Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory

Moments of orthogonal arrays

Peter Boyvalenkov，Hristina Kulina

Pomorie，BULGARIA，June 15－21， 2012

Orthogonal arrays

- $H(n, 2)$ - binary Hamming space of dimension n.
- an orthogonal array, or equivalently, a τ-design C in $H(n, 2)$ is an $M \times n$ matrix of a code C such that every $M \times \tau$ submatrix contains all ordered τ-tuples of $H(\tau, 2)$, each one exactly $\frac{|C|}{2^{\tau}}$ times as rows.
- the maximal τ with this property is called strength of the array.
- we consider $H(n, 2)$ with the inner product

$$
\langle x, y\rangle=1-\frac{2 d(x, y)}{n}
$$

where $d(x, y)$ is the Hamming distance between x and y.

Orthogonal arrays

Definition 1.

A code $C \subset H(n, 2)$ is a τ-design in $H(n, 2)$ if and only if every real polynomial $f(t)$ of degree at most τ and every point $y \in H(n, 2)$ satisfy

$$
\begin{equation*}
\sum_{x \in C} f(\langle x, y\rangle)=f_{0}|C| \tag{1}
\end{equation*}
$$

where f_{0} is the first coefficient in the expansion $f(t)=\sum_{i=1}^{n} f_{i} Q_{i}^{(n)}(t)$, $Q_{i}^{(n)}(t)$ are the normalized Krawtchouk polynomials.

Orthogonal arrays

The identity

$$
\begin{equation*}
|C| f(1)+\sum_{x, y \in C, x \neq y} f(\langle x, y\rangle)=|C|^{2} f_{0}+\sum_{i=1}^{n} \frac{f_{i}}{r_{i}} \sum_{j=1}^{r_{i}}\left(\sum_{x \in C} v_{i j}(x)\right)^{2} \tag{2}
\end{equation*}
$$

holds for every real polynomial $f(t)=\sum_{i=1}^{n} f_{i} Q_{i}^{(n)}(t)$.

- $r_{i}=\binom{n}{i}$
- $v_{i j}(x)$ - Boolean functions

Moments of orthogonal arrays

Definition 2.

The numbers

$$
M_{i}=\frac{1}{r_{i}} \sum_{j=1}^{r_{i}}\left(\sum_{x \in C} v_{i j}(x)\right)^{2}, 1 \leq i \leq n
$$

are called moments of C.

- C is $O A$ of strength $\tau \Leftrightarrow M_{i}=0$ for $i=1,2, \ldots, \tau$.
- C is antipodal $\Leftrightarrow M_{i}=0$ for every odd i.
- every moment M_{i} is a rational number whose denominator is a divisor of the LCM of all denominators of the coefficients of $Q_{i}(t)$.

Basic properties of the moments

Main identity

$$
|C| f(1)+\sum_{x, y \in C, x \neq y} f(\langle x, y\rangle)=|C|^{2} f_{0}+\sum_{i=1}^{n} f_{i} M_{i}
$$

Theorem 1.

Let $C \in H(n, 2)$. We have $M_{i}=|C|+\sum_{x, y \in C, x \neq y} Q_{i}(\langle x, y\rangle)$, for every $i=1,2, \ldots, n$.

Proof.

We set $f(t)=Q_{i}(t)$ in main identity and have $f_{i}=1, f_{j}=0$ for $j \neq i . Q_{i}(1)=1$.

Basic properties of the moments

- assume that $C \subset H(n, 2)$ is a τ-design
- $t_{j}=-1+\frac{2 j}{n}, j=0,1,2, \ldots, n$
- $k_{j}=\left|\left\{(x, y):\langle x, y\rangle=t_{j}\right\}\right|, j=0,1,2, \ldots, n$

Theorem 2.

Let $f(t)=\prod_{j=0}^{n-1}\left(t-t_{j}\right)=\sum_{i=0}^{n} f_{i} Q_{i}^{(n)}(t)$.
Then

$$
\sum_{i=\tau+1}^{n} f_{i} M_{i}=|C|\left(f(1)-f_{0}|C|\right)
$$

Basic properties of the moments

Theorem 3.

Let the polynomial $f(t)=\sum_{i=0}^{k} f_{i} Q_{i}^{(n)}(t)$ of degree $k=n-1$ or n vanishes at all but one points $t_{0}, t_{1}, t_{2}, \ldots, t_{n-1}$, say $f\left(t_{j}\right) \neq 0$. Then

$$
\sum_{i=\tau+1}^{k} f_{i} M_{i}=|C|\left(f(1)-f_{0}|C|\right)+k_{j} f\left(t_{j}\right)
$$

Example

- $n=10, \tau=5,|C|=192$
- $k_{0} \in A=\{144,146, \ldots, 192\}$
- $0 \leq k_{9} \leq r$, where $r=k_{0}-144$.

Orthogonal arrays and spherical codes

- $H(n, 2) \longrightarrow \mathbb{S}^{n-1}: 1 \rightarrow 1 / \sqrt{n}, 0 \rightarrow-1 / \sqrt{n}$ in each coordinate.
- τ-design $C \subset H(n, 2) \longrightarrow \bar{C} \subset \mathbb{S}^{n-1}$

Theorem 4.

If $\tau \geq 3$ then \bar{C} has at least strength 3 as a spherical design. Moreover, all moments $M_{i}, i=4,5, \ldots, \tau$, of \bar{C} as a spherical design can be calculated.

Proof.

(1) the first four (up to degree 3) Gegenbauer and Krawtchouk polynomials coincide
(2) we set in main identity $f(t)=t^{i}$ for $i=4,5, \ldots, \tau$.

Orthogonal arrays and spherical codes

Example

Consider again the case $n=10, \tau=5$ and $|C|=192$ - it gives a spherical 3-design on \mathbb{S}^{9} with moments $M_{4} \approx 187,671, M_{5}=0$.
(1) for the smallest $k_{0}=144$ we have unique solution for all $k_{i}, i=1, \ldots, 9$ and this implies $M_{6} \approx 389,366$, $M_{7} \approx 55,4352, M_{8} \approx 326,391$, etc.
(2) for $k_{0}=192$, we obtain an antipodal spherical code with $M_{i}=0$ for all odd i.

References I

目 M．Abramowitz，I．Stegun，Handbook of Mathematical Functions，Dover，New York， 1965.
目 P．Boyvalenhkov，H．Kulina，Computing distance distributions of orthogonal arrays，Proc．12th Intern．Workshop ACCT， Novosibirsk，Russia，2010，82－85．

图 G．Fazekas，V．I．Levenshtein，On the upper bounds for code distance and covering radius of designs in polynomial metric spaces，J．Comb．Theory A，70，1995，267－288．
國 A．S．Hedayat，N．J．A．Sloane，J．Stufken，Orthogonal Arrays： Theory and Applications，Spinger－Verlag，NY， 1999.

References II

围 V. I. Levenshtein, Bounds for packings in metric spaces and certain applications, Probl. Kibern. 40, 1983, 44-110 (in Russian).

囯 V. I. Levenshtein, Universal bounds for codes and designs, Chapter 6 (499-648) in Handbook of Coding Theory, Eds. V.Pless and W.C.Huffman, Elsevier Science B.V., 1998.

Thank you for your attention!

