Connections between different types of binary self-dual codes

Stefka Bouyuklieva, Wolfgang Willems

Outline

- Binary self-dual codes
- Extremal and optimal codes
- Shadow codes
$\square s$-extremal codes and codes with minimal shadow
\square Self-dual codes and their children
- Weight enumerators

C - binary linear $[\mathbf{n}, \mathbf{k}, \mathbf{d}]$ code

- C - self-orthogonal code if $C \subseteq C^{\perp}$
$-C$ - self-dual code if $C=C^{\perp}$
- Any self-dual code has dimension $k=n / 2$
- All codewords in a binary self-orthogonal code have even weights
- Doubly-even code - all its weights are divisible by 4
- Singly-even self-dual code - if it contains a codeword of weight $w \equiv 2(\bmod 4)$

Extremal self-dual codes

Rains (1998):

If C is a binary self-dual $[n, n / 2, d]$ code then

$$
d \leq 4[n / 24]+4
$$

except if $n \equiv 22(\bmod 24)$ when

$$
d \leq 4[n / 24]+6
$$

When n is a multiple of 24 , any code meeting the bound must be doubly-even.

Optimal self-dual codes

A self-dual code is called optimal if it has the largest minimum weight among all self-dual codes of that length.

- Any extremal self-dual code is optimal.
- For some lengths, no extremal self-dual codes exist!
- There are no extremal self-dual codes of lengths 2 , $4,6,10,26,28,30,34,50,52,54,58, \ldots$

Conjecture: The optimal self-dual codes of lengths $24 m+r$ for $r=2,4,6$, and 10 are not extremal.

The shadow of a singly even code

Conway, Sloane (1990):
C - singly even self-dual $[n, k=n / 2, d]$ code C_{0} - its doubly even subcode:

$$
\begin{gathered}
C_{0}=\{v \in C \mid w t(v) \equiv 0 \quad(\bmod 4)\}, \quad \operatorname{dim} C_{0}=k-1 \\
C_{2}=\{v \in C \mid w t(v) \equiv 2 \quad(\bmod 4)\} \\
C=C_{0} \cup C_{2} \\
\Rightarrow C_{0}^{\perp}=C_{0} \cup C_{1} \cup C_{2} \cup C_{3}
\end{gathered}
$$

$S=C_{0}^{\perp} \backslash C=C_{1} \cup C_{3}$ - the shadow of C

s-extremal self-dual codes

Bachoc, Gaborit (2004):

If s is the minimum weight of the shadow of a singly-even self-dual $[n, n / 2, d]$ code then

$$
2 d+s \leq \frac{n}{2}+4
$$

except if $n \equiv 22(\bmod 24)$ when $2 d+s \leq \frac{n}{2}+8$
Codes, meeting the bound are called s-extremal.

Self-dual codes with minimal shadow

Bouyuklieva, Willems (2012):

A self-dual code C of length n is a code with minimal shadow if:
(i) $\operatorname{wt}(S)=r$ if $n \equiv 2 r(\bmod 8), r=1,2,3$, and
(ii) $\mathrm{wt}(S)=4$ if $n \equiv 0(\bmod 8)$.

Bouyuklieva, Varbanov (2011) - wt $(S)=1$
Bouyuklieva, Malevich, Willems (2011) - wt $(S)=4$

Singly-even vs doubly-even codes

C - singly-even self-dual $[n, n / 2, d]$ code, $n \equiv 0(\bmod 8)$
$\Rightarrow C_{0} \cup C_{1}$ and $C_{0} \cup C_{3}$ - doubly-even codes
If C is an extremal self-dual code with minimal shadow then
$C_{0} \cup C_{1}$ - doubly-even [$8 m, 4 m, 4$] code
$C_{0} \cup C_{3}$ - extremal doubly-even [$8 m, 4 m$] code

Self-dual codes and their children

$$
\begin{aligned}
G=\left(\begin{array}{cc|c}
1 & 0 & b \\
\hline 1 & 1 & a \\
\hline 0 & 0 & \\
\vdots & \vdots & D \\
0 & 0 &
\end{array}\right) & \Rightarrow \bar{C}=\mathcal{D} \cup(a+\mathcal{D})-\text { self-dual code } \\
& d-2 \leq d(\bar{C}) \leq d
\end{aligned}
$$

$s=1 \Rightarrow n \equiv 2(\bmod 8)$

$(100 \ldots 0) \in S$

$$
G=\left(\begin{array}{cc|c}
1 & 0 & b \\
\hline 1 & 1 & a \\
\hline 0 & 0 & \\
\vdots & \vdots & D \\
0 & 0 &
\end{array}\right) \Rightarrow C_{0}=(00, \mathcal{D}) \cup(01, a+b+\mathcal{D})
$$

$\Rightarrow \bar{C}=\mathcal{D} \cup(a+\mathcal{D})$ - doubly-even code
If C is extremal then \bar{C} is also extremal.

$s=2 \Rightarrow n \equiv 4(\bmod 8)$

$(1100 \ldots 0) \in S$

$$
G=\left(\begin{array}{cc|c}
1 & 0 & b \\
\hline 1 & 1 & a \\
\hline 0 & 0 & \\
\vdots & \vdots & D \\
0 & 0 &
\end{array}\right) \Rightarrow C_{0}=(00, \mathcal{D}) \cup(11, a+\mathcal{D})
$$

If C is extremal then $\bar{d}=d(\bar{C})=d$ or $d-2, \bar{s} \geq d+1$

$s=2 \Rightarrow n \equiv 4(\bmod 8)$

$(1100 \ldots 0) \in S, d=4 m+4, n=24 m+8 l+4, l=0,1,2$
■ $n=24 m+4 \Rightarrow \bar{d}=4 m+4$ or $4 m+2, \bar{s} \geq 4 m+5$
$\Rightarrow 2(4 m+2)+4 m+5 \leq 2 \bar{d}+\bar{s} \leq 12 m+5$ impossible

- $n=24 m+12 \Rightarrow \bar{d}=4 m+4$ or $4 m+2, \bar{s} \geq 4 m+5$
$\Rightarrow 2(4 m+2)+4 m+5 \leq 2 \bar{d}+\bar{s} \leq 12 m+9$
$\Rightarrow \bar{C}$ is an s-extremal $[24 m+10,12 m+5,4 m+2]$
code
- $n=24 m+4, d=4 m+2 \Rightarrow \bar{d}=4 m+4$ or $4 m+2$, $\bar{s}=4 m+1$
$\Rightarrow \bar{C}$ is an s-extremal $[24 m+2,12 m+1,4 m+2]$ code

$s=2 \Rightarrow n \equiv 4(\bmod 8)$

(1) There exists a self-dual $[24 m+4,12 m+2,4 m+2]$ code with minimal shadow if and only if there is an s-extremal $[24 m+2,12 m+1,4 m+2]$ code $(\bar{s}=4 m+1)$. (2) There exists a self-dual $[24 m+12,12 m+6,4 m+4]$ code with minimal shadow if and only if there is an s-extremal $[24 m+10,12 m+5,4 m+2]$ code ($\bar{s}=4 m+5$).
(3) There exists an extremal self-dual
$[24 m+20,12 m+10,4 m+4]$ code with minimal shadow
if and only if there is a $[24 m+18,12 m+9, \geq 4 m+2]$
code with $\bar{s} \geq 4 m+5$.

Singly-even self-dual codes

$$
n=24 m+8 l+2 r, l=0,1,2, r=0,1,2,3
$$

$$
W(y)=\sum_{j=0}^{12 m+4 l+r} a_{j} y^{2 j}
$$

$$
=\sum_{i=0}^{3 m+l} c_{i}\left(1+y^{2}\right)^{12 m+4 l+r-4 i}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{i}, \text { and }
$$

$$
S(y)=\sum_{j=0}^{6 m+2 l} b_{j} y^{4 j+r}
$$

$$
=\sum_{i=0}^{3 m+l}(-1)^{i} c_{i} 2^{12 m+4 l+r-6 i} y^{12 m+4 l+r-4 i}\left(1-y^{4}\right)^{2 i} .
$$

Weight enumerators

$$
\begin{gathered}
c_{i}=\sum_{j=0}^{i} \alpha_{i j} a_{j}=\sum_{j=0}^{3 m+l-i} \beta_{i j} b_{j} \\
d=4 m+4 \Rightarrow a_{0}=1, a_{1}=a_{2}=\cdots=a_{2 m+1}=0 \\
\Rightarrow c_{i}=\alpha_{i 0}=\alpha_{i}(n), i=0,1, \ldots, 2 m+1 \\
s=4 m+4 l+r-4 \Rightarrow b_{0}=b_{1}=b_{2}=\cdots=b_{m+l-2}=0 \\
\Rightarrow c_{i}=0, i=2 m+2, \ldots, 3 m+l \\
c_{2 m+1}=\alpha_{2 m+1}(n)=\beta_{2 m+1, m+l-1} b_{m+l-1}=-2^{6-t} b_{m+l-1}
\end{gathered}
$$

Weight enumerators, $t=4 l+r$

$$
\begin{gathered}
c_{2 m+1}=\alpha_{2 m+1}(n)=\beta_{2 m+1, m+l-1} b_{m+l-1}=-2^{6-t} b_{m+l-1} \\
\Rightarrow b_{m+l-1}=-2^{t-6} \alpha_{2 m+1}(n) \\
c_{2 m}=\alpha_{2 m}(n)=\beta_{2 m, m+l-1} b_{m+l-1}+\beta_{2 m, m+l} b_{m+l} \\
=2^{1-t}(2 m+1) b_{m+l-1}+2^{-t} b_{m+l} \\
\Rightarrow b_{m+l}=2^{t} \alpha_{2 m}(n)-2(2 m+1) b_{m+l-1} \\
=2^{t} \alpha_{2 m}(n)+2^{t-5}(2 m+1) \alpha_{2 m+1}(n)
\end{gathered}
$$

$n=24 m+2$

$$
\begin{gathered}
b_{m}=\frac{(12 m+1)(39-14 m)}{20 m}\binom{5 m}{m-1} \geq 0 \\
\Rightarrow m \leq 2
\end{gathered}
$$

But self-dual $[2,1,4],[26,13,8]$ and $[50,25,12]$ do not exist

Hence self-dual $[24 m+2,12 m+1,4 m+4] s$-extremal codes do not exist

Weight enumerators, $t=4 l+r$

No s-extremal singly-even self-dual
$[24 m+2 t, 12 m+t, 4 m+4]$ codes exist if
(1) $t=1$; (2) $t=2$ and $m \neq 7$;
(3) $t=3$ and $m \neq 7,13,14,15$;
(4) $t=4$ and $m \geq 43$;
(5) $t=5$ and $m \geq 78$;
(6) $t=6$ and $m \geq 113$;
(7) $t=7$ and $m \geq 136$;
(8) $t=8$ and $m \geq 148$;
(9) $t=9$ and $m \geq 152$;
(10) $t=10$ and $m \geq 153$.

