Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory

Moments of orthogonal arrays

Peter Boyvalenkov, Hristina Kulina

Pomorie, BULGARIA, June 15-21, 2012

Orthogonal arrays

- H(n,2) binary Hamming space of dimension n.
- an orthogonal array, or equivalently, a τ -design C in H(n, 2) is an $M \times n$ matrix of a code C such that every $M \times \tau$ submatrix contains all ordered τ -tuples of $H(\tau, 2)$, each one exactly $\frac{|C|}{2^{\tau}}$ times as rows.
- the maximal au with this property is called *strength* of the array.
- we consider H(n,2) with the inner product

$$\langle x,y\rangle = 1 - \frac{2d(x,y)}{n},$$

where d(x, y) is the Hamming distance between x and y.

Orthogonal arrays

Definition 1.

A code $C \subset H(n,2)$ is a τ -design in H(n,2) if and only if every real polynomial f(t) of degree at most τ and every point $y \in H(n,2)$ satisfy

$$\sum_{x \in C} f(\langle x, y \rangle) = f_0 |C|, \qquad (1)$$

where f_0 is the first coefficient in the expansion $f(t) = \sum_{i=1}^{n} f_i Q_i^{(n)}(t)$, $Q_i^{(n)}(t)$ are the normalized Krawtchouk polynomials.

Orthogonal arrays

The identity

$$|C|f(1) + \sum_{x,y \in C, x \neq y} f(\langle x, y \rangle) = |C|^2 f_0 + \sum_{i=1}^n \frac{f_i}{r_i} \sum_{j=1}^{r_i} \left(\sum_{x \in C} v_{ij}(x)\right)^2$$
(2)
holds for every real polynomial $f(t) = \sum_{i=1}^n f_i Q_i^{(n)}(t)$.

•
$$r_i = \binom{n}{i}$$

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, 15-21 June 2012, Pomorie, BULGARIA

イロン イヨン イヨン イヨン

Moments of orthogonal arrays

Definition 2.

The numbers

$$M_i = \frac{1}{r_i} \sum_{j=1}^{r_i} \left(\sum_{x \in C} v_{ij}(x) \right)^2, 1 \le i \le n,$$

are called moments of C.

- C is OA of strength $\tau \Leftrightarrow M_i = 0$ for $i = 1, 2, ..., \tau$.
- C is antipodal $\Leftrightarrow M_i = 0$ for every odd i.
- every moment M_i is a rational number whose denominator is a divisor of the LCM of all denominators of the coefficients of Q_i(t).

Basic properties of the moments

Main identity

$$|C|f(1) + \sum_{x,y\in C, x\neq y} f(\langle x,y\rangle) = |C|^2 f_0 + \sum_{i=1}^n f_i M_i$$

Theorem 1.

Let $C \in H(n,2)$. We have $M_i = |C| + \sum_{x,y \in C, x \neq y} Q_i(\langle x, y \rangle)$, for every i = 1, 2, ..., n.

Proof.

We set $f(t) = Q_i(t)$ in *main identity* and have $f_i = 1$, $f_j = 0$ for $j \neq i$. $Q_i(1) = 1$.

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, 15-21 June 2012, Pomorie, BULGARIA

Basic properties of the moments

• assume that
$$C \subset H(n,2)$$
 is a au -design

•
$$t_j = -1 + \frac{2j}{n}, j = 0, 1, 2, \dots, n$$

• $k_j = |\{(x, y) : \langle x, y \rangle = t_j\}|, j = 0, 1, 2, ..., n$

Theorem 2.

Let
$$f(t) = \prod_{j=0}^{n-1} (t - t_j) = \sum_{i=0}^{n} f_i Q_i^{(n)}(t)$$
.
Then

$$\sum_{i=\tau+1} f_i M_i = |C|(f(1) - f_0|C|).$$

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, 15-21 June 2012, Pomorie, BULGARIA

イロト イポト イヨト イヨト 三日

Basic properties of the moments

Theorem 3.

Let the polynomial $f(t) = \sum_{i=0}^{k} f_i Q_i^{(n)}(t)$ of degree k = n-1 or n vanishes at all but one points $t_0, t_1, t_2, \ldots, t_{n-1}$, say $f(t_j) \neq 0$. Then

$$\sum_{i=\tau+1}^{\kappa} f_i M_i = |C|(f(1) - f_0|C|) + k_j f(t_j).$$

Example

•
$$n = 10, \ \tau = 5, \ |C| = 192$$

•
$$k_0 \in A = \{144, 146, \dots, 192\}$$

•
$$0 \le k_9 \le r$$
, where $r = k_0 - 144$.

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, 15-21 June 2012, Pomorie, BULGARIA

Orthogonal arrays and spherical codes

•
$$H(n,2) \longrightarrow \mathbb{S}^{n-1}: 1 \to 1/\sqrt{n}, 0 \to -1/\sqrt{n}$$
 in each coordinate.
• τ -design $C \subset H(n,2) \longrightarrow \overline{C} \subset \mathbb{S}^{n-1}$

Theorem 4.

If $\tau \geq 3$ then \overline{C} has at least strength 3 as a spherical design. Moreover, all moments M_i , $i = 4, 5, \ldots, \tau$, of \overline{C} as a spherical design can be calculated.

Proof.

 the first four (up to degree 3) Gegenbauer and Krawtchouk polynomials coincide

2) we set in *main identity*
$$f(t) = t^i$$
 for $i = 4, 5, \ldots, \tau$.

Orthogonal arrays and spherical codes

Example

Consider again the case n = 10, $\tau = 5$ and |C| = 192 - it gives a spherical 3-design on \mathbb{S}^9 with moments $M_4 \approx 187, 671$, $M_5 = 0$.

- for the smallest $k_0 = 144$ we have unique solution for all $k_i, i = 1, \ldots, 9$ and this implies $M_6 \approx 389, 366, M_7 \approx 55, 4352, M_8 \approx 326, 391$, etc.
- for k₀ = 192, we obtain an antipodal spherical code with M_i = 0 for all odd i.

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, 15-21 June 2012, Pomorie, BULGARIA

References |

- M. Abramowitz, I. Stegun, *Handbook of Mathematical Functions*, Dover, New York, 1965.
- P. Boyvalenhkov, H. Kulina, Computing distance distributions of orthogonal arrays, Proc. 12th Intern. Workshop ACCT, Novosibirsk, Russia, 2010, 82-85.
- G. Fazekas, V. I. Levenshtein, On the upper bounds for code distance and covering radius of designs in polynomial metric spaces, *J. Comb. Theory A*, 70, 1995, 267-288.
- A.S.Hedayat, N. J. A. Sloane, J. Stufken, *Orthogonal Arrays: Theory and Applications*, Spinger-Verlag, NY, 1999.

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, 15-21 June 2012, Pomorie, BULGARIA

(D) (A) (A)

References II

- V. I. Levenshtein, Bounds for packings in metric spaces and certain applications, *Probl. Kibern.* 40, 1983, 44-110 (in Russian).
- V. I. Levenshtein, Universal bounds for codes and designs, Chapter 6 (499-648) in *Handbook of Coding Theory*, Eds. V.Pless and W.C.Huffman, Elsevier Science B.V., 1998.

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, 15-21 June 2012, Pomorie, BULGARIA

Thank you for your attention!

Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory, 15-21 June 2012, Pomorie, BULGARIA