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Some Preliminaries 1

Definition 1.

A square matrix A of size n over the filed F is said to be
orthogonal if

AAT = I,

where I denotes the identity matrix of the same size, and (as
usually) the notation MT stands for the transpose matrix of a
given matrix M.

Borissov, Lee A Novel Sparse Orthogonal Matrix Construction . . .



Some Preliminaries 2

Definition 2.

The ratio ∆(A) = N/n2, where N is the number of nonzero
entries of a square matrix A of size n, we call density of that
matrix.

An non-singular matrix must contain in each row/column at
least one nonzero entry. Therefore, for the density of a
such matrix A of size n, we have the following lower bound:

1/n ≤ ∆(A).

In particular, this bound is valid for the orthogonal matrices.
The lower bound is achieved in the set of permutation
matrices, i.e.

∆(P) = 1/n,

for arbitrary permutation matrix P of size n.
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Description of the Construction 1

Let M be a matrix of size n, and O and I denote the all-zero and
the identity matrix of the same size, respectively.
We introduce two matrix mappings α and β involving M.

α maps the matrix M into a matrix of size 2n defined as:

α(M) =

(
I O
M I

)
β maps the matrix M into a matrix of size 2n defined as:

β(M) =

(
M MT

MT M

)
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Description of the Construction 2

Let γ be the superposition of α and β, i.e. γ maps the matrix M
into a matrix defined as:

γ(M) = β(α(M)).

As a 4× 4 block structured matrix γ(M) looks as:

γ(M) =


I O I MT

M I O I
I MT I O
O I M I


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Description of the Construction 3

Theorem 3.

For arbitrary orthogonal matrix M over a field F of characteristic
two, the matrix γ(M) is orthogonal over F too.

Starting from some initial orthogonal matrix A0 over the field F ,
let us define Am = γ(Am−1), m = 1,2, . . ..
By Theorem 3, the matrix Am will be an orthogonal matrix over
F of size 4m× size of A0.
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The Sparseness of the Constructed Matrices 1

Proposition 4.

For arbitrary matrix M of size n, it holds:

∆(γ(M)) =
1
2
∗ 1/n +

1
4

∆(M).

Proposition 5.

Let A0 be a matrix of size n. Then for the density of matrix Am
(from the iterative procedure), it holds:

∆(Am) =
m

22m−1 .
1
n

+
1

4m ∆(A0).
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The Sparseness of the Constructed Matrices 2

Corollary 6.
If a permutation matrix P0 is picked up as initial seed in the
iterative procedure then the density of the matrix Pm obtained
after the m−th stage, m ≥ 1, is:

∆(Pm) =
2m + 1

4m ∆(P0).

Proposition 5 and the above corollary show sub-exponential
decreasing in the density of the constructed matrices with m.
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Examples 1

Example 7.

The first example is the simplest possible where the seed is:
P0 = (1).

P1 = γ(P0) =


1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1


Let A16 be the tensor square of the matrix P1. The 16× 32
matrix [I16|A16] is a generator matrix of an self-dual code of
length 32 whose minimum weight equals 6. But the optimal
self-dual codes of length 32 have minimum weight 8, e.g.
RM(2,5) is such a code.
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Examples 2

Example 8.

Let char(F) = 2, and θ̄ = θ + 1 for an arbitrary θ ∈ F . Form the
orthogonal 2× 2 matrix:

A0 =

(
θ θ̄
θ̄ θ

)

A1 = γ(A0) =



1 0 0 0 1 0 θ θ̄
0 1 0 0 0 1 θ̄ θ
θ θ̄ 1 0 0 0 1 0
θ̄ θ 0 1 0 0 0 1
1 0 θ θ̄ 1 0 0 0
0 1 θ̄ θ 0 1 0 0
0 0 1 0 θ θ̄ 1 0
0 0 0 1 θ̄ θ 0 1


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The End

THANK YOU FOR ATTENTION!
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