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Notations and definitions

@ [N]:={1,..., N} be the set of elements
@ D C [N] be the set of defective elements
@ D =|D| its cardinality

@ [i,j] the set of integers {x e N: i < x </}

Throughout the paper we consider worst case analysis.
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Classical group testing

The classical group testing problem:
find the unknown subset D of all defective elements in [N].

For a subset S C [N] a test ts is the function ts : 2IM — {0, 1} with

[0 L, iflSND|=0
ts(D) = { 1, otherwise. (1)

In classical group testing a strategy is called successful, if we can
uniquely determine D.
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Adaptive and nonadaptive group tests

Strategies are called adaptive if the results of the first kK — 1 tests
determine the kth test.

Strategies in which we choose all tests independently are called
nonadaptive.
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General group tests

Letf,f : [0, N] x [0, N] — R* be two functions with f;(D, S) < f(D, S)
for all values of D and S.
We call ts : 2IM — {0,1,{0,1}} a general group tests, if

0 , if |SND| < f(D,|S])
) , if [SND| > h(D,|S|)
s(D) = {0,1} , otherwise
(the result can be arbitrarily O or 1).

()

v

For this test function denote by n(N, D, m) the minimal number of tests
for finding m defective elements.
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n(N,D,1) > [log(N — D+ 1)]

Proof: Let us assume that we have a successful strategy s which finds
a defective element with n < [log(N — D + 1)] tests.

Depending on the n test results we have at most 2" different possible
results for a defective element. We denote the set of these elements
by £. It holds by assumption that |£] < 2" < N — D + 1. Therefore
[[N]\E] > D — 1 and there exists a set 7 C [N]\& with |F| = D. Now
we consider the case D = F. It is obvious that strategy s cannot find
any defective element with n tests. O
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We consider the following special cases of this test model, where
f="Ff =1 and D is known.

Threshold group testing without gap: f(D, |S|) = u. Thus

[0 ,if|SND|<u
tS(D)—{1 if[SND| > u ®)

Group testing with density tests: f(D, |S|) = «|S| for all values. Thus

[0 ,if|SND| < alS|
() _{ 1 ,if|[SND| > alS|. “)

We consider for all this test functions the adaptive model with the goal
of finding m (in most cases m = 1) defective element.
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Classical test function

We assume that 0 < D < N is known. Our goal is to find m defective
elements.

We denote by ncja)(N, D, m) the minimal number of tests (1) for
finding m defective elements.

Proposition

Nca)(N, D, 1) < [log(N — D +1)]

Proof: We give a strategy which needs [log(N — D + 1)] tests. We
know that the set So = {D,D + 1,..., N} contains at least one

defective element. Thus we start with the test set S; C Sy of size
(=2
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Classical test function

If the test is positive, then at least one defective element is in Sy,
otherwise at least one defective element is in Sp\S1. Therefore
depending on the test result we substitute Sy by Sy or Sp\Sy and
iterate the procedure. With this method we can find one defective
element with [log(N — D + 1)] tests. O

Proposition 1 together with Theorem 1 implies the following

Q nciz(N, D, 1) = [log(N — D +1)],
Q n(cia)(N, D, m) < m[log(N — D+ 1)].
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Threshold test function without gap

We denote by nirx (N, D, u, m) the minimal number of tests (3) for

finding m defective elements , if we have N elements with D defectives
and f(D,|S]) = u.

Proposition

If D > u then nitary(N, D, u,1) < [log(N — D +1)], incase D < u itis
not possible to find any defective element.
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Threshold test function without gap

Proof: We give a strategy which needs [log(N — D + 1)] tests. We
partition the set of N elements into the subsets Z; = [1,u — 1],

Ip =[u,N—-D+u],and Z3 = [N — D+ u+ 1, N]. In Z, there is of
course at least one defective, because the union of the two other
subsets has cardinality D — 1. We can find a defective element in Z, by
the following strategy with [log(N — D + 1)] tests.
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Threshold test function without gap

We start with the test set

m(1)

Si={1,...,u—1u,....,(u=1)+] 5

(N—=D+ 1)1},
where m(1) = 1.

2m(j—1) -1 ifts (D) =1
2m(j—1)+1 ifts (D) =0,

and Sj={1,...,u—tuu+1,... (u-1)+[22N-D+ 1]}
After [log(N — D + 1)] tests we can find an i such that

ty,q =1, t1,,—1) = 0. Thus using this strategy we find an defective
element at the position /. If D < u all test results are 0 and it is not
possible to find any defective element.

Inductively, we set m(j) = {
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Threshold test function without gap

From Theorem 1 and Proposition 2 we get the following

n(Thf)(Na Da U,1) = [Iog(N—D+1)—|, IfDZ u.
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Density tests

Let n(pen) (N, D, m, o) be the minimal number of tests (4) for finding m
defective elements, if we have N elements with D defectives. In
[GKPW10] the authors obtain the following bounds for

N(pen)(N, D, m, o) assuming D > aN

n(Den)(Nv D,1,0é) > IOg(N_ D+ 1) (5)
n(Den)(N7 D7 m, Oé) < [Iog N~| + Nr)1<a2Xm n(Den)(N/7 m, m, Ck), (6)

n(Den)(Nv D7 1 ) Oé) S [Iog N~| (7)
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Density tests

Let us define

2n—i _ 14
1—-«
wherei=1,2,...,n—1and s, =1.

|

si=]

Let D > Y"1, s; — 2"+ 1 with maximal n be fulfilled then
n(Den)(Na 19,1l Oé) = “Og(N -D+ 1)—|
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Density tests

Idea of the proof:

We consider test sets
Si={ai+1,a+2,....,a+s;}, i=1,...,n
where a; = 0 and

_Jai+siq L ifts  (D)=0
ai = { a ifts, (D) = 1. (8)
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Density tests

Ifts, (D) =1 then we can find one defective element after n tests.

If ts, (D) = 0 for all j then all remaining elements are defect.

If D> aN then npen(N, D, 1) = [log(N — D+ 1)].
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In [KO9] it is shown that for the test (1) if D is unknown one needs N
tests of finding one defective element or to claim that there is no
defective element.

The results of [DR02] for row-weighted cover-free codes can be used
to get nonadaptive strategies for test (4) if the number of defectives are
known.
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Thank you for your attention!
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