The Goldreich-Levin Algorithm with Reduced Complexity

Ameriah Salem Abdouli, Khalifa University of Science, Technology and Research,Abu Dhabi, UAE;

Ilya Dumer, UC Riverside,USA; Grigory Kabatiansky, KUSTAR, UAE on leave from IITP RAS, Russia;
Cedric Tavernier, tavernier.cedric@gmail.com

$$
\text { June 18, } 2012
$$

Problem. For a given boolean function $g\left(x_{1}, \ldots, x_{m}\right)$ find all enough good linear approximations
$L_{g, \varepsilon}=\left\{a(x)=a_{1} x_{1}+\ldots+a_{m} x_{m}: d(g, a) \leq 2^{m}(1 / 2-\varepsilon)\right\}$
The deterministic, error-free, Green algorithm (=FFT) performs complete maximum likelihood decoding with complexity $n \ln ^{2} n$, where $n=2^{m}$.
The celebrated Goldreich-Levin algorithm performs randomized list decoding achieves a low decoding error probability of 2^{-s} with a polylogarithmic complexity $s m / \epsilon^{4}$.
We combine the two algorithms and reduce the complexity of the Goldreich-Levin algorithm to the order of $s m / \epsilon^{2}$.

Original GL Algorithm

We independently and uniformly pick up / vectors
$U=\left\{u_{(1)}, \ldots, u_{(I)}\right\}$ from \mathbb{F}_{2}^{m} and consider the linear subspace

$$
\begin{equation*}
\mathbb{U}=\left\{\sum_{i=1}^{I} y_{(i)} u_{i} \mid y_{i}=0,1\right\} \tag{1}
\end{equation*}
$$

Consider restrictions of all linear function $a(x)$ on \mathbb{U} in the form $a(x)=a(x)_{\mid \mathbb{U}}=\sum_{i=1}^{l} h_{i} y_{i}$, where $x=\sum_{i=1}^{l} y_{i} u_{(i)}$. To find $a(x)$ is the same as to find $a\left(e_{i}\right)$. Note that

$$
\begin{equation*}
a\left(e_{i}\right)=a(u)+a\left(u+e_{i}\right), \quad u \in \mathbb{U}, \quad i=1, \ldots, m \tag{2}
\end{equation*}
$$

Here the unknown outputs $a\left(u+e_{i}\right)$ will be replaced by the corresponding channel outputs $g\left(u+e_{i}\right)$. The algorithm $G L$ then estimates each $a\left(e_{i}\right)$ taking the 2^{\prime}-majority vote

$$
\begin{equation*}
\tilde{a}\left(e_{i}\right)=\operatorname{Maj}_{u \in \mathbb{U}}\left\{a(u)+g\left(u+e_{i}\right)\right\}, \quad i=1, \ldots, m \tag{3}
\end{equation*}
$$

Improved GL algorithm uses many mutually independent estimates of $a\left(e_{i}\right)$. We first replace the unit vector e_{i} in equalities (2) and (3) with any point z.

A function $a(x)$ can be estimated at any point z as

$$
\begin{equation*}
\tilde{a}(z)=\operatorname{Maj}_{u \in \mathbb{U}}\{a(u)+g(u+z)\} . \tag{4}
\end{equation*}
$$

Similarly, we evaluate the same function $a(x)$ at the point $z+e_{i}$,

$$
\begin{equation*}
\tilde{a}\left(z+e_{i}\right)=\operatorname{Maj}_{u \in \mathbb{U}}\left\{a(u)+g\left(u+z+e_{i}\right)\right\} \tag{5}
\end{equation*}
$$

Now estimate the coefficient $a\left(e_{i}\right)$ as a function of the point $z=z_{(j)}$ as follows

$$
\begin{equation*}
\tilde{a}_{j}\left(e_{i}\right)=\tilde{a}\left(z_{j}\right)+\tilde{a}\left(z_{j}+e_{i}\right) \tag{6}
\end{equation*}
$$

Finally, we take k random points $z_{(j)}$ in such a way that they belongs to different cosets of \mathbb{U}. Then

$$
\begin{equation*}
\tilde{a}\left(e_{i}\right)=\operatorname{Maj}_{j=1, \ldots, k}\left\{\tilde{a}_{j}\left(e_{i}\right)\right\}, \tag{7}
\end{equation*}
$$

where estimates $\tilde{a}_{j}\left(e_{i}\right)$ are mutually independent r.v. and one can apply corresponding EXP inequalities, e.g., Hoeffding.

Our improvement is based on the following observation. Consider the majority voting performed on the vector $g\left(u+z_{j}\right)$ in (4). Given any $z=z_{(j)}$, we choose in favor of some constant $\tilde{a}(z)$ in (4) instead of $\tilde{a}(z)+1$ if the corresponding affine function $a(x)+\tilde{a}(z)$ is closer to $g(u+z)$ than the opposite function. Thus, the estimates $\tilde{a}_{b}(y)$ can be derived simultaneously for different $b \in \mathbb{F}_{2}^{\prime}$, by decoding vector $g(u+z)$ into the list of $L=2^{\prime}$ closest affine functions. It reduces complexity from $1 / \varepsilon^{4}$ to from $1 / \varepsilon^{2}$.

1. O. Goldreich and L. A. Levin, A hard-core predicate for all one-way functions ,in $21{ }^{\text {st }}$ ACM Symp. Theory of Computing, Seattle, WA, USA, May 14 - 17, pp. 25-32,1989.
2. L. A. Levin, Randomness and Nondeterminism, J. Symb. Logic, vol. 58, pp. 1102-1103, 1993.
3. O. Goldreich, Foundations of Cryptography, vol. 1, Cambridge, New York, 2001.
4. L. Trevisan, Some applications of coding theory in computational complexity, Quaderni di matematica, vol. 13, pp. 347-424, 2004.

Boolean-crypto conjecture

One problem on boolean fucntions

Let $F(x, y)$ be one-to-one function $\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$, which can be represented as

$$
F(x, y)=f_{1}(x)+f_{2}(y)
$$

where $f_{1}(x), f_{2}(x)$ be vectorial boolean functions $\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$.
Conjecture There exists vector $a \in\{0,1\}^{2 n}$ such that for f_{1} or f_{2} $(a, f(x))=0$ for all $x \in\{0,1\}^{n}$.

Thank you!

