The maximum and the minimum sizes of complete $(n, 3)$-arcs in PG $(2,16)$

Stefano Marcugini
 joint work with

Daniele Bartoli and Fernanda Pambianco

ACCT 2012

SUMMARY

1. Introduction

SUMMARY

1. Introduction

2. Algorithm

SUMMARY

1. Introduction
2. Algorithm
3. Results

Preliminaries

$$
P G(2, q)
$$

Example

ARC : set \mathcal{K} no 3-collinear points

COMPLETE ARC $\mathcal{K}: \nexists \widetilde{\mathcal{K}}$ arc $|\mathcal{K} \nsubseteq \widetilde{\mathcal{K}},|\mathcal{K}|<|\widetilde{\mathcal{K}}|$

Preliminaries

$P G(2, q)$

($\mathrm{n}, 3$)-arc:
set \mathcal{K} no 4-collinear points contains 3-collinear points

Cubic curve

COMPLETE $(n, 3)$-arc $\mathcal{K}:$
$\nexists \widetilde{\mathcal{K}}(n, 3)-\operatorname{arc},|\mathcal{K} \nsubseteq \widetilde{\mathcal{K}},|\mathcal{K}|<|\widetilde{\mathcal{K}}|$

Singleton bound

$[n, k, d]_{q}$ linear linear code

Singleton bound

$[n, k, d]_{q}$ linear linear code

Singleton bound: $d \leq n-k+1$

Singleton bound

$[n, k, d]_{q}$ linear linear code

Singleton bound: $d \leq n-k+1$
MDS codes: $d=n-k+1$

Singleton bound

$[n, k, d]_{q}$ linear linear code
Singleton bound: $d \leq n-k+1$
MDS codes: $d=n-k+1$
Singleton defect of a linear code $C: s(C)=n-k+1-d$

Singleton bound

$[n, k, d]_{q}$ linear linear code
Singleton bound: $d \leq n-k+1$
MDS codes: $d=n-k+1$
Singleton defect of a linear code $C: s(C)=n-k+1-d$

MDS codes: $s(C)=0$

Singleton bound

$[n, k, d]_{q}$ linear linear code
Singleton bound: $d \leq n-k+1$
MDS codes: $d=n-k+1$
Singleton defect of a linear code $C: s(C)=n-k+1-d$

MDS codes: $s(C)=0$
AMDS codes: $s(C)=1$

Singleton bound

$[n, k, d]_{q}$ linear linear code
Singleton bound: $d \leq n-k+1$
MDS codes: $d=n-k+1$
Singleton defect of a linear code $C: s(C)=n-k+1-d$

MDS codes: $s(C)=0$
AMDS codes: $s(C)=1$
NMDS codes: $s(C)=1=s\left(C^{\perp}\right)$

NMDS codes

Theorem
A linear $[n, k, d]$ code C is NMDS if and only if a generator matrix of C, say G, (and consequently each generator matrix) satisfies the following conditions:

1. any $k-1$ columns of G are linearly independent;
2. there exist k linearly dependent columns in G;
3. any $k+1$ columns of G are of full rank

$$
[n, 3, n-3] \text { NMDS codes } \leftrightarrow(n, 3)-\operatorname{arcs} \text { of } P G(2, q)
$$

S.M. Dodunekov and I. Landjev, On near-MDS codes, J. Geometry 54 (1995), 30-43.

$(n, 3)-\operatorname{arcs}$

Definition
$m_{3}(2, q)$: maximum length of an $(n, 3)$-arc of $P G(2, q)$
$t_{3}(2, q)$: minimum length of a complete $(n, 3)-\operatorname{arc}$ of $P G(2, q)$

Theorem
$m_{3}(2, q) \leq 2 q+1$, for $q \geq 4$
J. Thas, Some results concerning $((q+1)(n-1), n)$-arcs,
J. Combin. Theory Ser. A 19 (1975), 228-232.

$(n, 3)-\operatorname{arcs}$

Classification of the ($n, 3$)-arcs in PG(2,q), q $=7,8,9$ S. M., A. Milani, F. Pambianco Ars Comb. 2001

$$
m_{3}(3,11)=21, m_{3}(3,13)=23
$$

S. M., A. Milani, F. Pambianco Discrete Math. 1999
S. M., A. Milani, F. Pambianco Discrete Math. 2005

Classification of the $(n, 3)$-arcs in $P G(2, q), q=11,13$ K. Coolsaet, H. Sticker J. Comb. Des. 2012

Algorithm

- Exhaustive search by backtracking

Algorithm

- Exhaustive search by backtracking
- Isomorph rejection by classification

Algorithm

- Exhaustive search by backtracking
- Isomorph rejection by classification
- Constraints on the structure of the solution

Algorithm

- Exhaustive search by backtracking
- Isomorph rejection by classification
- Constraints on the structure of the solution
- Size of the maximal arc contained in the ($n, 3$)-arc

Algorithm

- Exhaustive search by backtracking
- Isomorph rejection by classification
- Constraints on the structure of the solution
- Size of the maximal arc contained in the ($n, 3$)-arc
- Distribution of the points on the 2-secants of the ($n, 3$)-arc

Basic Theorem

Theorem
An $(n, 3)$-arc \mathcal{K} in $P G(2, q), n \geq \alpha+\binom{\alpha}{2}$, contains an arc of size $\alpha+1$.

J. Bierbrauer, G. Faina, S. M., F. Pambianco X ACCT 2006

Basic Theorem

Theorem

An $(n, 3)$-arc \mathcal{K} in $P G(2, q), n \geq \alpha+\binom{\alpha}{2}$, contains an arc of size $\alpha+1$.

J. Bierbrauer, G. Faina, S. M., F. Pambianco X ACCT 2006

A $(28,3)$ - arc contains an 8 -arc

Classification process

- classify all arcs of size s

$$
\left\{A_{i}^{s}\right\}
$$

Classification process

- classify all arcs of size s

$$
\left\{A_{i}^{s}\right\}
$$

- classify the (s+h,3)-arcs containing any of the $\left\{A_{i}^{s}\right\}$

$$
\left\{C_{j}^{s+h}\right\}
$$

Classification process

- classify all arcs of size s

$$
\left\{A_{i}^{s}\right\}
$$

- classify the (s+h,3)-arcs containing any of the $\left\{A_{i}^{s}\right\}$

$$
\left\{C_{j}^{s+h}\right\}
$$

- extend by backtracking each of the C_{j}^{s+h}

Classification process

- classify all arcs of size s

$$
\left\{A_{i}^{s}\right\}
$$

- classify the (s+h,3)-arcs containing any of the $\left\{A_{i}^{s}\right\}$

$$
\left\{C_{j}^{s+h}\right\}
$$

- extend by backtracking each of the C_{j}^{s+h}
- data parallelism for extension process

Classification information can be exploited during backtracking

Classification information can be exploited during backtracking

A^{s} ARC of size s

Classification information can be exploited during backtracking

Constraints on solution: size of arc contained

- extending an 8 -arc to obtain a $(29,3)$-arc is too expensive

Constraints on solution: size of arc contained

- extending an 8 -arc to obtain a $(29,3)$-arc is too expensive
- more constraint have to be introduced

Constraints on solution: size of arc contained

- extending an 8 -arc to obtain a $(29,3)$-arc is too expensive
- more constraint have to be introduced
- compute all $(29,3)$-arcs containing a 18 -arc

Constraints on solution: size of arc contained

- extending an 8 -arc to obtain a $(29,3)$-arc is too expensive
- more constraint have to be introduced
- compute all $(29,3)$-arcs containing a 18 -arc
- compute all $(29,3)$-arcs containing a 17 -arc but not a 18 -arc

Constraints on solution: size of arc contained

- extending an 8 -arc to obtain a $(29,3)$-arc is too expensive
- more constraint have to be introduced
- compute all $(29,3)$-arcs containing a 18 -arc
- compute all $(29,3)$-arcs containing a 17 -arc but not a 18 -arc

Constraints on solution: size of arc contained

- extending an 8 -arc to obtain a $(29,3)$-arc is too expensive
- more constraint have to be introduced
- compute all $(29,3)$-arcs containing a 18 -arc
- compute all $(29,3)$-arcs containing a 17 -arc but not a 18 -arc
- compute all $(29,3)$-arcs containing a 8 -arc but not a 9 -arc

Constraints on solution: size of arc contained I

Constraints on solution: size of arc contained I

Constraints on solution: size of arc contained II

Constraints on solution: size of arc contained II

Constraints on solution: size of arc contained II

Let C^{\prime} be the $(n, 3)$-arc to extend and C be the $(s, 2)$-arc contained in C^{\prime}.

We collect in a table all the pairs $(P, Q), P, Q \in P G(2, q) \backslash C^{\prime}$ such that:

$$
\exists R \in C \mid(C \backslash\{R\}) \cup\{P, Q\} \text { is an }(s+1,2) \text {-arc. }
$$

When adding a point P to the partial solution, all the points Q such that the pair (P, Q) is in the table are avoided.

Constraints on solution: size of arc contained III

Constraints on solution: size of arc contained III

Trade - off between the number of eliminated points and the computational cost of searching a sub-arc inside a ($n, 3$)-arc

At a certain level of the backtracking, random control to test if the the partial solution contains an arc too big.

In this case that branch of the search space can be pruned.

Constraints on solution: distribution of the candidates points on secants

Constraint on the distribution of the candidates points on the secants of the s-arc that the solution ($n, 3$)-arc contains

Arcs in Finite Projective Planes, G.R. Cook, PhD Thesis, Univ. of Sussex(2011) available on internet http://sro.sussex.ac.uk/

Constraint: distribution of candidates points on secants

To each secant, only one point can be added to obtain an ($n, 3$)-arc

Line	Points contained	β
ℓ_{1}	$P 1, P 2, P 3, P 4$	3
ℓ_{2}	$P 5, P 6, P 7, P 8$	2
ℓ_{3}	$P 9, P 10$	1
ℓ_{4}	$P 11, P 12$	0
ℓ_{5}	$P 13$	0
ℓ_{6}	$P 14$	0

Constraint: distribution of candidates points on secants

To each secant, only one point can be added to obtain an ($n, 3$)-arc

Line	Points contained	β
ℓ_{1}	$P 1, P 2, P 3, P 4$	3
ℓ_{2}	$P 5, P 6, P 7, P 8$	2
ℓ_{3}	$P 9, P 10$	1
ℓ_{4}	$P 11, P 12$	0
ℓ_{5}	$P 13$	0
ℓ_{6}	$P 14$	0

constructing an $(8,3)$-arc choose the i-th points in lines $\beta, \beta<i$

Constraint: distribution of candidates points on secants

To each secant, only one point can be added to obtain an ($n, 3$)-arc

Line	Points contained	β
ℓ_{1}	$P 1, P 2, P 3, P 4$	3
ℓ_{2}	$P 5, P 6, P 7, P 8$	2
ℓ_{3}	$P 9, P 10$	1
ℓ_{4}	$P 11, P 12$	0
ℓ_{5}	$P 13$	0
ℓ_{6}	$P 14$	0

constructing an $(8,3)$-arc choose the i-th points in lines $\beta, \beta<i$
More effective when searching for big ($n, 3$)-arcs

Results: maximal $(n, 3)-\operatorname{arcs}$ in $\operatorname{PG}(2,16)$

Theorem

The maximum size of complete $(n, 3)$-arcs in $P G(2,16)$ is 28 .
There exists a unique $(28,3)$-arc.

Table: Execution time of the search for $(n, 3)$-arcs in $P G(2,16)$ with $n \geq 29$ containing an arc \mathcal{A}

$\|\mathcal{A}\|$	8	9	10	11	12	13	14	15	16	17
Time	2 d	22 d	20 d	4 d	2 d	1.2 h	15 m	3 m	$<1 \mathrm{~m}$	$<10 \mathrm{~s}$

The complete $(28,3)$-arc is an example of $(1,18)$-saturating set with μ-density $\delta=1.285714$ (see [B.D.G.M.P. ACCT2012]).

Results about NMDS codes

In the language of coding theory, the previous Theorem can be rewritten as:

Theorem
No $[29,3,26]_{16-c o d e ~ e x i s t s . ~}^{\text {- }}$

Results about NMDS codes

In the language of coding theory, the previous Theorem can be rewritten as:

Theorem
No $[29,3,26]_{16-c o d e ~ e x i s t s . ~}^{\text {- }}$

Corollary
No $[29+h, 3+h, 26]_{16-c o d e ~ e x i s t s, ~} h \geq 1$.
Proof.
Otherwise a [29, 3, 26] ${ }_{16}$-code could be obtained by shortening.

Results about NMDS codes

In the language of coding theory, the previous Theorem can be rewritten as:

Theorem
No $[29,3,26]_{16-c o d e ~ e x i s t s . ~}^{\text {- }}$

Corollary
No $[29+h, 3+h, 26]_{16-c o d e ~ e x i s t s, ~} h \geq 1$.
Proof.
Otherwise a [29, 3, 26] ${ }_{16}$-code could be obtained by shortening.

The corollary closes, for $h \leq 27$, some open cases in tables of MinT online database, http://mint.sbg.ac.at

Results about NMDS codes

Theorem
There exists no $[29,4,25]_{16}$ NMDS code.
Proof.

0	
0	$[28,3,25]_{16}$ code
0	
1	vector of weight at least 24

Results: smallest complete $(n, 3)$-arcs in $P G(2,16)$

Theorem
The minimum size of complete $(n, 3)$-arcs in $P G(2,16)$ is 15.
There exists a unique complete $(15,3)$-arc in $P G(2,16)$.
It contains a (9, 2)-arc, but not a greater arc.
Proof.
Exhaustive search for ($n, 3$)-arcs with $n \leq 14$.
It lasted 11 days on a 3.2 Ghz CPU.
Classification lasted 45 days on a 3.2 Ghz CPU.

Results: smallest complete $(n, 3)$-arcs in $P G(2,16)$

Table: The complete $(15,3)$-arc in $P G(2,16)$

	Points									ℓ_{0}	ℓ_{1}	ℓ_{2}	ℓ_{3}	G				
1	0	0	1	1	1	1	1	1	1	1	1	1	1	1				
0	1	0	1	0	1	2	2	4	9	9	11	11	13	13				
0	0	1	1	11	8	5	10	10	2	8	2	11	1	12				

$G F(16)=\left\{0,1=\alpha^{0}, 2=\alpha^{1}, \ldots, 15=\alpha^{14}\right\}, \alpha$ primitive element such that $\alpha^{4}+\alpha^{3}+1=0$.

Results in $P G(2,17)$

Theorem
There exist no complete ($n, 3$)-arcs in $P G(2,17)$, with $n>28$ containing an arc of size greater than 12.

Theorem
The smallest size of complete $(n, 3)$-arcs in $P G(2,17)$ is at most 18. There exist no complete $(n, 3)$-arcs in $P G(2,17)$, with $n \leq 17$ containing an arc of size less than 8.

Results in $P G(2,19)$

Theorem
The maximum size of complete $(n, 3)$-arcs in $P G(2,19)$ is at least 31. There exist no complete $(n, 3)$-arcs in $P G(2,19)$, with $n \geq 31$ containing an arc of size greater than 14.

Theorem
The smallest size of complete $(n, 3)$-arcs in $\operatorname{PG}(2,19)$ is at most 20.

THANKS FOR THE ATTENTION!

