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Motivation and summary of results

Motivation

Polar codes can achieve channel capacity on very long blocks

Consider a new class of codes
that is shorter
that keeps the polarization property – by using cancellation (recursive) decoding
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Motivation and summary of results

Summary

1 Consider a new class of punctured RM(r,m) codes with positions restricted to the
points of the hypercube Fm

2 that have some fixed Hamming weight

2 Codeword weight is determined by the weight of its information block. This
dependence is based on the values of Krawtchouk polynomials and is rather
nontrivial. Typically, the larger the input weight, the larger the output weight

3 Find parameters of punctured codes and show that the minimum weight
codewords are obtained on the input weights 1 or 2

4 Precode information blocks in some simple code. This increases the weight of the
input block and the obtained codeword at the expense of the code rate. Some
codes attain the Griesmer bound

5 Prove some new facts about Krawtchouk polynomials
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Reed-Muller (RM) codes – review

Reed-Muller [Reed’54, Muller’54] and Spherically Punctured Codes

Reed-Muller (RM) Codes R(r,m)

Polynomial structure:
Messages: polynomials of degree at most r in m boolean variables
Encoding: truth table

Parameters:

Length n = 2m. Dimension k =
r∑

i=0

(m
i

)
. Minimum distance d = 2m−r.

Spherically punctured RM Codes P(r,m, b) on a sphere of radius b

Polynomial structure:
Messages: polynomials of degree at most r in m boolean variables
Encoding: truth table punctured to positions x = (x1, . . . , xm) such that

wt(x) = b
Parameters:

Length n =
(m

b

)
Dimension and distance?
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Reed-Muller (RM) codes – review

Example: m = 3, r = 2

Message f (x1, x2, x3) = x2x3 + x1 + 1

Reed-Muller code R(2, 3)

0100 0 110

1000 1 010

0101 1 111

1
001

0
011

Codeword: (11100001)
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Reed-Muller code R(2, 3)

0100 0 110

1000 1 010

0101 1 111

1
001

0
011

Codeword: (11100001)

Spherically punctured code

110

101

011

0100

000 1 010

111

1
001

P(2, 3, b = 1) codeword: (110)

P(2, 3, b = 2) codeword: (000)
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0
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0
011
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1
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Note: Non-zero f (x) gives zero codeword
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1
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Codeword: (11100001)

Spherically punctured code

0 110

0101

0
011

0100

000 1 010

111

1
001

P(2, 3, b = 1) codeword: (110)

P(2, 3, b = 2) codeword: (000)

Note: Non-zero f (x) gives zero codeword

We now consider first order punctured codes P(1,m, b)
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Spherically punctured Hadamard codes

Spherically punctured Hadamard codes H(m, b)

The Hadamard codes H(m):
Formed by all linear functions of m variables

f (x1, . . . , xm) =

m∑
i=1

fixi fi, xi ∈ {0, 1}

Parameters: n = 2m k = m d = 2m−1

Definition

Spherically punctured Hadamard code H(m, b) is the code H(m) punctured to positions
x : wt(x) = b

The Hadamard code H(4):

GH(4) =
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

n = 16
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GH(4) =
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

n = 16

The Punctured Hadamard code H(4, 2):

GH(4,2) =
0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0

n =
(4

2

)
= 6
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Spherically punctured Hadamard codes

The Punctured Hadamard code H(m, 2)

Consider code H(m, 2). Ease to see that

H(m, 2) has length
(m

2

)
Codeword weight is determined by message weight

Lemma

Let f (x) =
m∑

i=1
fixi be a message such that wt(f1, f2, . . . , fm) = w.

Then codeword weight is w(m− w)

Pick x : wt(x) = 2

1

1xi →

xj →
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Spherically punctured Hadamard codes

The Punctured Hadamard code H(m, 2)
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Then codeword weight is w(m− w)

Pick x : wt(x) = 2

1

1xi →

xj →

f : wt(f ) = w

w

m− w

Thus, f (x) = 1 if fi 6= fj

The # of such x is w(m− w)
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Spherically punctured Hadamard codes

The Punctured Hadamard code H(m, 2)

Consider code H(m, 2). Ease to see that

H(m, 2) has length
(m

2

)
Codeword weight is determined by message weight

Lemma

Let f (x) =
m∑

i=1
fixi be a message such that wt(f1, f2, . . . , fm) = w.

Then codeword weight is w(m− w)

Pick x : wt(x) = 2

1

1xi →

xj →

f : wt(f ) = w

w

m− w

Thus, f (x) = 1 if fi 6= fj

The # of such x is w(m− w)

Corollary

Minimum distance of H(m, 2) is m− 1 and is achieved at w = 1

Dimension of H(m, 2) is m− 1 (vector with w = m gives zero codeword)
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Precoding

Precoding

Motivating example:

Consider code H(m, {1, 2}) on spheres
of radii b = 1, 2

Message weight w

Codeword weight w + w(m− w)

GH(4,{1,2}) =
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0 1 0
0 0 0 1 1 1 0 1 0 0

b = 1 b = 2

For example:

if input alphabet is Fm
2 , then d(m, {1, 2}) = m

if input alphabet is parity check code G[m,m− 1, 2], then d(m, {1, 2}) = 2m− 2

General scheme:

u ∈ Fk
2

Precoding−−−−−→ g ∈ G H(m,B)−−−−→ y ∈ HG(m,B)
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Construction of good codes

Precoding allows to build codes that attain Griesmer bound

Griesmer bound: for linear [n, k, d] binary code n ≥
k−1∑
i=0

⌈
d
2i

⌉
Lemma

Let G(s) = [2s − 1, s, 2s−1] be the shortened RM(1, s) code. Then HG(s)(2s − 1, {1, 2})
meets the Griesmer bound

HG(s)(2s − 1, {1, 2}) has dimension s

HG(s)(2s − 1, {1, 2}) has length 22s−1 − 2s−1

Each precoded message has weight 2s−1

Each codeword has weight 22s−2

Also, HG(s)(2s − 1,B) for B = {1, 2, 2s − 2, 2s − 3} (or any its subset) attains the
Griesmer bound
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Punctured biorthogonal codes on the sphere of radius b

Spherically punctured biorthogonal codes for general b

Recall that first order RM(1,m) code is formed by all affine functions of m variables

f (x1, . . . , xm) = f0 +
m∑

i=1

fixi fi, xi ∈ {0, 1}

and has parameters : n = 2m k = m + 1 d = 2m−1

Thus
R(1,m) = H(m) ∪ {H(m) + 1}

Definition

Spherically punctured biorthogonal code P(m, b) is the code R(1,m) punctured to
positions x so that wt(x) = b
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Punctured biorthogonal codes on the sphere of radius b

Spherically punctured biorthogonal code P(m, b)

Easy to see that:
P(m, b) has length

(m
b

)
codeword weight is determined by message weight

Consider a message f (x) whose linear part has weight w:

f (x) = f0 +
m∑

i=1

fixi so that wt(f1, . . . , fm) = w

Lemma

Codeword weight is
1
2

((
m
b

)
− (−1)f0 Km

b (w)

)
,

where Km
b (w) is the binary Krawtchouk polynomial defined as

Km
b (w) =

m∑
j=0

(−1)j

(
w
j

)(
m− w
b− j

)

We now study the minimum distance d(m, b) of P(m, b)
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Punctured biorthogonal codes on the sphere of radius b

Minimum distance of P(m, b)

Theorem

Spherically punctured biorthogonal code P(m, b) has

length
(m

b

)
dimension m

minimum distance

d(m, b) =


(m−1

b−1

)
, if m > 2b(m−1

b

)
, if m < 2b

2
(m−2

b

)
, if m = 2b

Finding the minimum distance of P(m, b) is much more involved that for standard
RM codes

In RM(r,m) analysis, a hypercube is split into two identical subcubes, that behave
similarly and yield a recursive estimate (u‖ u + v)

In our case, a sphere decomposes into two different subspheres. Furthermore, the
subspheres may behave differently in terms of minimum distance
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Punctured biorthogonal codes on the sphere of radius b

Minimum distance of P(m, b)

Split the sphere S(m, b) = {(x1, . . . , xm) : wt(x) = b} into two sub-spheres

S(m− 1, b) that consists of (x1, . . . , xm) ∈ S(m, b) that have xm = 0

S(m− 1, b− 1) = S(m, b)− S(m− 1, b)

Thus, P(m, b) decomposes as:

(m− 1, b− 1) (m− 1, b)
↖ ↗
(m, b)

Node (m, b) might decompose into

nodes of same types – easy case

nodes of different types – hard case

additional problems arise from zero codewords
generated by nonzero input blocks

8,3

7,2 7,3

6,2 6,3

5,2 5,3

(m,b): m > 2b

(m,b): m < 2b

(m,b): m = 2b
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Punctured biorthogonal codes on the sphere of radius b

Minimum of Krawtchouk polynomials

Corollary

For b ∈ [1,m− 1], and w ∈ [1,m− 1]

max {|Km
b (1)| , |Km

b (2)|} ≥ |Km
b (w)|

Similar result was previously known only in asymptotic setting for large m and linearly
growing b

We now study ways to improve d(m, b)
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Punctured biorthogonal codes on the sphere of radius b

Precoding in the general case

Krawtchouk polynomial Km
b (w)

has b simple roots r1 < r2 < . . . < rb so that

r1 ≥
m
2
−
√

b(m− b)

decays in [0, r1] and oscillates in [r1, rb]
1 2 3 4 5 6 7

w

200

400

600

is ‘small’ in the oscillating region, i.e. |Km
b (w)| ≤ 2−mθ/2(m

b

)
, θ > 0

Good precoding would concentrate the weight spectrum
close to the oscillating region

Thus, if the input spectrum of G is contained within [δmin, δmax], then

d(m, b) ≥ 1
2

((
m
b

)
−max

{
Km

b (δ), 2
−mθ/2

(
m
b

)})
, δ =

{
δmin, odd b
min{δmin,m− δmax}, even b

This bound is exponentially tight
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Open problems

Open problems

Extend precoding to multi-layer construction

Consider higher order RM codes

Thank you!
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