On Klosterman sums over finite fields of characteristic 3

Bassalygo L. A., Zinoviev V. A.

Institute for Problems of Information Transmission, Russian Academy of Sciences, Moscow, Russia

ACCT-13,
Pomorie, Bulgary, June 15-21, 2012

Outline

1 Introduction
2 Known results

3 New results
4 References

We study the divisibility by 3^{k} of Klosterman sums $K(a)$ over finite fields of characteristic 3 .

We study the divisibility by 3^{k} of Klosterman sums $K(a)$ over finite fields of characteristic 3.
We give a simple recurrent algorithm for finding the largest k, such that 3^{k} divides the Kloosterman sum $K(a)$.

We study the divisibility by 3^{k} of Klosterman sums $K(a)$ over finite fields of characteristic 3.
We give a simple recurrent algorithm for finding the largest k, such that 3^{k} divides the Kloosterman sum $K(a)$.
This gives a simple description of zeros of such Kloosterman sums.

Let $\mathbb{F}=\mathbb{F}_{3^{m}}$ be a field of characteristic 3 of order 3^{m}, where $m \geq 2$ is an integer and let $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$.

Let $\mathbb{F}=\mathbb{F}_{3^{m}}$ be a field of characteristic 3 of order 3^{m}, where $m \geq 2$ is an integer and let $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$. By \mathbb{F}_{3} denote the field, consisting of three elements.

Let $\mathbb{F}=\mathbb{F}_{3^{m}}$ be a field of characteristic 3 of order 3^{m}, where $m \geq 2$ is an integer and let $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$. By \mathbb{F}_{3} denote the field, consisting of three elements. For any element $a \in \mathbb{F}^{*}$ the Klosterman sum can be defined as

$$
\begin{equation*}
K(a)=\sum_{x \in \mathbb{F}} \omega^{\operatorname{Tr}(x+a / x)} \tag{1}
\end{equation*}
$$

where $\omega=\exp \{2 \pi i / 3\}$ is a primitive 3 -th root of unity and

$$
\begin{equation*}
\operatorname{Tr}(x)=x+x^{3}+x^{3^{2}}+\cdots+x^{3^{m-1}} \tag{2}
\end{equation*}
$$

Let $\mathbb{F}=\mathbb{F}_{3^{m}}$ be a field of characteristic 3 of order 3^{m}, where $m \geq 2$ is an integer and let $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$. By \mathbb{F}_{3} denote the field, consisting of three elements. For any element $a \in \mathbb{F}^{*}$ the Klosterman sum can be defined as

$$
\begin{equation*}
K(a)=\sum_{x \in \mathbb{F}} \omega^{\operatorname{Tr}(x+a / x)} \tag{1}
\end{equation*}
$$

where $\omega=\exp \{2 \pi i / 3\}$ is a primitive 3 -th root of unity and

$$
\begin{equation*}
\operatorname{Tr}(x)=x+x^{3}+x^{3^{2}}+\cdots+x^{3^{m-1}} \tag{2}
\end{equation*}
$$

Recall that under x^{-i} we understand $x^{3^{m}-1-i}$, avoiding by this way a division into 0 .

Divisibility of ternary Klosterman sums $K(a)$ by 9 and by 27 was considered in several recent papers

Divisibility of ternary Klosterman sums $K(a)$ by 9 and by 27 was considered in several recent papers van der Geer G. \& van der Vlugt M. [1991]

Divisibility of ternary Klosterman sums $K(a)$ by 9 and by 27 was considered in several recent papers van der Geer G. \& van der Vlugt M. [1991] Lisonek P. [2008]

Divisibility of ternary Klosterman sums $K(a)$ by 9 and by 27 was considered in several recent papers van der Geer G. \& van der Vlugt M. [1991] Lisonek P. [2008]
Moisio M. [2008]

Divisibility of ternary Klosterman sums $K(a)$ by 9 and by 27 was considered in several recent papers van der Geer G. \& van der Vlugt M. [1991] Lisonek P. [2008]
Moisio M. [2008]
Lisonek P. \& Moisio M.[2011]

Divisibility of ternary Klosterman sums $K(a)$ by 9 and by 27 was considered in several recent papers van der Geer G. \& van der Vlugt M. [1991] Lisonek P. [2008]
Moisio M. [2008]
Lisonek P. \& Moisio M. [2011]
G'oloğlu F., McGuire G., \& R. Moloney R. [2011]

Divisibility of ternary Klosterman sums $K(a)$ by 9 and by 27 was considered in several recent papers van der Geer G. \& van der Vlugt M. [1991] Lisonek P. [2008]
Moisio M. [2008]
Lisonek P. \& Moisio M. [2011]
G'oloğlu F., McGuire G., \& R. Moloney R. [2011] In (Ahmadi O. \& Granger R. [2011]) an efficient deterministic (recursive) algorithm was given proving divisibility of Klosterman sums by 3^{k}.

Here we simplified some of results, given in the above papers.

Here we simplified some of results, given in the above papers. In particular, we give a simple test of divisibility of $K(a)$ by 27 .

Here we simplified some of results, given in the above papers. In particular, we give a simple test of divisibility of $K(a)$ by 27 .
We suggest also a recursive algorithm of finding the largest divisor of $K(a)$ of the type 3^{k} which does not need solving of cubic equation as in (Ahmadi O. \& Granger R. [2011]), but only implementation of arithmetic operation in \mathbb{F}.

Here we simplified some of results, given in the above papers. In particular, we give a simple test of divisibility of $K(a)$ by 27 .
We suggest also a recursive algorithm of finding the largest divisor of $K(a)$ of the type 3^{k} which does not need solving of cubic equation as in (Ahmadi O. \& Granger R. [2011]), but only implementation of arithmetic operation in \mathbb{F}.
For the case when $m=g h$ we derive the exact connection between the divisibility by 3^{k} of $K(a)$ in $\mathbb{F}_{3^{g}}, a \in \mathbb{F}_{3^{g}}$, and the divisibility by $3^{k^{\prime}}$ of $K(a)$ in $\mathbb{F}_{3^{g h}}$.

Our interest is the divisibility of such sums by the maximal possible number of type 3^{k} (i.e. 3^{k} divides $K(a)$, but 3^{k+1} does not divide $K(a)$; in addition, when $K(a)=0$ we assume that 3^{m} divides $K(a)$, but 3^{m+1} does not divide).

Our interest is the divisibility of such sums by the maximal possible number of type 3^{k} (i.e. 3^{k} divides $K(a)$, but 3^{k+1} does not divide $K(a)$; in addition, when $K(a)=0$ we assume that 3^{m} divides $K(a)$, but 3^{m+1} does not divide).
For a given \mathbb{F} and any $a \in \mathbb{F}^{*}$ define the elliptic curve $E(a)$ as follows:

$$
\begin{equation*}
E(a)=\left\{(x, y) \in \mathbb{F} \times \mathbb{F}: y^{2}=x^{3}+x^{2}-a\right\} \tag{3}
\end{equation*}
$$

Our interest is the divisibility of such sums by the maximal possible number of type 3^{k} (i.e. 3^{k} divides $K(a)$, but 3^{k+1} does not divide $K(a)$; in addition, when $K(a)=0$ we assume that 3^{m} divides $K(a)$, but 3^{m+1} does not divide).
For a given \mathbb{F} and any $a \in \mathbb{F}^{*}$ define the elliptic curve $E(a)$ as follows:

$$
\begin{equation*}
E(a)=\left\{(x, y) \in \mathbb{F} \times \mathbb{F}: y^{2}=x^{3}+x^{2}-a\right\} \tag{3}
\end{equation*}
$$

The set of \mathbb{F}-rational points of the curve $E(a)$ over \mathbb{F} forms a finite abelian group, which can be represented as a direct product of a cyclic subgroup $G(a)$ of order 3^{t} and a certain subgroup $H(a)$ of some order s (which is not multiple to 3): $E(a)=G(a) \times H(a)$, such that

$$
|E(a)|=3^{t} \cdot s
$$

for some integers $t \geq 2$ and $s \geq 1$ (Enge [1991]), where $s \not \equiv 0$ $(\bmod 3)$.

Moisio [2008] showed that

$$
\begin{equation*}
|E(a)|=3^{m}+K(a), \tag{4}
\end{equation*}
$$

where $|A|$ denotes the cardinality of a finite set A.

Moisio [2008] showed that

$$
\begin{equation*}
|E(a)|=3^{m}+K(a) \tag{4}
\end{equation*}
$$

where $|A|$ denotes the cardinality of a finite set A.
Therefore a Kloosterman sum $K(a)$ is divisible by 3^{t}, if and only if the number of points of the curve $E(a)$ is divisible by 3^{t}.

Moisio [2008] showed that

$$
\begin{equation*}
|E(a)|=3^{m}+K(a), \tag{4}
\end{equation*}
$$

where $|A|$ denotes the cardinality of a finite set A.
Therefore a Kloosterman sum $K(a)$ is divisible by 3^{t}, if and only if the number of points of the curve $E(a)$ is divisible by 3^{t}. Lisonek [2008] observed, that $|E(a)|$ is divisible by 3^{t}, if and only if the group $E(a)$ contains an element of order 3^{t}.

Moisio [2008] showed that

$$
\begin{equation*}
|E(a)|=3^{m}+K(a) \tag{4}
\end{equation*}
$$

where $|A|$ denotes the cardinality of a finite set A.
Therefore a Kloosterman sum $K(a)$ is divisible by 3^{t}, if and only if the number of points of the curve $E(a)$ is divisible by 3^{t}.
Lisonek [2008] observed, that $|E(a)|$ is divisible by 3^{t}, if and only if the group $E(a)$ contains an element of order 3^{t}.
Since $|E(a)|$ is divisible by $|G(a)|$, which is equal to 3^{t}, then generator elements of $G(a)$ and only these elements are of order 3^{t}.

Let $Q=(\xi, *) \in E(a)$. Then the point $P=(x, *) \in E(a)$, such that $Q=3 P$ exists, if and only if the equation

$$
x^{9}-\xi x^{6}+a(1-\xi) x^{3}-a^{2}(a+\xi)=0
$$

has a solution in \mathbb{F}.

Let $Q=(\xi, *) \in E(a)$. Then the point $P=(x, *) \in E(a)$, such that $Q=3 P$ exists, if and only if the equation

$$
x^{9}-\xi x^{6}+a(1-\xi) x^{3}-a^{2}(a+\xi)=0 .
$$

has a solution in \mathbb{F}. This equation is equivalent to equation

$$
\begin{equation*}
x^{3}-\xi^{1 / 3} x^{2}+(a(1-\xi))^{1 / 3} x-\left(a^{2}(a+\xi)\right)^{1 / 3}=0 \tag{5}
\end{equation*}
$$

Let $Q=(\xi, *) \in E(a)$. Then the point $P=(x, *) \in E(a)$, such that $Q=3 P$ exists, if and only if the equation

$$
x^{9}-\xi x^{6}+a(1-\xi) x^{3}-a^{2}(a+\xi)=0
$$

has a solution in \mathbb{F}. This equation is equivalent to equation

$$
\begin{equation*}
x^{3}-\xi^{1 / 3} x^{2}+(a(1-\xi))^{1 / 3} x-\left(a^{2}(a+\xi)\right)^{1 / 3}=0 \tag{5}
\end{equation*}
$$

The equation (5) is solvable in \mathbb{F} if and only if

$$
\begin{equation*}
\operatorname{Tr}\left(\frac{a \sqrt{\xi^{3}+\xi^{2}-a}}{\xi^{3}}\right)=0 \tag{6}
\end{equation*}
$$

Since the point ($a^{1 / 3}, a^{1 / 3}$) belongs to $G(a)$ and has order 3 , then solving the recursive equation

$$
\left.\begin{array}{l}
x_{i}^{3}-x_{i-1}^{1 / 3} x_{i}^{2}+\left(a\left(1-x_{i-1}\right)\right)^{1 / 3} x_{i} \tag{7}\\
-\left(a^{2}\left(a+x_{i-1}\right)\right)^{1 / 3}=0, \quad i=0,1, \ldots
\end{array}\right\}
$$

with initial value $x_{0}=a^{1 / 3}$, we obtain that the point $\left(x_{i}, *\right) \in G(a)$ for $i=0,1, \ldots, t-1$, and the point $\left(x_{t-1}, *\right)$ is a generator element of $G(a)$.

Since the point ($a^{1 / 3}, a^{1 / 3}$) belongs to $G(a)$ and has order 3 , then solving the recursive equation

$$
\left.\begin{array}{l}
x_{i}^{3}-x_{i-1}^{1 / 3} x_{i}^{2}+\left(a\left(1-x_{i-1}\right)\right)^{1 / 3} x_{i} \tag{7}\\
-\left(a^{2}\left(a+x_{i-1}\right)\right)^{1 / 3}=0, \quad i=0,1, \ldots
\end{array}\right\}
$$

with initial value $x_{0}=a^{1 / 3}$, we obtain that the point $\left(x_{i}, *\right) \in G(a)$ for $i=0,1, \ldots, t-1$, and the point $\left(x_{t-1}, *\right)$ is a generator element of $G(a)$.
Such algorithm of finding of cardinality of $G(a)$ was given in (Ahmadi O. \& Granger R. [2011]).

Since the point ($a^{1 / 3}, a^{1 / 3}$) belongs to $G(a)$ and has order 3 , then solving the recursive equation

$$
\left.\begin{array}{l}
x_{i}^{3}-x_{i-1}^{1 / 3} x_{i}^{2}+\left(a\left(1-x_{i-1}\right)\right)^{1 / 3} x_{i} \tag{7}\\
-\left(a^{2}\left(a+x_{i-1}\right)\right)^{1 / 3}=0, \quad i=0,1, \ldots
\end{array}\right\}
$$

with initial value $x_{0}=a^{1 / 3}$, we obtain that the point $\left(x_{i}, *\right) \in G(a)$ for $i=0,1, \ldots, t-1$, and the point $\left(x_{t-1}, *\right)$ is a generator element of $G(a)$.
Such algorithm of finding of cardinality of $G(a)$ was given in (Ahmadi O. \& Granger R. [2011]).
Similar method was presented in our previous paper
(Bassalygo-Zinoviev [2011]) for finite fields of characteristic 2.

Since the point ($a^{1 / 3}, a^{1 / 3}$) belongs to $G(a)$ and has order 3 , then solving the recursive equation

$$
\left.\begin{array}{l}
x_{i}^{3}-x_{i-1}^{1 / 3} x_{i}^{2}+\left(a\left(1-x_{i-1}\right)\right)^{1 / 3} x_{i} \tag{7}\\
-\left(a^{2}\left(a+x_{i-1}\right)\right)^{1 / 3}=0, \quad i=0,1, \ldots
\end{array}\right\}
$$

with initial value $x_{0}=a^{1 / 3}$, we obtain that the point $\left(x_{i}, *\right) \in G(a)$ for $i=0,1, \ldots, t-1$, and the point $\left(x_{t-1}, *\right)$ is a generator element of $G(a)$.
Such algorithm of finding of cardinality of $G(a)$ was given in (Ahmadi O. \& Granger R. [2011]).
Similar method was presented in our previous paper (Bassalygo-Zinoviev [2011]) for finite fields of characteristic 2. Besides, some another results have been obtained in (Bassalygo-Zinoviev [2011]) for the case $p=2$.

Since the point ($a^{1 / 3}, a^{1 / 3}$) belongs to $G(a)$ and has order 3 , then solving the recursive equation

$$
\left.\begin{array}{l}
x_{i}^{3}-x_{i-1}^{1 / 3} x_{i}^{2}+\left(a\left(1-x_{i-1}\right)\right)^{1 / 3} x_{i} \tag{7}\\
-\left(a^{2}\left(a+x_{i-1}\right)\right)^{1 / 3}=0, \quad i=0,1, \ldots
\end{array}\right\}
$$

with initial value $x_{0}=a^{1 / 3}$, we obtain that the point $\left(x_{i}, *\right) \in G(a)$ for $i=0,1, \ldots, t-1$, and the point $\left(x_{t-1}, *\right)$ is a generator element of $G(a)$.
Such algorithm of finding of cardinality of $G(a)$ was given in (Ahmadi O. \& Granger R. [2011]).
Similar method was presented in our previous paper (Bassalygo-Zinoviev [2011]) for finite fields of characteristic 2. Besides, some another results have been obtained in (Bassalygo-Zinoviev [2011]) for the case $p=2$.
Our purpose here is to generalize these results for finite fields of characteristic 3 .

We begin with simple result. It is known (van der Geer - van der Vlugt [1991], Lisonek-Moisio [2011]) that 9 divides $K(a)$ if and only if $\operatorname{Tr}(a)=0$.

We begin with simple result. It is known (van der Geer - van der Vlugt [1991], Lisonek-Moisio [2011]) that 9 divides $K(a)$ if and only if $\operatorname{Tr}(a)=0$. In this case a can be presented as follows: $a=z^{27}-z^{9}$, where $z \in \mathbb{F}$, and, hence $x_{0}=a^{1 / 3}=z^{9}-z^{3}$ (see (7)).

We begin with simple result. It is known (van der Geer - van der Vlugt [1991], Lisonek-Moisio [2011]) that 9 divides $K(a)$ if and only if $\operatorname{Tr}(a)=0$. In this case a can be presented as follows: $a=z^{27}-z^{9}$, where $z \in \mathbb{F}$, and, hence $x_{0}=a^{1 / 3}=z^{9}-z^{3}$ (see (7)). We found the expression for the next element x_{1}, namely:

$$
x_{1}=z^{2}(z+1)\left(z^{2}+1\right)(z-1)^{4}
$$

and, therefore, from condition (6), the following result holds.

We begin with simple result. It is known (van der Geer - van der Vlugt [1991], Lisonek-Moisio [2011]) that 9 divides $K(a)$ if and only if $\operatorname{Tr}(a)=0$. In this case a can be presented as follows: $a=z^{27}-z^{9}$, where $z \in \mathbb{F}$, and, hence $x_{0}=a^{1 / 3}=z^{9}-z^{3}$ (see (7)). We found the expression for the next element x_{1}, namely:

$$
x_{1}=z^{2}(z+1)\left(z^{2}+1\right)(z-1)^{4}
$$

and, therefore, from condition (6), the following result holds.

Statement 1.

Let $a \in \mathbb{F}^{*}$ and $\operatorname{Tr}(a)=0$, i.e. a can be presented in the form: $a=z^{27}-z^{9}$. Then

$$
x_{0}=z^{9}-z^{3}, \quad x_{1}=z^{2}(z+1)\left(z^{2}+1\right)(z-1)^{4}
$$

and, therefore, $K(a)$ is divisible by 27, if and only if

$$
\begin{equation*}
\operatorname{Tr}\left(\frac{z^{5}(z-1)(z+1)^{7}}{\left(z^{2}+1\right)^{3}}\right)=0 \tag{8}
\end{equation*}
$$

This condition (8) is less bulky than the corresponding condition from the paper (G'oloğlu-McGuire-Moloney [2011]), where it is proven that $K(a)$ is divisible by 27 , if $\operatorname{Tr}(a)=0$ and

$$
2 \sum_{1 \leq i, j \leq m-1} a^{3^{i}+3^{j}}+\sum_{1 \leq i \neq j \neq k \leq m-1} a^{3^{i}+3^{j}+3^{k}}=0 .
$$

This condition (8) is less bulky than the corresponding condition from the paper (G'oloğlu-McGuire-Moloney [2011]), where it is proven that $K(a)$ is divisible by 27 , if $\operatorname{Tr}(a)=0$ and

Similar to the case $p=2$ (Bassalygo-Zinoviev [2011]), we give now also another algorithm to find the maximal divisor of $K(a)$ of the type 3^{t}, which does not require solving of the cubic equations (5), but only consequent implementation of arithmetic operations in \mathbb{F}.

Let $a \in \mathbb{F}^{*}$ be an arbitrary element and let $u_{1}, u_{2}, \ldots, u_{\ell}$ be a sequence of elements of \mathbb{F}, constructed according to the following recurrent relation (compare with (7):

$$
\begin{equation*}
u_{i+1}=\frac{\left(u_{i}^{3}-a\right)^{3}+a u_{i}^{3}}{\left(u_{i}^{3}-a\right)^{2}}, \quad i=1,2, \ldots \tag{9}
\end{equation*}
$$

where $\left(u_{1}, *\right) \in E(a)$ and

$$
\begin{equation*}
\operatorname{Tr}\left(\frac{a \sqrt{u_{1}^{3}+u_{1}^{2}-a}}{u_{1}^{3}}\right) \neq 0 \tag{10}
\end{equation*}
$$

Then the following result is valid.

Theorem 1.

Let $a \in \mathbb{F}^{*}$ and let $u_{1}, u_{2}, \ldots, u_{\ell}$ be a sequence of elements of \mathbb{F}, which satisfies the recurrent relation (9), where the element u_{1} satisfies (10). Then there exists an integer
$k \leq m$ such that one of the two following cases takes place:

Theorem 1.

Let $a \in \mathbb{F}^{*}$ and let $u_{1}, u_{2}, \ldots, u_{\ell}$ be a sequence of elements of \mathbb{F}, which satisfies the recurrent relation (9), where the element u_{1} satisfies (10). Then there exists an integer
$k \leq m$ such that one of the two following cases takes place:
(i) either $u_{k}=a^{1 / 3}$, but all the previous u_{i} are not equal to $a^{1 / 3}$;

Theorem 1.

Let $a \in \mathbb{F}^{*}$ and let $u_{1}, u_{2}, \ldots, u_{\ell}$ be a sequence of elements of \mathbb{F}, which satisfies the recurrent relation (9), where the element u_{1} satisfies (10). Then there exists an integer
$k \leq m$ such that one of the two following cases takes place:
(i) either $u_{k}=a^{1 / 3}$, but all the previous u_{i} are not equal to $a^{1 / 3}$; (ii) or $u_{k+1}=u_{k+1+r}$ for a certain r and all u_{i} are different for $i<k+1+r$.

Theorem 1.

Let $a \in \mathbb{F}^{*}$ and let $u_{1}, u_{2}, \ldots, u_{\ell}$ be a sequence of elements of \mathbb{F}, which satisfies the recurrent relation (9), where the element u_{1} satisfies (10). Then there exists an integer
$k \leq m$ such that one of the two following cases takes place:
(i) either $u_{k}=a^{1 / 3}$, but all the previous u_{i} are not equal to $a^{1 / 3}$; (ii) or $u_{k+1}=u_{k+1+r}$ for a certain r and all u_{i} are different for $i<k+1+r$.
In the both cases the Kloosterman sum $K(a)$ is divisible by 3^{k} and is not divisible by 3^{k+1}.

Directly from Theorem 1 we obtain the following necessary and sufficient condition for an element $a \in \mathbb{F}^{*}$ to be a zero of the Kloosterman sum $K(a)$ (recall that the field \mathbb{F}_{q} is of order $q=3^{m}$).

Directly from Theorem 1 we obtain the following necessary and sufficient condition for an element $a \in \mathbb{F}^{*}$ to be a zero of the Kloosterman sum $K(a)$ (recall that the field \mathbb{F}_{q} is of order $q=3^{m}$).

Corollary 2.

Let $a \in \mathbb{F}^{*}$ and $u_{1}, u_{2}, \ldots, u_{\ell}$ be the sequence of elements of \mathbb{F}, which satisfies the recurrent relation (9), where the element u_{1} satisfies (10). Then $K(a)=0$, if and only if $u_{m}=a^{1 / 3}$, and $u_{i} \neq a^{1 / 3}$ for all $1 \leq i \leq m-1$.

Assume now that the field \mathbb{F}_{q} of order $q=3^{m}$ is embedded into the field $\mathbb{F}_{q^{n}}(n \geq 2)$, and a is an element of \mathbb{F}_{q}^{*}.

Assume now that the field \mathbb{F}_{q} of order $q=3^{m}$ is embedded into the field $\mathbb{F}_{q^{n}}(n \geq 2)$, and a is an element of \mathbb{F}_{q}^{*}. Recall that

$$
\operatorname{Tr}_{q^{n} \rightarrow q}(x)=x+x^{q}+x^{q^{2}}+\ldots+x^{q^{n-1}}, \quad x \in \mathbb{F}_{q^{n}}
$$

and ω is a primitive 3-th root of unity. For any elements $a \in \mathbb{F}_{q}$ and $b \in \mathbb{F}_{q^{n}}$ define

$$
e(a)=\omega^{\operatorname{Tr}(a)}, \quad e_{n}(b)=\omega^{\operatorname{Tr}\left(\operatorname{Tr}_{q^{n} \rightarrow q}(b)\right)}
$$

Assume now that the field \mathbb{F}_{q} of order $q=3^{m}$ is embedded into the field $\mathbb{F}_{q^{n}}(n \geq 2)$, and a is an element of \mathbb{F}_{q}^{*}.
Recall that

$$
\operatorname{Tr}_{q^{n} \rightarrow q}(x)=x+x^{q}+x^{q^{2}}+\ldots+x^{q^{n-1}}, \quad x \in \mathbb{F}_{q^{n}}
$$

and ω is a primitive 3-th root of unity. For any elements $a \in \mathbb{F}_{q}$ and $b \in \mathbb{F}_{q^{n}}$ define

$$
e(a)=\omega^{\operatorname{Tr}(a)}, \quad e_{n}(b)=\omega^{\operatorname{Tr}\left(\operatorname{Tr}_{q^{n} \rightarrow q}(b)\right)}
$$

For a given $a \in \mathbb{F}_{q}^{*}$ it is possible to consider the following two Kloosterman sums:

$$
\begin{aligned}
K(a) & =\sum_{x \in \mathbb{F}_{q}} e\left(x+\frac{a}{x}\right) \\
K_{n}(a) & =\sum_{x \in \mathbb{F}_{q^{n}}} e_{n}\left(x+\frac{a}{x}\right) .
\end{aligned}
$$

Denote by $H(a)$ the maximal degree of 3 , which divides $K(a)$, and by $H_{n}(a)$ the maximal degree of 3 , which divides $K_{n}(a)$.

Denote by $H(a)$ the maximal degree of 3 , which divides $K(a)$, and by $H_{n}(a)$ the maximal degree of 3 , which divides $K_{n}(a)$.
There exists a simple connection between $H(a)$ and $H_{n}(a)$.

Denote by $H(a)$ the maximal degree of 3 , which divides $K(a)$, and by $H_{n}(a)$ the maximal degree of 3 , which divides $K_{n}(a)$.
There exists a simple connection between $H(a)$ and $H_{n}(a)$.

Theorem 3.

Let $n=3^{h} \cdot s, \quad n \geq 2, s \geq 1$, where 3 and s are mutually prime, and $a \in \mathbb{F}_{q}^{*}$. Then

$$
H_{n}(a)=H(a)+h .
$$

Denote by $H(a)$ the maximal degree of 3 , which divides $K(a)$, and by $H_{n}(a)$ the maximal degree of 3 , which divides $K_{n}(a)$.
There exists a simple connection between $H(a)$ and $H_{n}(a)$.

Theorem 3.

Let $n=3^{h} \cdot s, \quad n \geq 2, s \geq 1$, where 3 and s are mutually prime, and $a \in \mathbb{F}_{q}^{*}$. Then

$$
H_{n}(a)=H(a)+h .
$$

From Theorem 3 we immediately obtain the following known result due to Lisonek and Moisio [2011].

Denote by $H(a)$ the maximal degree of 3 , which divides $K(a)$, and by $H_{n}(a)$ the maximal degree of 3 , which divides $K_{n}(a)$.
There exists a simple connection between $H(a)$ and $H_{n}(a)$.

Theorem 3.

Let $n=3^{h} \cdot s, \quad n \geq 2, s \geq 1$, where 3 and s are mutually prime, and $a \in \mathbb{F}_{q}^{*}$. Then

$$
H_{n}(a)=H(a)+h .
$$

From Theorem 3 we immediately obtain the following known result due to Lisonek and Moisio [2011].

Corollary 4.

Let $a \in \mathbb{F}_{q}^{*}$ and $n \geq 2$. Then $K_{n}(a)$ is not equal to zero.
[1] van der Geer G., van der Vlugt M., Kloosterman sums and the p-torsion of certain Jacobians, Math. Ann., 1991, vol. 290, no. 3, pp. 549-563.
[2] Lisonek P., On the connection between Kloosterman sums and elliptic curves. In: Proceedings of the 5th International Conference on Sequences and Their Applications (SETA 2008) (S. Golomb et al. Eds.), Lecture Notes in Computer Science, Springer, 2008, vol. 5203, pp. 182-187.
[3] Moisio M., Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm, Acta Arith., 2008, vol. 132, 4, pp. 329-350.
[4] Lisonek P., Moisio M., On zeros of Kloosterman sums, Designs, Codes and Cryptography, 2011, vol. 59, no. 1-3, pp. 223- 230. [5] G'oloğlu F., McGuire G., \& R. Moloney R., Some results on Kloosterman sums and their minimal polynomials, in: "Seventh International Workshop on Coding and Cryptography, WCC 2011", April 11-15, 2011, Paris, France, Proceedings (eds. D. Augot \& A. (anteaut). 2011. no. 403-412

