$
\Gamma^{i}\left(q^{i-1}+x_{i} T_{i}\right)=\sum_{\alpha \in \mathbb{F}_{2}^{m-i}}\left|F_{i}(\alpha)\right|=\sum_{\alpha \in \mathbb{F}_{2}^{m-i}} V\left(T_{i}(\alpha), \alpha\right)
$$

Let

$$
\begin{aligned}
& S(\alpha)=(V(0, \alpha)+V(1, \alpha)) / 2 \\
& D(\alpha)=(V(0, \alpha)-V(1, \alpha)) / 2
\end{aligned}
$$

Then:

$$
V\left(T_{i}(\alpha), \alpha\right)=S(\alpha)+(-1)^{T_{i}(\alpha)} D(\alpha)
$$

We deduce:

$$
T_{i} \in T\left(q^{i-1}\right) \Leftrightarrow \sum_{\alpha}(-1)^{T_{i}(\alpha)} D(\alpha) \geq n \varepsilon-\sum_{\alpha} S(\alpha)
$$

Size of the lists and complexity

Theorem (Johnson bound)
If $\varepsilon>\sqrt{1-2^{1-r}}$, then

$$
\left|L_{\varepsilon}(f)\right| \leq \frac{2^{1-r}}{\varepsilon^{2}-1+2^{1-r}}
$$

Lemma

The Johnson bound applies to the intermediate lists Li.
Theorem
For fixed r and $\varepsilon>\sqrt{1-2^{1-r}}$, the algorithm has linear complexity.
Proof.

$$
\theta(r, m)=\sum_{i=1}^{m}\left|L^{i-1}\right| \times(\underbrace{\theta(r-1, m-i)}_{\text {computing } T\left(q^{i-1}\right)}+\underbrace{O\left(2^{m-i+1}\right)}_{\text {computing } F_{i-1}})
$$

Definitions

Description of the algorithm

Experimental results

Size of the lists in the BSC for $\operatorname{RM}(2,9)$

Non-linearity profile

Non-linearity of order r of a Boolean function f :

$$
n I_{r}(f)=\min _{q \in \operatorname{RM}(r, m)} \mathrm{d}(f, q)
$$

Non-linearity profile of the "inverse" function $\operatorname{tr}\left(x^{-1}\right): \mathbb{F}_{2^{8}} \rightarrow \mathbb{F}_{2}$

r	1	2	3	4	5	6	7	8
$n I_{r}$	112	82	48	22	8	2	0	0
$\operatorname{dim} \mathrm{RM}(r, 8)$	9	37	93	163	219	247	255	256

Thank you

