# CYCLIC SEPARABLE GOPPA CODES 

Sergey Bezzateev and Natalia Shekhunova
bsv@aanet.ru sna@delfa.net

Saint Petersburg State University of Aerospace Instrumentation

## Russia

Algebraic and Combinatorial Coding Theory June 15-21, 2012
Pomorie, Bulgaria

- Overview of previous results on cyclicity of Goppa codes
- Two problems
- Known solutions for the problem 1
- Solution for the problem 2 (main result)
- Sufficient conditions for Goppa code cyclicity
- Examples
- Conclusion

Goppa codes of length $n$ are determined by two objects:

- Goppa polynomial $G(x)$ of degree $t$ with coefficients from the field $G F\left(q^{m}\right)$,
- a set $L=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$, where $\alpha_{i} \neq \alpha_{j}, G\left(\alpha_{i}\right) \neq 0, \alpha_{i} \in G F\left(q^{m}\right)$.

The Goppa code consists of all $q$-ary vectors $\mathbf{a}=\left(a_{1} a_{2} \ldots a_{n}\right)$ such that

$$
\sum_{i=1}^{n} a_{i} \frac{1}{x-\alpha_{i}} \equiv 0 \quad \bmod G(x)
$$

## Cyclic Goppa codes

Theorem (V.D. Goppa The new class of linear error-correction codes, Probl. Inform. Transm, v.6, no.3, 1970, pp.24-30)
If a code satisfying with the condition

$$
\sum_{i=1}^{n} a_{i} \frac{1}{x-\alpha_{i}} \equiv 0 \quad \bmod G(x), \alpha_{i} \in L
$$

is a cyclic code, it is BCH-code and $G(x)=x^{t}$.

## Definition

Goppa code is called as a separable code if a Goppa polynomial $G(x)$ has no mulpiple roots.

## Definition

The polynomial $G(x)$ with the coefficients from $G F\left(2^{m}\right)$ is called irreducible polynomial if it has no roots in the field $G F\left(2^{m}\right)$.

## Lemma

Any separable polynomial $G(x), \operatorname{deg} G(x)=2$ with the coefficients from the field $G F\left(2^{m}\right)$ can be presented in the form
$G(x)=x^{2}+A x+1$, where $A \in G F\left(2^{m}\right)$.

## Definition

Linear transformation $\theta(x)=a x+b$

$$
\alpha \rightarrow a \alpha+b, a, b \in G F\left(2^{m}\right), a \neq 0, \alpha \in G F\left(2^{m}\right) .
$$

## Definition

Bilinear transformation $\theta(x)=\frac{a x+b}{c x+d}$

$$
\alpha \rightarrow \frac{a \alpha+b}{c \alpha+d}, a, b, c, d \in G F\left(2^{m}\right), c \neq 0, a b+c d \neq 0,
$$

$\alpha \in G F\left(2^{m}\right) \bigcup\{\infty\}$.
Inverse transformation : $\theta^{-1}(x)=\frac{d x+b}{c x+a}$

Lemma (A.L. Vishnevetskyi, On cyclicity of extended Goppa codes, Probl. Inform. Transm, 1982, v.18, n.3, p.14-18.)
$\theta\left(\prod_{\beta}(x-\beta)\right) \sim \prod_{\beta}\left(x-\theta^{-1}(\beta)\right)$ for any transformation
$\theta(x)=\frac{a x+b}{c x+d}, c=1, a, b, d \in G F\left(2^{m}\right), a d+b \neq 0$.

## Remark

Let us represent the operations determined for the element $\{\infty\}$ :

- $\theta^{-1}(\infty)=\frac{d \infty+b}{\infty+a}=\frac{d+\frac{b}{\infty}}{1+\frac{a}{\infty}}=d$,
- $\frac{1}{G(\infty)}=\frac{1}{\infty^{2}+(a+d) \infty+b}=\frac{\frac{1}{\infty^{2}}}{1+\frac{a+d}{\infty}+\frac{b}{\infty^{2}}}=0$,
- similarly, we can obtain $\frac{\infty}{G(\infty)}=0$ и $\frac{\infty^{2}}{G(\infty)}=1$.

Lemma [F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, 1976]
Let a transformation

$$
\theta(x)=\frac{a x+b}{c x+d}, c=1, a, b, d \in G F\left(2^{m}\right), a d+b \neq 0
$$

sets automorphism on the set $L \subseteq G F\left(2^{m}\right) \bigcup\{\infty\}$,

$$
\begin{aligned}
& \theta^{-1}(L)=L \text { и } G(x)=x^{2}+(a+d) x+b \\
& \theta(G(x))=G(\theta(x))=\frac{b+a d}{x^{2}+d^{2}} G(x)
\end{aligned}
$$

$(L, G)$ - code be a cyclic code iff the weight of every codeword is even.

Extension of Goppa code by addition common parity check
Extended cyclic Goppa codes

$$
H_{E}=\left[\begin{array}{cc}
H_{(L, G)} & 0 \\
1 \ldots 1 & 1
\end{array}\right]\left\{\begin{array}{l}
\sum_{i=1}^{n} a_{i} \frac{1}{x-\alpha_{i}}+a_{\infty} \frac{1}{x-\infty} \equiv 0 \quad \bmod G(x) \\
a_{1}+a_{2}+\ldots+a_{\infty}=0
\end{array}\right.
$$

Cyclic subcode of the $(L, G)$ - code with the parity-check matrix $H_{P C}$

## Parity-check cyclic subcodes

$$
H_{P C}=\left[\begin{array}{c}
H_{(L, G)} \\
1 \ldots 1
\end{array}\right]\left\{\begin{array}{l}
\sum_{i=1}^{n} a_{i} \frac{1}{x-\alpha_{i}} \equiv 0 \quad \bmod G(x) \\
a_{1}+a_{2}+\ldots a_{n}=0
\end{array}\right.
$$

Code parameters

$$
\begin{cases}n=\left|G F\left(2^{m}\right) \bigcup\{\infty\}\right|=2^{m}(+1) & \text { if } G(x) \text { is irreducible over } G F\left(2^{m}\right), \\ n=\left|G F\left(2^{m}\right) \bigcup\{\infty\}\right|-2=2^{m}-2(+1) & \text { if } G(x) \text { has two roots in } G F\left(2^{m}\right), \\ k=n-2 m-1, & d \geq 6\end{cases}
$$

1. E.R. Berlecamp, O. Moreno, Extended Double-Error-Gorrecting Binary Goppa Codes Are Cyclic, IEEE Trans. Inform. Theory, 1973, v. 19, n. 6, p. 817-818.
2. Tzeng K. K., Zimmermann K. On Extending Goppa Codes to Cyclic Codes, IEEE Trans. Inform. Theory, 1975, v. 21, n. 6, p. 712-716.
3. K.K. Tzeng K. K., C.Y. Yu , Characterization Theorems for Extending Goppa Codes to Cyclic Codes, IEEE Trans. Inform. Theory, 1979, v. 25, № 2, p. 246-250.
4. O. Moreno, Symmetries of Binary Goppa Codes, IEEE Trans. Inform.

Theory, 1979, v. 25, n. 5, p. 609-612.
5. A.L. Vishnevetskiy, On cyclicity of extended Goppa codes, Probl. Inform.

Transm., 1982, v.18, n.3, p. 14-18.
6. T.P.Berger, Goppa and Related Codes Invariant Under a Prescribed

Permutation, IEEE Trans. Inform. Theory, 2000, v. 46, n.7, p.2628-2633.
7. T.P.Berger, On the Cyclicity of Goppa Codes, Parity-Check Subcodes of Goppa Codes, and Extended Goppa Codes, Finite Fields and Their Applications 6, 2000, p.255-281.
8. T.P. Berger, Quasi-cyclic Goppa codes, in Proc. ISIT2000, Sorrente, Italie, 2000, p. 195.
9. T.P. Berger ,New Classes of Cyclic Extended Goppa Codes, IEEE Trans. Inform. Theory, 1999, v. 45, n.4, p.1264-1266.
(1) Is it exists another extended cyclic Goppa codes ? [F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, 1976]
(2) Is it exists separable cyclic Goppa codes with $L \subseteq G F\left(2^{m}\right)$ ?

Extended cyclic Goppa codes with $\operatorname{deg} G(x)=2^{w}+1$ [O.Moreno 1979, T.Berger 2000]

Transformation $\theta(x)=\frac{a x^{2 \omega}+b}{x^{2 \omega}+d}$,
$G(x)=x^{2^{2}+1}+a x^{2^{w}}+d x+b$,
$L \subseteq G F\left(2^{m}\right) \bigcup\{\infty\}$,
$k \geq n-m\left(2^{w}+1\right)-1$,
$d \geq 2^{w+1}+4$ and all codewords should have even weight.

We should find such the set $L$ and the polynomial $G(x)$ that $(L, G)$-code will be the code with all codewords of even weights without adding of further lines or columns in it parity-check matrix.

Lemma (Bezzateev S.V., Shekhunova N.A., Special classes of Goppa Codes with improved estimations of parameters , Probl. Inform. Transm.,2010,v.46., n.3, p. 29-50.)
$(L, G)$-code with Goppa polynomial $G(x)=x^{2^{l}-1}+1$ and the set $L=G F\left(2^{2 l}\right) \backslash G F\left(2^{l}\right)$ has all codewords of even weights.

## Theorem

Goppa code with

$$
G(x)=x^{2}+A x+1, A \in G F\left(2^{l}\right)
$$

and

$$
L=\left\{\alpha_{i}: \alpha_{i}^{2^{l}+1}=1, \alpha_{i} \in G F\left(2^{2 l}\right), i=1, \ldots, n\right\}
$$

is ( $n, n-2 l-1, d \geq 6$ ) cyclic reversible code.

The following conditions are the sufficient conditions for a cyclicity of ( $n, k, d \geq 6$ ) Goppa code with Goppa polynomial $G(x)$ of the degree 2 and the numerator set $L \subseteq G F\left(2^{m}\right)$ :
(1) $n<2^{m}-1, n \mid 2^{m}+1$ or $n \mid 2^{m}-1$,
(2) $L=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\right\}, \alpha_{i} \in G F\left(2^{m}\right), \theta^{-1}\left(\alpha_{i}\right)=\alpha_{i+1(\bmod n)}$, $\theta(x)=\frac{a x+b}{c x+d}$,
(0) $G(x)=c x^{2}+(a+d) x+b$ and $G(x)$-is an irreducible polynomial over the field $G F\left(2^{m}\right)$ or $G\left(\beta_{1}\right)=G\left(\beta_{2}\right)=0, \beta_{1} \neq \beta_{2}, \beta_{1}, \beta_{2} \in$ $G F\left(2^{m}\right), \theta^{-1}\left(\beta_{1}\right)=\beta_{1}, \theta^{-1}\left(\beta_{2}\right)=\beta_{2}$,
(0) any codeword $\mathbf{a}=\left(a_{1} a_{2} \ldots a_{n}\right) \in \Gamma(L, G)$ has even weight, $w t(\mathbf{a}) \equiv 0 \quad \bmod 2$.

Let us consider the separable $\Gamma(L, G)$ - code with

$$
L=\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\}, \alpha_{i} \in G F\left(2^{m}\right), \alpha_{i}^{2^{l}}=\alpha_{i}^{-1} \text { for all } i=1, \ldots, n, l<m
$$

and

$$
G(x): \operatorname{deg} G(x)=t,\left(x^{t}\right)^{2^{l}} G\left(x^{-1}\right)^{2^{l}}=A G\left(x^{2^{l}}\right), A \in G F\left(2^{m}\right)
$$

Any code word $\mathbf{a}=\left(a_{1} a_{2} \ldots a_{n}\right)$ of the code has even weight.

$$
\sum_{i=1}^{n} a_{i} \frac{1}{x+\alpha_{i}} \equiv 0 \quad \bmod G(x), w t(a) \equiv 0 \quad \bmod 2
$$

The following conditions are sufficients for cyclicity of separable $\Gamma(L, G)$ - code:
(1) bilinear transformation $\theta(x)=\frac{a x+b}{c x+d}$ such that $(c x+d)^{t} \theta(G(x))=A G(x)$, $t=\operatorname{deg} G(x), a, b, c, d, A \in G F\left(2^{m}\right)$ and $\theta^{-1}(L)=L$,
(2) $L=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\right\}, \alpha_{i} \in G F\left(2^{m}\right), \alpha_{i}^{2^{l}}=\alpha_{i}^{-1}, l<m, G\left(\alpha_{i}\right) \neq 0$,

- $\left(x^{t}\right)^{2^{l}} G\left(x^{-1}\right)^{2^{l}}=A G\left(x^{2^{l}}\right), A \in G F\left(2^{m}\right)$.

Reversible $\left(n=2^{l}+1,2^{l}-2 l, 6\right)$ Goppa code with polynomial $G(x)$ :

$$
G(x)=x^{2}+r x+1, r \in G F\left(2^{l}\right) \backslash\{0\}
$$

and with the set $L$ :

$$
L=\left\{1, \alpha, \alpha^{2}, \ldots . \alpha^{n-1}\right\}, \alpha \in G F\left(2^{2 l}\right), \alpha^{n}=1
$$

is a reversible cyclic separable Goppa code.

The following conditions for $a, b, d$ are sufficient to obtain the $\theta$ - orbit $L \in G F\left(2^{m}\right)$ with the length of cycle $\zeta=|L|$ :

$$
\zeta \leq 2^{l}+1, \zeta \mid 2^{l}+1 \text { or } \zeta \mid 2^{l}-1, l<m
$$

such that for any element $\alpha \in L$ the relation $\alpha^{2^{I}}=\alpha^{-1}$ is fulfills.

$$
d=\frac{a^{2^{l}}}{b^{2^{l}}}
$$

and

$$
\begin{array}{ll}
a=\alpha^{i}, & b=\alpha^{j \eta} \\
i \in\left\{1,2, \ldots 2^{2 l}-2\right\} \backslash\left\{2^{l}-1,2\left(2^{l}-1\right), \ldots, 2^{l}\left(2^{l}-1\right)\right\}, & \eta=2^{l}-1, \\
i \in\left\{0,1,2, \ldots 2^{l}\right\},
\end{array}
$$

$\alpha$ is a primitive element of $G F\left(2^{2 l}\right)$.
In addition, Goppa polynomial $G(x)=x^{2}+(a+d) x+b$ will satisfy the following relation

$$
G^{2^{\prime}}\left(x^{-1}\right)=A x^{-2^{l+1}} G\left(x^{2^{\prime}}\right), A \in G F\left(2^{m}\right)
$$

The transformation

$$
\begin{aligned}
\theta^{*}(x)=\frac{\frac{a}{\sqrt{b}} x+1}{x+\sqrt{b} a^{l}}, & a=\alpha^{i}, i \in\left\{1,2, \ldots 2^{2 l}-2\right\} \backslash\left\{2^{l}-1,2\left(2^{l}-1\right), \ldots, 2^{l}\left(2^{l}-1\right)\right\} \\
& b=\alpha^{j \eta}, \eta=2^{l}-1, j \in\left\{0,1, \ldots, 2^{l}\right\}, \\
& \alpha-\text { is a primitive element of } G F\left(2^{2 l}\right)
\end{aligned}
$$

define the set

$$
L=\left\{1, \alpha_{2}, \ldots, \alpha_{n}\right\}, \alpha_{i}=\frac{a \alpha_{i-1}+1}{\alpha_{i-1}+a^{2^{l}}}, 1<i \leq n, n \leq 2^{l}+1, n \mid 2^{l}-1 \text { or } n \mid 2^{l}+1
$$

and polynomial

$$
G(x)=x^{2}+\left(\frac{a}{\sqrt{b}}+\sqrt{b} a^{2^{l}}\right) x+1,
$$

Such $L$ and $G(x)$ defines ( $n, k=n-2 l-1, d \geq 6$ )- separable reversible cyclic $(L, G)$ - Goppa code with even weight codewords.

## Example1

Let us consider a separable $\Gamma_{1}(L, G)$ code as a cyclic $(21,8,6)$-code with $G(x)=x^{2}+\alpha^{714} x+\alpha^{63}, \alpha$ is a primitive element from $G F\left(2^{12}\right)$,

$$
L=\left\{\alpha^{i}, i=0,2646,3717,1953,1890,1008,2583,2961,1323,2079,2835\right.
$$

$$
1197,1575,3150,2268,2205,441,1512,63,3906,252\}
$$

transformation $\theta(x)=\frac{\alpha^{6} x+\alpha^{63}}{x+\alpha^{447}}$.
The cyclic Goppa code $\Gamma_{1}(L, G)$ is the cyclic code with length 21 and generator polynomial

$$
g(x)=(x+1)\left(x^{6}+x^{4}+x^{2}+x+1\right)\left(x^{6}+x^{5}+x^{4}+x^{2}+1\right)
$$

## Example 2

Let us consider as example of a separable $\Gamma_{2}(L, G)$ reversible cyclic code $(33,22,6)$ with $G(x)=x^{2}+\alpha^{560} x+\alpha^{31}, \alpha$ is a primitive element from $G F\left(2^{10}\right)$,

$$
\begin{aligned}
& L=\left\{\alpha^{i}, i=0,62,93,527,961,992,31,155,682,217,930,744,341,496,465,775,\right. \\
& 403,248,620,868,186,434,806,651,279,589,558,713,310,124,837,372,899\}
\end{aligned}
$$

transformation $\theta(x)=\frac{\alpha^{901} x+\alpha^{31}}{x+\alpha^{219}}$.
The cyclic Goppa code $\Gamma_{2}(L, G)$ is the cyclic code of length 33 and generator polynomial

$$
g(x)=(x+1)\left(x^{10}+x^{7}+x^{5}+x^{3}+1\right)
$$

| $n$ | $l$ | $i: a=\alpha^{i} \in G F\left(2^{2 l}\right)$ | $n, k, d$ reversible cyclic code |
| :---: | :---: | :---: | :---: |
| 9 | 3 | 37 | $9,2,6$ |
| 15 | 4 | 62 | $15,6,6$ |
| 17 | 4 | 47 | $17,8,6$ |
| 21 | 6 | 380 | $21,8,6$ |
| 25 | 10 | 380 | $25,4,10$ |
| 27 | 9 | 5623 | $27,8,6$ |
| 31 | 5 | 126 | $31,20,6$ |
| 33 | 5 | 64 | $33,22,6$ |
| 35 | 12 | 5335787 | $35,10,10$ |
| 39 | 12 | 1756757 | $39,14,6$ |

Table: Reversible cyclic separable $(L, G)$ codes with $G(x)=x^{2}+\left(a+a^{2^{l}}\right) x+1$ and $L=\left\{1, \alpha_{2}, \ldots, \alpha_{n}\right\}, \alpha_{i}=\frac{a \alpha_{i-1}+1}{\alpha_{i-1}+a^{2}}, 1<i \leq n$

| $n$ | $l$ | $i: a=\alpha^{i} \in G F\left(2^{2 l}\right)$ | $n, k, d$ reversible cyclic code |
| :---: | :---: | :---: | :---: |
| 41 | 10 | 119693 | $41,20,10$ |
| 43 | 7 | 383 | $43,28,6$ |
| 45 | 12 | 900902 | $45,20,6$ |
| 49 | 21 | 135647920984 | $49,6,14$ |
| 51 | 8 | 5612 | $51,34,6$ |
| 55 | 20 | 58865951927 | $55,14,10$ |
| 57 | 9 | 18909 | $57,38,6$ |
| 63 | 6 | 128 | $63,50,6$ |
| 65 | 6 | 191 | $65,52,6$ |

Table: Reversible cyclic separable $(L, G)$ codes with $G(x)=x^{2}+\left(a+a^{2^{l}}\right) x+1$ and $L=\left\{1, \alpha_{2}, \ldots, \alpha_{n}\right\}, \alpha_{i}=\frac{a \alpha_{i-1}+1}{\alpha_{i-1}+a^{2}}, 1<i \leq n$

Example from [T.P.Berger, On the Cyclicity of Goppa Codes, Parity-Check Subcodes of Goppa Codes, and Extended Goppa Codes, Finite Fields and Their Applications 6, 2000, p.255-281.]

$$
\text { Set } \theta(x)=\frac{\alpha^{3} x^{2}+1}{x^{2^{l}}+\alpha^{29}}
$$

The orbit under $\theta$ is

$$
\left\{\alpha^{26}, \alpha^{5}, \alpha^{24}, \alpha^{30}, \infty, \alpha^{3}, \alpha^{29}, \alpha^{16}, \alpha^{14}, 0, \alpha^{2}, \alpha^{28}, \alpha^{22}, \alpha^{18}, 1\right\}
$$

$(L, G)$ code with irreducible polynomial $G(x)=x^{3}+\alpha^{3} x^{2}+\alpha^{29} x+1$ and

$$
L=\left\{\alpha^{26}, \alpha^{5}, \alpha^{24}, \alpha^{30}, \alpha^{3}, \alpha^{29}, \alpha^{16}, \alpha^{14}, 0, \alpha^{2}, \alpha^{28}, \alpha^{22}, \alpha^{18}, 1\right\}
$$

give us non cyclic $(14,2,9)$ Goppa code with cyclic extension

$$
H_{E}=\left[\begin{array}{cc}
H_{(L, G)} & 0 \\
1 \ldots 1 & 1
\end{array}\right]
$$

Therefore we obtain $(15,2,10)$ extended cyclic Goppa code.

## Theorem

The sufficient conditions for the cyclicity of separable ( $n, k, d \geq 2^{l+1}+4$ ) Goppa codes with the polynomial $G(x)$ of degree $2^{l}+1$ and the numerator set $L \subseteq G F\left(2^{m}\right)$ are the following :
(1) n is the orbit length of the transformation $\theta(x)=\frac{a x^{2^{l}}+b}{c x^{2^{l}}+d}$ in the set $G F\left(2^{m}\right)$,
(2) $L=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\right\}, \alpha_{i} \in G F\left(2^{m}\right), \theta^{-1}\left(\alpha_{i}\right)=\alpha_{i+1(\bmod n)}$,
(3) $G(x)=c x^{2^{l}+1}+a x^{2^{l}}+d x+b$, and $G(x)$ is either irreducible polynomial over $G F\left(2^{m}\right)$ or $G\left(\beta_{i}\right)=0, \beta_{i} \in G F\left(2^{m}\right), \theta^{-1}\left(\beta_{i}\right)=\beta_{i}$.
(4) $w t(\mathbf{a})$ is even for any $\mathbf{a}=\left(a_{1} a_{2} \ldots a_{n}\right) \in \Gamma(L, G)$.

## Example3

Let us consider a separable $\Gamma_{3}(L, G)$ code as a cyclic $(15,2,10)$-code with $G(x)=x^{3}+\alpha^{96} x^{2}+\alpha^{3} x+1, \alpha$ is a primitive element from $G F\left(2^{10}\right)$,

$$
L=\left\{\alpha^{i}, i=589,713,744,558,992,682,62,651,620,341,806,31,279,217,0\right\}
$$

transformation $\theta(x)=\frac{\alpha^{3} x^{2}+1}{x^{2}+\alpha^{96}}$.
The cyclic Goppa code $\Gamma_{3}(L, G)$ is the cyclic code of length 15 and generator polynomial

$$
g(x)=(x+1)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

## Conclusion

- New class of binary cyclic reversible separable Goppa codes
- Sufficient conditions for Goppa code cyclicity


## Questions and answers

## THANK YOU FOR YOUR ATTENTION!

