Formally Self-Dual Codes and Gray Maps

Steven T. Dougherty

May 24, 2012

Introduction

- Linear code of length n - submodule of R^{n}

Introduction

- Linear code of length n - submodule of R^{n}
- $[\mathbf{v}, \mathbf{w}]=\sum \mathbf{v}_{i} \overline{\mathbf{w}_{i}}$

Introduction

- Linear code of length n - submodule of R^{n}
- $[\mathbf{v}, \mathbf{w}]=\sum \mathbf{v}_{i} \overline{\mathbf{w}_{i}}$
- $C^{\perp}=\{\mathbf{v} \mid[\mathbf{v}, \mathbf{w}]=0, \forall \mathbf{w} \in C\}$

Introduction

- R Frobenius $\Rightarrow|C|\left|C^{\perp}\right|=|R|^{n}$.

Introduction

- R Frobenius $\Rightarrow|C|\left|C^{\perp}\right|=|R|^{n}$.
- $C=C^{\perp}$ the code is self-dual.

Introduction

- R Frobenius $\Rightarrow|C|\left|C^{\perp}\right|=|R|^{n}$.
- $C=C^{\perp}$ the code is self-dual.
- $W_{C}(y)=\sum_{\mathbf{c} \in C} y^{w t(\mathbf{c})}$.

Introduction

- R Frobenius $\Rightarrow|C|\left|C^{\perp}\right|=|R|^{n}$.
- $C=C^{\perp}$ the code is self-dual.
- $W_{C}(y)=\sum_{\mathbf{c} \in C} y^{w t(\mathbf{c})}$.
- $W_{C}(y)=W_{C^{\perp}}(y)$ the code is formally self-dual.

Rings

- $\mathbb{Z}_{4}=\{0,1,2,3\}$

Rings

- $\mathbb{Z}_{4}=\{0,1,2,3\}$
- $R_{k}=\mathbb{F}_{2}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{2}=0, u_{i} u_{j}=u_{j} u_{i}\right\rangle$

Rings

- $\mathbb{Z}_{4}=\{0,1,2,3\}$
- $R_{k}=\mathbb{F}_{2}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{2}=0, u_{i} u_{j}=u_{j} u_{i}\right\rangle$
- $A_{k}=\mathbb{F}_{2}\left[v_{1}, v_{2}, \ldots, v_{k}\right] /\left\langle v_{i}^{2}=v_{i}, v_{i} v_{j}=v_{j} v_{i}\right\rangle$

Gray Maps

$$
\phi_{\mathbb{Z}_{4}}: \mathbb{Z}_{4} \rightarrow \mathbb{F}_{2}^{2}
$$

$$
\begin{aligned}
\phi_{\mathbb{Z}_{4}}(0) & =(00) \\
\phi_{\mathbb{Z}_{4}}(1) & =(01) \\
\phi_{\mathbb{Z}_{4}}(2) & =(11) \\
\phi_{\mathbb{Z}_{4}}(3) & =(10)
\end{aligned}
$$

Gray Maps

$$
\phi_{R_{1}}\left(a+b u_{1}\right)=(b, a+b)
$$

$$
\phi_{R_{k}}\left(a+b u_{k}\right)=\left(\phi_{R_{k-1}}(b), \phi_{R_{k-1}}(a)+\phi_{R_{k-1}}(b)\right)
$$

Gray Maps

$$
\phi_{A_{1}}\left(a+b v_{1}\right)=(a, a+b)
$$

$$
\phi_{A_{k}}\left(a+b u_{k}\right)=\left(\phi_{A_{k-1}}(a), \phi_{A_{k-1}}(a)+\phi_{A_{k-1}}(b)\right)
$$

Gray Maps

$$
\begin{gathered}
\phi_{A_{1}}\left(a+b v_{1}\right)=(a, a+b) \\
\phi_{A_{k}}\left(a+b u_{k}\right)=\left(\phi_{A_{k-1}}(a), \phi_{A_{k-1}}(a)+\phi_{A_{k-1}}(b)\right)
\end{gathered}
$$

The maps $\phi_{R_{k}}$ and $\phi_{A_{k}}$ are linear but the map $\phi_{\mathbb{Z}_{4}}$ is not.

Gray Maps

$$
\begin{gathered}
\phi_{A_{1}}\left(a+b v_{1}\right)=(a, a+b) \\
\phi_{A_{k}}\left(a+b u_{k}\right)=\left(\phi_{A_{k-1}}(a), \phi_{A_{k-1}}(a)+\phi_{A_{k-1}}(b)\right)
\end{gathered}
$$

The maps $\phi_{R_{k}}$ and $\phi_{A_{k}}$ are linear but the map $\phi_{\mathbb{Z}_{4}}$ is not. The Lee weight is the Hamming weight of its binary image.

Inner Products

Over A_{k}, the Euclidean inner product is:

$$
[\mathbf{v}, \mathbf{w}]=\sum \mathbf{v}_{i} \mathbf{w}_{i}
$$

and the Hermitian is

$$
[\mathbf{v}, \mathbf{w}]_{H}=\sum \mathbf{v}_{i} \overline{\mathbf{w}_{i}}
$$

where $\overline{v_{i}}=1+v_{i}$.

Theorem
If C is a formally self-dual code over \mathbb{Z}_{4}, R_{k} or A_{k} then the image under the corresponding Gray map is a binary formally self-dual code.

Major Result

Theorem

Let C be an odd formally self-dual binary code of even length n.
Let C_{0} be the subcode of even vectors. The code
$\bar{C}=\left\langle\left\{(0,0, \mathbf{c}) \mid \mathbf{c} \in C_{0}\right\} \cup\left\{(1,0, \mathbf{c}) \mid \mathbf{c} \in C-C_{0}\right\},(1,1, \mathbf{1})\right\rangle$ is an even formally self-dual code of length $n+2$ with weight enumerator $W_{\bar{C}}=x^{2} W_{C_{0,0}}(x, y)+x y W_{C_{1,0}}(x, y)+y^{2} W_{C_{0,0}}(y, x)+x y W_{C_{1,0}}(y, x)$.
The code
$\bar{C}=\left\langle\left\{(0,0, \mathbf{c}) \mid \mathbf{c} \in C_{0}\right\} \cup\left\{(1,1, \mathbf{c}) \mid \mathbf{c} \in C-C_{0}\right\},(1,0, \mathbf{1})\right\rangle$ is an odd formally self-dual code of length $n+2$ with weight enumerator: $W_{\bar{C}}=x^{2} W_{C_{0,0}}(x, y)+y^{2} W_{C_{1,0}}(x, y)+x y W_{C_{0,0}}(y, x)+x y W_{C_{1,0}}(y, x)$. Moreover, any code with these weight enumerators is a formally self-dual code.

Outline of Proof

- Let C be an odd formally self-dual code.
- There exists a vector \mathbf{t} such that $C=\left\langle C_{0}, \mathbf{t}\right\rangle$, where C_{0} is the subcode of even vectors.

Outline of Proof

- Let C be an odd formally self-dual code.
- There exists a vector \mathbf{t} such that $C=\left\langle C_{0}, \mathbf{t}\right\rangle$, where C_{0} is the subcode of even vectors.
- $C_{\alpha, \beta}=C_{0}+\alpha \mathbf{t}+\beta \mathbf{1}$.

Outline of Proof

- Let C be an odd formally self-dual code.
- There exists a vector \mathbf{t} such that $C=\left\langle C_{0}, \mathbf{t}\right\rangle$, where C_{0} is the subcode of even vectors.
- $C_{\alpha, \beta}=C_{0}+\alpha \mathbf{t}+\beta \mathbf{1}$.
- $C^{\perp}=D$ and let D_{0} be the subcode of D of even vectors.

Outline of Proof

- Let C be an odd formally self-dual code.
- There exists a vector \mathbf{t} such that $C=\left\langle C_{0}, \mathbf{t}\right\rangle$, where C_{0} is the subcode of even vectors.
- $C_{\alpha, \beta}=C_{0}+\alpha \mathbf{t}+\beta \mathbf{1}$.
- $C^{\perp}=D$ and let D_{0} be the subcode of D of even vectors.
- There exists a vector \mathbf{t}^{\prime} such that $D=\left\langle D_{0}, \mathbf{t}^{\prime}\right\rangle$.

Outline of Proof

- Let C be an odd formally self-dual code.
- There exists a vector \mathbf{t} such that $C=\left\langle C_{0}, \mathbf{t}\right\rangle$, where C_{0} is the subcode of even vectors.
- $C_{\alpha, \beta}=C_{0}+\alpha \mathbf{t}+\beta \mathbf{1}$.
- $C^{\perp}=D$ and let D_{0} be the subcode of D of even vectors.
- There exists a vector \mathbf{t}^{\prime} such that $D=\left\langle D_{0}, \mathbf{t}^{\prime}\right\rangle$.
- $D_{\alpha, \beta}=D_{0}+\alpha \mathbf{t}^{\prime}+\beta \mathbf{1}$.

Outline of Proof

- $\bar{C}=U\left(v_{\alpha, \beta}, C_{\alpha, \beta}\right)$

Outline of Proof

- $\bar{C}=\bigcup\left(v_{\alpha, \beta}, C_{\alpha, \beta}\right)$
- $\bar{D}=\bigcup\left(w_{\alpha, \beta}, D_{\alpha, \beta}\right)$

Outline of Proof

- $\bar{C}=\bigcup\left(v_{\alpha, \beta}, C_{\alpha, \beta}\right)$
- $\bar{D}=\bigcup\left(w_{\alpha, \beta}, D_{\alpha, \beta}\right)$
- We need $\left[v_{\alpha, \beta}, w_{\alpha^{\prime}, \beta^{\prime}}\right]=\left[C_{\alpha, \beta}, D_{\alpha, \beta}\right]$.

Outline of Proof

- $\bar{C}=\bigcup\left(v_{\alpha, \beta}, C_{\alpha, \beta}\right)$
- $\bar{D}=\bigcup\left(w_{\alpha, \beta}, D_{\alpha, \beta}\right)$
- We need $\left[v_{\alpha, \beta}, w_{\alpha^{\prime}, \beta^{\prime}}\right]=\left[C_{\alpha, \beta}, D_{\alpha, \beta}\right]$.
- To insure linearity we need $v_{\alpha, \beta}=\alpha v_{1,0}+\beta v_{0,1}$ and $w_{\alpha, \beta}=\alpha w_{1,0}+\beta w_{0,1}$.

Outline of Proof

- $\bar{C}=\bigcup\left(v_{\alpha, \beta}, C_{\alpha, \beta}\right)$
- $\bar{D}=\bigcup\left(w_{\alpha, \beta}, D_{\alpha, \beta}\right)$
- We need $\left[v_{\alpha, \beta}, w_{\alpha^{\prime}, \beta^{\prime}}\right]=\left[C_{\alpha, \beta}, D_{\alpha, \beta}\right]$.
- To insure linearity we need $v_{\alpha, \beta}=\alpha v_{1,0}+\beta v_{0,1}$ and $w_{\alpha, \beta}=\alpha w_{1,0}+\beta w_{0,1}$.
- $v_{1,0}=(1,0), v_{0,1}=(1,1)$ and $w_{1,0}=(0,1), v_{0,1}=(1,1)$

Outline of Proof

- $\bar{C}=\bigcup\left(v_{\alpha, \beta}, C_{\alpha, \beta}\right)$
- $\bar{D}=\bigcup\left(w_{\alpha, \beta}, D_{\alpha, \beta}\right)$
- We need $\left[v_{\alpha, \beta}, w_{\alpha^{\prime}, \beta^{\prime}}\right]=\left[C_{\alpha, \beta}, D_{\alpha, \beta}\right]$.
- To insure linearity we need $v_{\alpha, \beta}=\alpha v_{1,0}+\beta v_{0,1}$ and $w_{\alpha, \beta}=\alpha w_{1,0}+\beta w_{0,1}$.
- $v_{1,0}=(1,0), v_{0,1}=(1,1)$ and $w_{1,0}=(0,1), v_{0,1}=(1,1)$
- $W_{\bar{C}}=W_{\bar{D}}=$

$$
x^{2} W_{C_{0,0}}(x, y)+x y W_{C_{1,0}}(x, y)+y^{2} W_{C_{0,0}}(y, x)+x y W_{C_{1,0}}(y, x)
$$

Outline of Proof

- $\bar{C}=\bigcup\left(v_{\alpha, \beta}, C_{\alpha, \beta}\right)$
- $\bar{D}=\bigcup\left(w_{\alpha, \beta}, D_{\alpha, \beta}\right)$
- We need $\left[v_{\alpha, \beta}, w_{\alpha^{\prime}, \beta^{\prime}}\right]=\left[C_{\alpha, \beta}, D_{\alpha, \beta}\right]$.
- To insure linearity we need $v_{\alpha, \beta}=\alpha v_{1,0}+\beta v_{0,1}$ and $w_{\alpha, \beta}=\alpha w_{1,0}+\beta w_{0,1}$.
- $v_{1,0}=(1,0), v_{0,1}=(1,1)$ and $w_{1,0}=(0,1), v_{0,1}=(1,1)$
- $W_{\bar{c}}=W_{\bar{D}}=$

$$
x^{2} W_{C_{0,0}}(x, y)+x y W_{C_{1,0}}(x, y)+y^{2} W_{C_{0,0}}(y, x)+x y W_{C_{1,0}}(y, x)
$$

- \bar{C} and \bar{D} are formally self-dual

Odd formally self-dual codes

- There exist odd formally self-dual codes of all lengths over A_{k} for all k.

Odd formally self-dual codes

- There exist odd formally self-dual codes of all lengths over A_{k} for all k.
- Linear odd formally self-dual codes exist over \mathbb{Z}_{4} and R_{k} for all lengths greater than 1.

Formally self-dual codes

Let $\mathbf{2}$ be the all 2 vector in $\mathbb{Z}_{4}^{n}, \mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{\mathbf{k}}$ be the all $u_{1} u_{2} \ldots u_{k}$ vector in R_{k}^{n} and $\mathbf{1}$ be the all one-vector (over any ring). Note that the Gray image of these vectors is the binary all-one vector.

Formally self-dual codes

Let $\mathbf{2}$ be the all 2 vector in $\mathbb{Z}_{4}^{n}, \mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{\mathbf{k}}$ be the all $u_{1} u_{2} \ldots u_{k}$ vector in R_{k}^{n} and $\mathbf{1}$ be the all one-vector (over any ring). Note that the Gray image of these vectors is the binary all-one vector.

Theorem

Let C be a formally self-dual code. The code C is even over \mathbb{Z}_{4} if and only if $\mathbf{2} \in C$. The code C is even over R_{k} if and only if $\mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{\mathbf{k}} \in C$. The code C is even over A_{k} if and only if $\mathbf{1} \in C$.

Formally self-dual codes

Theorem
Let C be an odd formally self-dual code over A_{k} or \mathbb{Z}_{4} of length n. Then C is a neighbor of an even formally self-dual code.

Importance of these codes

- Formally self-dual codes over R_{k} produce binary formally self-dual codes that have k distinct automorphisms

Importance of these codes

- Formally self-dual codes over R_{k} produce binary formally self-dual codes that have k distinct automorphisms
- Formally self-dual codes over \mathbb{Z}_{4} produce non-linear formally self-dual codes which may have higher minimum distance than any linear formally self-dual codes.

Importance of these codes

- Formally self-dual codes over R_{k} produce binary formally self-dual codes that have k distinct automorphisms
- Formally self-dual codes over \mathbb{Z}_{4} produce non-linear formally self-dual codes which may have higher minimum distance than any linear formally self-dual codes.
- A formally self-dual code over A_{k} can be constructed using any 2^{k-1} binary codes.

