Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory

An improved algorithm for proving nonexistence of small spherical designs

Peter Boyvalenkov, Maya Stoyanova

Pomorie, Bulgaria, 15-21 June, 2012

Spherical designs

P. Delsarte, J.-M. Goethals, J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6, 1977, 363-388.
Definition 1. A finite nonempty subset $C \subset \mathbb{S}^{n-1}$ is called a spherical τ-design if for every point $x \in C$ and for every real polynomial $f(t)$ of degree at most τ, the equality

$$
\begin{equation*}
\sum_{y \in C \backslash\{x\}} f(\langle x, y\rangle)=f_{0}|C|-f(1) \tag{1}
\end{equation*}
$$

holds, where f_{0} is the first coefficient in the expansion of $f(t)=\sum_{i=0}^{k} f_{i} P_{i}^{(n)}(t)$ in terms of the Gegenbauer polynomials.
The strength of C is the maximal number $\tau=\tau(C)$ such that C is a spherical τ-design.
We have the following formula

$$
f_{0}=a_{0}+\sum_{i=1}^{[k / 2]} \frac{a_{2 i}(2 i-1)!!}{n(n+2) \cdots(n+2 i-2)}=a_{0}+\frac{a_{2}}{n}+\frac{3 a_{4}}{n(n+2)}+\cdots
$$

Problems

Problem 1. For fixed strength $\tau \geq 3$ and dimension $n \geq 3$ find bounds on the quantity

$$
B_{\text {odd }}(n, \tau)=\min \left\{M=|C|:|C| \text { is odd and } \exists \tau \text {-design } C \subset \mathbb{S}^{n-1}\right\}
$$

Problem 2. Decide whether a τ-design on \mathbb{S}^{n-1} of odd cardinality $M=|C|$ exists for fixed strength τ, dimension n and M.

Problem 3. (asymptotic) For a fixed odd integer $\tau=2 k-1 \geq 3$ and for $n \rightarrow \infty$ obtain lower bounds on $B_{\text {odd }}(n, \tau)$,
More precisely, we want to find new A_{τ} where
$B_{\text {odd }}(n, \tau) \gtrsim A_{\tau} \frac{2 n^{k-1}}{(k-1)!}, A_{\tau}$ depending on τ only, if
$\liminf _{n \rightarrow \infty} \frac{(k-1)!B_{\text {odd }}(n, \tau)}{2 n^{k-1}} \geq A_{\tau}$.

Some known results

Delsarte-Goethals-Seidel bounds
P. Delsarte, J.-M. Goethals, J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6, 1977, 363-388.

$$
\begin{gathered}
B(n, \tau) \geq D(n, \tau)= \begin{cases}2\binom{n+k-2}{n-1}, & \text { if } \tau=2 k-1, \\
\binom{n+k-1}{n-1}+\binom{n+k-2}{n-1}, & \text { if } \tau=2 k .\end{cases} \\
B_{\text {odd }}(n, 2 k-1) \gtrsim \frac{2 n^{k-1}}{(k-1)!} .
\end{gathered}
$$

Some known results

B. Reznick, 1995, Lin. Alg. Appl.

Constructions of spherical 5-designs in three dimensions for cardinalities $16,18,20,22,24$ and ≥ 26.
R. H. Hardin, N. J. A. Sloane, 1996, Discr. Comp. Geom.

Constructions of some spherical designs in three dimensions.
B. Bajnok, 1998, Graphs Combin., 2000, Des. Codes Crypt. Constructions of 3-designs on \mathbb{S}^{n-1} with all admissible even cardinalities (i.e. $\geq 2 n$) and all odd cardinalities $M \geq 5 n / 2$ for $n \geq 6$, and to 11 for $n=3,4$, and 15 for $n=5$.

Some known results

P. Boyvalenkov, S. Nikova, 1993-1994, Springer-Verlag Lect. Notes

Comp. Science.
Results - new lower bounds on $B(n, \tau)$ for $\tau \geq 6$.
V. Yudin, 1997, Izv.: Math.

Results - some lower bounds on $B(n, \tau)$.
G. Fazekas, V. I. Levenshtein, 1997, J. Combin. Theory.

Restrictions on the structure of spherical designs.
P. Boyvalenkov, D. Danev, S. Nikova, 1998, Discr. Comput. Geom.

Nonexistence results of spherical designs with odd strength τ and odd cardinality $|C|$.
Complete solution of Problem 2 for $\tau=3$ in dimensions
$n=4$ and $n=6$.

Some known results

P. Boyvalenkov, S. Boumova, D. Danev, 1999, Europ. J. Combin.

Necessary Condition: If $C \subset \mathbb{S}^{n-1}$ is a τ-design with odd $\tau=2 e-1$ and odd $|C|$ then $\rho_{0}|C| \geq 2$.
P. Boyvalenkov, S. Boumova, D. Danev, 2002, Proc. CTF.

Nonexistence in 50 cases of spherical 3-designs with odd $|C|$, such that $\rho_{0}|C| \geq 2$ and $3 \leq n \leq 50$, and nonexistence in 53 cases of spherical 5-designs with odd $|C|$, such that $\rho_{0}|C| \geq 2$ and $3 \leq n \leq 20$, where the existence/nonexistence was not resolved.

Complete solution of Problem 2 for $\tau=3$ in dimensions $n=9$ and $n=10$.

Some known results

S. Boumova, P. Boyvalenkov, H. Kulina, M. Stoyanova, 2009, Des. Codes Crypt.

Nonexistence in 35 (out of all possible 47) cases of spherical 3-designs with odd $|C|$, such that $2 \leq \rho_{0}|C|<3,2 \alpha_{0}^{2}-1>\alpha_{1}$ and $3 \leq n \leq 50$, where the existence/nonexistence was not resolved.

Complete solution of Problem 2 for $\tau=3$ in dimensions $n=8,13,14$ and 18.

Nonexistence in 42 (out of all possible 42) cases of spherical 5-designs with odd $|C|$, such that $2 \leq \rho_{0}|C|<3,2 \alpha_{0}^{2}-1>\alpha_{2}$ and $5 \leq n \leq 25$, where the existence/nonexistence was not resolved.

Some known results

S. Boumova, P. Boyvalenkov, M. Stoyanova, 2009, Pr. Inform. Trans.

Nonexistence in 290 (out of all possible 291) cases of spherical 7-designs with odd $|C|$, such that $2 \leq \rho_{0}|C|<3,2 \alpha_{0}^{2}-1>\alpha_{3}$ and $3 \leq n \leq 20$, where the existence/nonexistence was not resolved. The exception - the case $n=4,|C|=43$.
P. Boyvalenkov, M. Stoyanova, 2010, Discr. Math.

$$
B_{\text {odd }}(n, \tau) \gtrsim \frac{(1+\sqrt[2 k-1]{3})}{2} \frac{2 n^{k-1}}{(k-1)!},
$$

i.e. $A_{\tau}=\frac{(1+\sqrt[2 k-1]{3})}{2}$, for $\tau=2 k-1, k=3,4, \ldots, 13$.

Our techniques

Let the integers $n \geq 3$, odd $\tau=2 k-1 \geq 3$, and odd M be fixed and let $C \in \mathbb{S}^{n-1}$ be a spherical τ-design of odd size $|C|=M$.
(Levenshtein) Then there exist uniquely determined real numbers $-1 \leq \alpha_{0}<\alpha_{1}<\cdots<\alpha_{k-1}<1$ and positive $\rho_{0}, \rho_{1}, \ldots, \rho_{k-1}$ such that the equality

$$
\begin{equation*}
f_{0}=\frac{f(1)}{M}+\sum_{i=0}^{k-1} \rho_{i} f\left(\alpha_{i}\right) \tag{2}
\end{equation*}
$$

holds for every real polynomial $f(t)$ of degree at most $\tau=2 k-1$.
We denote $g(t)=\prod_{i=1}^{k-1}\left(t-\alpha_{i}\right)^{2}=\sum_{i=0}^{2 k-2} g_{i} P_{i}^{(n)}(t)$. Then (2) implies that $g_{0}=\rho_{0}|C| g\left(\alpha_{0}\right)$. We set $1+\gamma(k-1)!:=\theta$ for short.

Our techniques

We associate every point $x \in C$ with an ordered $(|C|-1)$-tuple $I(x)$ of the inner products $\langle x, y\rangle, y \in C \backslash\{x\}$, so that
$I(x)=\left(t_{1}(x), t_{2}(x), \ldots, t_{|C|-1}(x)\right)$, where
$-1 \leq t_{1}(x) \leq t_{2}(x) \leq \cdots \leq t_{|C|-1}(x)<1$.
Then equation (1) gives

$$
\begin{equation*}
\sum_{i=1}^{|C|-1} f\left(t_{i}(x)\right)=f_{0}|C|-f(1) \tag{3}
\end{equation*}
$$

which holds for every point $x \in C$ and for every real polynomial $f(t)$ of degree at most τ.
We denote by $U_{i}(x)$ (respectively $L_{i}(x)$) any upper (resp. lower) bound on the inner product $t_{i}(x)$, omitting x if the corresponding bound is valid for all $x \in C$.

Our techniques

Theorem 2. Let $C \subset \mathbb{S}^{n-1}$ be a τ-design with odd strength $\tau=2 k-1$ and odd size $M=|C|$. Then $\rho_{0}|C| \geq 2$ and:
a) $t_{1}(x) \leq U_{1}=\alpha_{0}$ and $t_{|C|-1}(x) \geq L_{|C|-1}=\alpha_{k-1}$ hold for every point $x \in C$;
b) there exist three distinct points $x, y, z \in C$ such that $t_{1}(x)=t_{1}(y)$, $t_{2}(x)=t_{1}(z)$ and $\langle y, z\rangle \geq 2 \alpha_{0}^{2}-1$;
c) if $M=\left(\frac{2}{(k-1)!}+\gamma\right) n^{k-1}$, where $\gamma>0$ is a constant and n tends to infinity, then $\alpha_{i} \sim 0$, for $i=1,2, \ldots, k-1, \theta \alpha_{0} \sim-1$; $g(t) \sim t^{2 k-2}, \rho_{0}|C| \sim \theta^{2 k-1}$ and $\rho_{0}|C| g\left(\alpha_{0}\right) \sim \theta$.

We suppose that $2 \leq \rho_{0}|C| \leq 3$ (resp. $\gamma<\frac{\sqrt[2 k-1]{3}-1}{(k-1)!}$) for $\tau=3$ and $\rho_{0}|C| \leq 4\left(\right.$ resp. $\left.\gamma<\frac{2 k-1}{(k-1)!}\right)$ for $\tau>3$.

The improved algorithm

Let $\{x, y, z\} \subset C$ be a special triple as in Theorem 2.b).
Note that the last inequality of Theorem 2.b) implies the bounds

$$
L_{|C|-1}(y)=L_{|C|-1}(z)=\max \left\{2 \alpha_{0}^{2}-1, \alpha_{k-1}\right\}
$$

and the corresponding bound

$$
L_{|C|-1}(y)=L_{|C|-1}(z) \sim \frac{2-\theta^{2}}{\theta^{2}}
$$

in the asymptotic.
We obtain consecutively the following general bounds for the above special triple $\{x, y, z\} \subset C$.

The improved algorithm
General bounds for the special triple $\{x, y, z\} \subset C$
(1) $\quad t_{1}(z) \geq L_{1}(z), \quad$ (with $\left.g(t)\right)$;
(2a) $\quad t_{2}(z) \leq U_{2}(z), \quad$ (with $f(t)=\left(t-t_{2}(z)\right) g(t)$;
(2b) $\quad t_{2}(y) \leq U_{2}(y), \quad$ (with $f(t)=\left(t-t_{2}(y)\right) g(t)$);
(3a) $\quad L_{3}(z) \leq t_{3}(z), \quad$ (with $g(t)$);
(3b) $\quad L_{3}(y) \leq t_{3}(y), \quad($ with $g(t)) ;$
(4a) $\quad L_{4}(z) \leq t_{4}(z), \quad$ (with $g(t)$);
(4b) $\quad L_{4}(y) \leq t_{4}(y), \quad$ (with $g(t)$);
(5) $t_{|C|-1}(x) \geq L_{|C|-1}(x)$;
(6a) $t_{|C|-1}(z) \geq L_{|C|-1}(z)$;
(6b) $\quad t_{|C|-1}(y) \geq L_{|C|-1}(y)$.

The improved algorithm

Definition 3. A special triple $\{x, y, z\}$ is called bad (in particular y-bad or z-bad) if $t_{2}(y)>\alpha_{0}$ or $t_{2}(z)>\alpha_{0}$.

We consider two cases:

Case 1. There exists at least one bad special triple.

Case 2. There are no bad triples.

For specific parameters, we need the nonexistence criteria fulfilled in both cases.

The improved algorithm

Case 1: Bad special triples.

Case 1.1: There exists a z-bad special triple.
Let $\{x, y, z\} \subset C$ be a z-bad special triple, i.e. $\alpha_{0}<t_{2}(z)$.
We obtain consecutively:
(1 zbc) $\quad t_{1}(z) \leq U_{1}(z)<\alpha_{0}, \quad$ (with $\left.f(t)=\left(t-L_{3}(z)\right) g(t)\right)$,
(1'zbc) $\quad t_{1}(z) \leq U_{1}(z)<\alpha_{0}, \quad$ (with $f(t)=\left(t-L_{4}(z)\right) g(t)$).
(1 zbc) and (1'zbc) present bounds $U_{1}(z)$ which we apply as follows:
(1 zbc) is good when $\rho_{0}|C|<3$, and
(1'zbc) works well when $\rho_{0}|C| \geq 3$.
In fact, we define and use
$U_{1}(z)=\min \left\{U_{1}(z)\right.$ from (1 zbc), $U_{1}(z)$ from (1'zbc) $\}$.

The improved algorithm

Case 1.1: There exists a z-bad special triple.

Denote by
$\mathcal{H}:=\{h(t) \mid h(t)$ is real polynomials of degree at most $2 k-2$ which are decreasing in $\left(-\infty, \alpha_{0}\right)$, nonnegative in $\left[\alpha_{0}, \alpha_{k-1}\right]$ and increasing in $\left.\left(\alpha_{k-1},+\infty\right)\right\}$.
For example, $g(t), t^{2 k-2}, h(t)=\left(t-a_{1}\right)^{2}\left(t-a_{2}\right)^{2} \ldots\left(t-a_{k-1}\right)^{2} \in \mathcal{H}$, where $\alpha_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{k-1} \leq \alpha_{k-1}$.

Theorem 4. (x-check for existence of C)
Suppose that $h(t) \in \mathcal{H}$ is such that

$$
S_{x}(h):=h_{0} M-h(1)-2 h\left(U_{2}(x)\right)-h\left(L_{M-1}(x)\right)<0 .
$$

Then there exist no spherical τ-designs with odd $\tau=2 k-1$, odd size M and a z-bad special triple.

A recursive procedure:
(1), (2a), (3a), (4a), (5),
(6a), (1 zbc), (1'zbc), (5),
(6a), x-check.

The improved algorithm

Case 1: Bad special triples.

Case 1.2: There exists a y-bad special triple which is not z-bad.
Let $\{x, y, z\} \subset C$ be a y-bad special triple which is not z-bad, i.e. $t_{2}(z) \leq \alpha_{0}<t_{2}(y)$. We obtain consecutively:
$\left(1\right.$ ybc) $\quad t_{1}(y) \leq U_{1}(y)<\alpha_{0}, \quad$ (with $f(t)=\left(t-L_{3}(y)\right) g(t)$);
(1'ybc) $\quad t_{1}(y) \leq U_{1}(y)<\alpha_{0}, \quad$ (with $f(t)=\left(t-L_{4}(y)\right) g(t)$);
(2 ybc) $\quad t_{3}(z) \geq L_{3}(z), \quad$ (with $g(t)$);
$(3 \mathrm{ybc}) \quad t_{4}(z) \geq L_{4}(z), \quad$ (with $g(t)$);
(4 ybc) $\quad t_{1}(z) \leq U_{1}(z)<\alpha_{0}, \quad$ (with $\left.f(t)=\left(t-L_{3}(z)\right) g(t)\right)$;
(4'ybc) $\quad t_{1}(z) \leq U_{1}(z)<\alpha_{0}, \quad$ (with $\left.f(t)=\left(t-L_{4}(z)\right) g(t)\right)$.

The improved algorithm

Case 1.2: There exists a y-bad special triple which is not z-bad.
Theorem 5. (y-check for existence of C)
Suppose that $h(t) \in \mathcal{H}$ is such that

$$
S_{y}(h):=h_{0} M-h(1)-h\left(U_{1}(y)\right)-h\left(U_{2}(y)\right)-h\left(L_{M-1}(y)\right)<0 .
$$

Then there exist no spherical τ-designs with odd $\tau=2 k-1$, odd cardinality $|C|=M$ and an y-bad special triple.

A recursive procedure:
(2b), (3b), (4b), (6b), (1 ybc), (1'ybc), (2 ybc), (3 ybc), (4 ybc), (4'ybc), (5), (6b), y-check.

The improved algorithm

Case 2: There are no bad triples.

We now suppose that $t_{2}(z) \leq \alpha_{0}$ and $t_{2}(y) \leq \alpha_{0}$ (opposite to the bad pairs from Definition 3) in every special triple.

Theorem 6. If there are no bad triples in C then at least one of the following holds:
(i) there exists a special triple $\{x, y, z\} \subset C$ such that $t_{|C|-2}(x) \geq 2 \alpha_{0}^{2}-1$ and $t_{|C|-2}(z) \geq 2 \alpha_{0}^{2}-1$,
(ii) there exists a point $x^{\prime} \in C$ such that $t_{3}\left(x^{\prime}\right) \leq \alpha_{0}$.

The case (ii) in Theorem 6 necessarily leads to $\rho_{0}|C| \geq 3$.
The converse inequality was imperative in our old works.
Overcoming this is the major improvement here.

The improved algorithm

Case 2: There are no bad triples.

Case 2.1: There is a special triple as in Theorem 6(i).
Let $\{x, y, z\} \subset C$ be a special triple as in Theorem 6(i), i.e.

$$
\begin{aligned}
& t_{|C|-2}(x) \geq L_{|C|-2}(x)=2 \alpha_{0}^{2}-1 \text { and } \\
& t_{|C|-2}(z) \geq L_{|C|-1}(z)=2 \alpha_{0}^{2}-1
\end{aligned}
$$

We obtain consecutively:
$(1 \mathrm{xz}) \quad L_{3}(z) \leq t_{3}(z), \quad$ (with $g(t)$);
$(2 \mathrm{xz}) \quad L_{4}(z) \leq t_{4}(z), \quad$ (with $g(t)$);
$(3 \mathrm{xz}) \quad t_{1}(z) \leq U_{1}(z)<\alpha_{0}, \quad$ (with $f(t)=\left(t-L_{3}(z)\right) g(t)$);
(3'xz) $\quad t_{1}(z) \leq U_{1}(z)<\alpha_{0}, \quad$ (with $f(t)=\left(t-L_{4}(z)\right) g(t)$);
$(4 \mathrm{xz}) \quad t_{|C|-1}(x) \geq L_{|C|-1}(x) ;$

Case 2.1: There is a special triple as in Theorem 6(i).
$(5 \mathrm{xz}) \quad t_{|C|-1}(z) \geq L_{|C|-1}(z)=\max \left\{\alpha_{k-1}, 2 U_{1}^{2}(z)-1\right\}$.
Theorem 7. (x-check for existence of C)
Suppose that $h(t) \in \mathcal{H}$ is such that
$S_{x}(h):=h_{0} M-h(1)-2 h\left(U_{2}(x)\right)-h\left(L_{M-2}(x)\right)-h\left(L_{M-1}(x)\right)<0$.
Then there exist no spherical τ-designs with odd $\tau=2 k-1$, odd cardinality $|C|=M$ and a special triple as in Theorem 6(i).

A recursive procedure:
(1 xz), (2 xz), (3 xz), (3'xz), (4 xz), (5 xz), x-check.

The improved algorithm

Case 2: There are no bad triples.

Case 2.2: There is a point $x^{\prime} \in C$ as in Theorem 6(ii).
We recall that $\rho_{0}|C| \leq 4$ and this implies $t_{4}(x)>\alpha_{0}$ for every point $x \in C$. Therefore in this case we have $x^{\prime} \in C$ such that

$$
t_{3}\left(x^{\prime}\right) \leq \alpha_{0}<t_{4}\left(x^{\prime}\right)
$$

Let $y^{\prime}, z^{\prime}, u^{\prime} \in C$ be such that

$$
t_{1}\left(x^{\prime}\right)=\left\langle x^{\prime}, y^{\prime}\right\rangle \leq t_{2}\left(x^{\prime}\right)=\left\langle x^{\prime}, z^{\prime}\right\rangle \leq t_{3}\left(x^{\prime}\right)=\left\langle x^{\prime}, u^{\prime}\right\rangle \leq \alpha_{0} .
$$

Then $t_{2}\left(y^{\prime}\right) \leq \alpha_{0}, t_{2}\left(z^{\prime}\right) \leq \alpha_{0}$ and $t_{2}\left(u^{\prime}\right) \leq \alpha_{0}$.
The least two inner products of $y^{\prime}, z^{\prime}, u^{\prime}$ define at least one point $w \in C \backslash\left\{x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}\right\}$ such that $t_{2}(w) \leq \alpha_{0}$.

The improved algorithm
Case 2.2: There is a point $x^{\prime} \in C$ as in Theorem 6 (ii).

$$
\left\{x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}, w\right\} \subset C
$$

The improved algorithm

Case 2.2: There is a point $x^{\prime} \in C$ as in Theorem 6(ii).

The above implies $\left\langle x^{\prime}, w\right\rangle \geq 2 \alpha_{0}^{2}-1,\left\langle y^{\prime}, z^{\prime}\right\rangle \geq 2 \alpha_{0}^{2}-1$, $\left\langle z^{\prime}, u^{\prime}\right\rangle \geq 2 \alpha_{0}^{2}-1$ and $\left\langle u^{\prime}, y^{\prime}\right\rangle \geq 2 \alpha_{0}^{2}-1$.
Moreover, the points $y^{\prime}, z^{\prime}, u^{\prime}$ are close each other and we can estimate the closest pair of them.

Lemma 8. The inner product of the closest pair from the set $\left\{y^{\prime}, z^{\prime}, u^{\prime}\right\}$ is at least $\frac{3 \alpha_{0}^{2}-1}{2}$.
It is clear that the worst case is when y^{\prime} and z^{\prime} are the closest points. Indeed, otherwise we have bounds for u^{\prime} which are better than their counterparts for z^{\prime}. Therefore we may assume that

$$
\begin{aligned}
& t_{|C|-2}\left(z^{\prime}\right) \geq L_{|C|-2}\left(z^{\prime}\right)=2 \alpha_{0}^{2}-1 \text { and } \\
& t_{|C|-1}\left(z^{\prime}\right) \geq L_{|C|-1}\left(z^{\prime}\right)=\frac{3 \alpha_{0}^{2}-1}{2} .
\end{aligned}
$$

The improved algorithm
Case 2.2: There is a point $x^{\prime} \in C$ as in Theorem 6(ii).
We obtain consecutively:
$\left(1 x^{\prime}\right) \quad L_{3}\left(z^{\prime}\right) \leq t_{3}\left(z^{\prime}\right)$,
(with $g(t)$);
$\left(2 x^{\prime}\right) \quad L_{4}\left(z^{\prime}\right) \leq t_{4}\left(z^{\prime}\right)$,
(with $g(t)$);
(3 x^{\prime}) $\quad t_{1}\left(z^{\prime}\right) \leq U_{1}\left(z^{\prime}\right)<\alpha_{0}, \quad$ (with $f(t)=\left(t-L_{3}\left(z^{\prime}\right)\right) g(t)$);
$\left(3^{\prime} x^{\prime}\right) \quad t_{1}\left(z^{\prime}\right) \leq U_{1}\left(z^{\prime}\right)<\alpha_{0}, \quad\left(\right.$ with $\left.f(t)=\left(t-L_{4}\left(z^{\prime}\right)\right) g(t)\right) ;$
$\left(4 x^{\prime}\right) \quad t_{|C|-1}\left(x^{\prime}\right) \geq L_{|C|-1}\left(x^{\prime}\right)$;
$\left(5 x^{\prime}\right) \quad t_{4}\left(x^{\prime}\right) \geq L_{4}\left(x^{\prime}\right)$,
(with $g(t)$);
(6 x^{\prime}) $\quad t_{1}\left(x^{\prime}\right) \leq U_{1}\left(x^{\prime}\right)<\alpha_{0}, \quad$ (with $f(t)=\left(t-L_{4}\left(x^{\prime}\right)\right) g(t)$).

Case 2.2: There is a point $x^{\prime} \in C$ as in Theorem 6(ii).

Theorem 9. (x^{\prime}-check for existence of C) Suppose that $h(t) \in \mathcal{H}$ is such that

$$
S_{x}^{\prime}(h):=h_{0} M-h(1)-h\left(U_{1}\left(x^{\prime}\right)\right)-2 h\left(\alpha_{0}\right)-h\left(L_{M-1}\left(x^{\prime}\right)\right)<0 .
$$

Then there exist no spherical τ-designs with odd $\tau=2 k-1$, odd cardinality $|C|=M$ and a special triple as in Theorem 5.1(ii).

Theorem 9 can be formulated

$$
M \geq \frac{h(1)+h\left(U_{1}\left(x^{\prime}\right)\right)+2 h\left(\alpha_{0}\right)+h\left(L_{M-1}\left(x^{\prime}\right)\right)}{h_{0}}
$$

as necessary existence condition (linear-programming-like bound).
The whole procedure is implemented in Maple 15.

Results

Spherical 3-designs with odd cardinality.

There are 37 cases with $n \leq 50$ and $\rho_{0}|C| \leq 3$ (this implies that the case of Theorem 6 (i) does not occur) were left open after our previous results. Our strengthening allows to rule out 21 of them.
Therefore we have the following theorem.
Theorem 10. Let $C \subset \mathbb{S}^{n-1}, 3 \leq n \leq 50$, be a spherical 3-design with odd cardinality M. Then $\rho_{0}|C|>3$ with possible exceptions in 16 cases: $(n, M)=(11,27),(15,37),(20,49),(24,59),(25,61)$, $(29,71),(30,73),(33,81),(34,83),(38,93),(39,95),(42,103)$, $(43,105),(44,107),(47,115),(48,117)$.

Complete solution of Problem 2 for $\tau=3$ in the folloing dimensions $n=4,6,7,8,9,10,12,13,14,16,17,18,21,22$ and 26.

Results

Spherical 5- and 7-designs with odd cardinality.

For $\tau=5$, our strengthened approach allows calculations in more cases, namely in dimensions $3 \leq n \leq 50$, which were not considered earlier. Here we ruled out all but one cases with $\rho_{0}|C| \leq 3$ (the exception is $n=4, M=23$) and some cases with $\rho_{0}|C|>3$ in dimensions $3 \leq n \leq 50$.
Total number of new nonexistence results: 1001
For $\tau=7$, we consider additionally to our previous results the dimensions $21 \leq n \leq 30$. We ruled out all but one cases with $\rho_{0}|C| \leq 3$ (the exception is $n=3, M=23$) and some cases with $\rho_{0}|C|>3$ in dimensions $3 \leq n \leq 30$.
Total number of new nonexistence results: 1154
The present situation with all possible cardinalities of
3 -, 5- and 7-designs in small dimensions can be seen at
http://www.fmi.uni-sofia.bg/algebra/mstoyanova.shtml

Results

New asymptotic bounds

The best constants A_{τ} obtained by this improved algorithm.

τ	Previously best known A_{τ}	New value of A_{τ}
3	1.19625	1.21050
5	1.12286	1.12655
7	1.08496	1.08958
9	1.06491	1.07015
11	1.05251	1.05823
13	1.04409	1.05009
15	1.03799	1.04416
17	1.03337	1.03965
19	1.02976	1.03602
21	1.02685	1.03288
23	1.02446	1.03024
25	1.02246	1.02808

THANK YOU FOR YOUR ATTENTION!

